初二数学实数知识点整理

合集下载

八上数学实数必背知识点总结

八上数学实数必背知识点总结

第二章 实数1、1-25的平方:12=122=432=942=1652=2562=3672=4982=6492=81102=100112=121122=144132=169142=196152=225162=256172=289182=324192=361202=400212=441222=484232=529242=576252=6252、1-10的立方:13=123=833=2743=6453=12563=21673=34383=51293=729103=10003、实数的分类:4、判断无理数的方法:① 带π的② 无限不循环的小数③ 带根号并且开不出来的5、算数平方根:算数平方根的定义:一般地,如果一个正数 x的平方等于 a,即 x2=a,那么这个正数 x就叫做 a的算术平方根. 0 的算术平方根是 0.(a≥0)符号表示: √a,表示求a的算术平方根,即 求谁 (非负数)的平方等于a.6、平方根:平方根的定义:一般地,如果一个数 x的平方等于 a,即x2 = a,那么这个数 x就叫做 a的平方根(或二次方根)。

0 的平方根是 0.(a≥0)符号表示: ±√a,表示求a的平方根,即 求谁的平方等于a.平方根的性质:①正数有两个平方根,它们互为相反数;0 的平方根还是 0;负数没有平方根.②双重非负性:a≥0,√a≥0③7、立方根:立方根的定义:一般地,如果一个数x 的立方等于a ,即x 3= a , 那么这个数x 就叫做a 的立方根(也叫做三次方根). 0的立方根是0 .(a 为任意数)。

符号表示:3√a ,表示求a 的立方根,即 求谁的立方等于a.立方根的性质:①正数的立方根是正数;负数的立方根是负数;0的立方根是0.②8、必考题:①√81的算数平方根是 3 . ②√16的平方根是 ±2 . ③√64的立方根是 2 .9、非负数有:( )2 ≥0, | | ≥0, √❑ ≥0几个非负数相加等于0,如( )2 + | | + √❑ = 0,说明里面都是0.10、两个答案的有:平方、平方根、绝对值,如:①若a 2 =4,则a= ±2 (两种情况!) ②若 |a | =4,则a= ±4 (两种情况!)③4的平方根是 ±2 (两种情况!)11、比大小:¿1¿GG 3¿GGGGGGGGGGG ①√❑和数字,比较它们的平方¿2¿GG 3¿GGGGGGGGGGG ②3√❑和数字,比较它们的立方③√❑和3√❑,比较它们的6次方④2√3和3√2,比较它们的平方⑤√3−12和12,分母相同比分子12、相反数、绝对值、倒数:相反数:①只有符号不同的两个数叫做相反数。

初二(下)实数的知识点与练习题

初二(下)实数的知识点与练习题

第十三章 实数知识要点一: 1.实数的性质(1)实数范围内仍然适用在有理数范围内定义的一些概念(如倒数,相反数);(2)两实数的大小关系:正数大于0,0大于负数;两个正实数,绝对值大的实数大;两个负实数,绝对值大的实数反而小;(3)在实数范围内,加、减、乘、除(除数不为零)、乘方五种运算是畅通无阻的,但是开方运算要注意,正实数和零总能进行开方运算,而负实数只能开奇次方,不能开偶次方;(4)有理数范围内的运算律和运算顺序在实数范围内仍然相同. 2.实数与数轴的关系每一个实数都可以用数轴上的一个点表示;反之,数轴上每一个点都表示一个实数,即数轴上的点与实数是一一对应关系.3.实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数4.实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数.【典型例题】2-1C B A 例1若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例2 实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例3 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( ) A. 5-2 B. 2-5 C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例4 已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。

初二实数重要知识点总结

初二实数重要知识点总结

初二实数重要知识点总结一、有理数和无理数实数包括有理数和无理数两种类型。

有理数是可以写成整数比的数,包括正整数、负整数、零和分数四种类型。

无理数是不能写成整数比的数,它们是无限不循环小数。

有理数和无理数的概念在实数中是非常重要的,它们构成了实数的基本组成部分。

有理数和无理数在数轴上分布形成了密集的情况,它们一起构成了实数轴上的所有点。

二、数轴数轴是表示实数的一条直线,它从左到右依次表示了负无穷到正无穷的所有实数。

在数轴上,每个实数对应一点,反之亦然。

数轴的左侧是负数部分,右侧是正数部分,中间是零点。

利用数轴,我们可以直观地表示实数之间的大小关系,进行加减乘除的运算,以及表示绝对值等操作。

数轴在初二的数学学习中非常重要,它是理解实数概念的基础。

三、绝对值绝对值是一个非常重要的概念,它表示一个数到原点的距离。

对于正数来说,它的绝对值就是它自己,对于负数来说,它的绝对值是它的相反数。

绝对值可以用来表示距离、大小比较、解绝对值不等式等很多方面的概念。

在初二数学学习中,绝对值是一个非常重要的知识点,它在数轴上的表示、大小比较、解不等式等方面有着广泛的应用。

四、大小比较在实数中,大小比较是一个非常基本的操作,它包括了比较两个数的大小、比较绝对值、比较大小定理等多个方面的内容。

大小比较在初二数学中占据了非常重要的地位,它与绝对值、数轴等概念有着密切的联系。

大小比较是实数的基本性质之一,它在数学的各个分支中都有着广泛的应用。

在初二数学学习中,掌握好大小比较的概念对于后续学习是非常重要的。

五、相反数相反数是一个非常简单而重要的概念,它表示了一个数与它的相反数相加等于零。

对于正数来说,它的相反数就是负数,对于负数来说,它的相反数就是正数。

相反数在加减法运算中有着重要的作用,它能够帮助我们进行数的加减运算、解方程等多个方面的操作。

在初二数学中,相反数是一个需要重点掌握的知识点,它对于后续学习有着重要的作用。

总结一下,在初二数学学习中,实数是一个非常重要的知识点,它涉及了有理数、无理数、数轴、绝对值、大小比较、相反数等多个概念。

实数初中数学知识点总结

实数初中数学知识点总结

实数初中数学知识点总结一、实数的定义与分类实数是数学中最基本的数系之一,包括有理数和无理数两大类。

有理数可以表示为两个整数的比值,形式为a/b,其中a和b为整数,b不为零。

无理数则不能表示为有理数的形式,例如圆周率π和黄金比例φ。

1.1 有理数有理数包括整数和分数。

整数包括正整数、负整数和零,分数则是整数的比值形式。

有理数可以表示为有限小数或无限循环小数。

1.2 无理数无理数是无限不循环小数,常见的无理数有圆周率π、自然对数的底数e等。

无理数不能表示为分数形式。

二、实数的性质实数具有以下性质:- 封闭性:实数的加法、减法、乘法和除法(除数不为零)都是封闭的。

- 有序性:实数集是一个有序集,任何两个实数都可以比较大小。

- 完备性:实数集中的任何有界数列都有一个极限,这个极限也是实数集中的数。

三、实数的运算3.1 加法实数的加法满足交换律和结合律。

两个实数相加,和的符号由绝对值大的数决定,同号相加取原来的符号,异号相加取绝对值大的数的符号,并用较大的绝对值减去较小的绝对值。

3.2 减法实数的减法可以转化为加法,即a - b = a + (-b)。

减法的顺序改变会改变结果的符号。

3.3 乘法实数的乘法满足交换律、结合律和分配律。

两个正实数相乘得正,两个负实数相乘得正,正实数与负实数相乘得负。

3.4 除法实数的除法可以转化为乘法,即a ÷ b = a × (1/b)。

除以一个非零实数,相当于乘以它的倒数。

四、实数的比较实数的大小比较遵循以下规则:- 正实数都大于零。

- 零大于所有的负实数。

- 负实数都小于零。

- 两个负实数比较大小,其绝对值大的反而小。

五、实数的平方根与立方根5.1 平方根实数a的平方根是一个数b,使得b² = a。

正实数有两个平方根,一个正数和一个负数;零的平方根是零;负数没有实数平方根。

5.2 立方根实数a的立方根是一个数b,使得b³ = a。

初中数学实数知识点总结

初中数学实数知识点总结

初中数学实数知识点总结一、实数的分类实数是由整数、分数、无理数和有理数四种数构成的。

整数是不含小数部分的正整数、负整数和0。

例如,-3、-2、-1、0、1、2、3等都是整数。

分数是由整数和非零整数构成的比值。

例如,1/2、3/4、-2/3等都是分数。

无理数是指不能表示为有理数的数,通常是无限不循环小数。

如π、根号2、根号3等都是无理数。

有理数是整数和分数的集合,是可以表示为整数比整数的分数的数。

有理数包括整数和分数,例如-3、-2、-1、0、1、2、3、1/2、3/4等都是有理数。

二、实数的加法和减法实数的加法和减法是我们在日常生活中经常用到的运算方式。

对于整数和分数的加法和减法,我们可以按照它们的正负号和大小进行相应的运算。

例如,对于同号的整数,其加法就是两个数的绝对值相加,并且结果的符号与原来的符号相同;对于异号的整数,其加法就是两个数的绝对值相减,并且结果的符号取绝对值大的数的符号。

对于分数的加法和减法,我们可以先找到它们的公共分母,然后按照相同的公共分母进行运算。

三、实数的乘法和除法实数的乘法和除法也是我们在日常生活中经常用到的运算方式。

对于整数和分数的乘法和除法,我们可以按照相应的规则进行运算。

例如,对于整数的乘法和除法,我们可以按照同号和异号的规则进行运算。

对于分数的乘法和除法,我们可以把乘法转化为乘以倒数的形式进行运算。

四、实数的比较大小在日常生活中,我们经常需要比较不同的数的大小。

对于实数的比较大小,我们可以按照它们的绝对值和符号进行比较。

例如,比较两个正数的大小时,我们可以直接比较它们的绝对值大小;比较一个正数和一个负数的大小时,我们可以直接判断正数的大小。

对于分数的比较大小,我们可以将它们转化为相同的分母后再进行比较。

五、实数的混合运算在实际应用中,我们经常需要对不同类型的实数进行混合运算。

例如,我们需要计算一个整数与一个分数的乘积,或者一个整数与一个无理数的和。

对于这种情况,我们可以根据它们的类型进行相应的转化,然后再进行运算。

八年级数学实数知识点

八年级数学实数知识点

八年级数学实数知识点八年级数学是学生们数学学习中的一个阶段,涉及到很多实用的数学知识和技能。

其中实数是一个重要的知识点。

实数是指所有的有理数和无理数的集合,是数学中的基本概念之一。

下面我们来详细了解一下八年级数学实数知识点。

一、实数概念实数是指所有的有理数和无理数的集合。

其中有理数是可以表示为两个整数之比的数,无理数是不能表示为有限小数或者分数的数。

实数在数学中具有很重要的地位,它们包含了我们所熟知的所有数,并且提供了基本的数学运算法则。

二、实数基本运算法则实数基本运算法则包括加法、减法、乘法和除法。

这些运算法则在实数中是适用的,可以通过这些法则来进行数学计算。

实数加、减法可以通过数轴的正负进行研究,而乘法和除法则需要注意除数不能为零。

三、实数绝对值实数的绝对值是这个数到原点的距离,绝对值是一个非负数。

正数的绝对值与它本身相等,负数的绝对值是它本身的相反数。

绝对值有很多应用,如求解不等式、导数的定义等。

四、实数的比较实数的比较需要注意大小关系,可以通过大小比较符号进行判断。

对于任意两个实数a和b,如果a<b,则称a小于b;如果a>b,则称a大于b;如果a=b,则称a等于b。

五、实数的分类实数可以根据有理数和无理数进行分类,有理数包括整数、分数和小数,而无理数则包括无限不循环小数和代数无理数。

有理数和无理数在数学中都有重要的应用,如证明勾股定理等。

六、实数的近似实数的近似是指通过一定的方法将复杂的数进行简化,以便于计算。

常见的近似方法包括四舍五入、截断和近似成一定的形式等。

近似方法在实际运用中很常见,如测量长度和面积、统计数据等。

总之,实数在八年级数学中是一个非常重要的知识点。

了解实数的概念、基本运算法则、绝对值、比较、分类和近似方法可以帮助我们更好地掌握数学相关知识,提高数学应用能力。

在学习实数这一知识点时,要注意理解概念,掌握方法,提高思维能力,才能在数学学习中获得更多的收益。

八年级数学上实数知识点

八年级数学上实数知识点

八年级数学上实数知识点实数是数学中一个非常重要的概念,也是数学学习的基础,因此在初中数学中也有相关知识点,下面本文将为大家介绍八年级数学上实数相关的知识点。

一、实数的定义实数是由有理数和无理数组成的数集。

其中有理数是可以表示为两个整数之比的数,无理数则不能用两个整数的比表示。

二、实数的分类实数可以分为有理数和无理数两类。

其中有理数可以分为正有理数、负有理数和零三类。

无理数则不可表示为两个整数之比。

三、实数的运算1.实数加减法加减法是实数运算中最基本的运算。

实数加减法遵循结合律、交换律和分配律,可以通过实数的相反数将减法转化为加法。

例如,对于实数a、b和c,有:①a+(b+c)=(a+b)+c②a+b=b+a③a×(b+c)=(a×b)+(a×c)④a-(b+c)=a-b-c2.实数乘除法乘除法也是实数运算中常用的运算方法。

实数乘除法也遵循结合律、交换律和分配律。

例如,对于实数a、b和c,有:①a×(b×c)=(a×b)×c②a×b=b×a③a÷(b×c)=a÷b÷c④a÷(b÷c)=a×c÷b四、实数的性质实数有许多重要的性质,这些性质对于解决实际问题非常重要。

本文只介绍实数的一些基本性质。

1.实数的传递性对于任意的实数a、b和c,如果a<b<b,则a<c,这就是实数的传递性。

2.实数的对称性对于实数a和b,如果a=b,则b=a。

3.实数的不等式性质实数的不等式性质包括四则运算的不等号关系和绝对值不等式。

其中四则运算的不等号关系指的是:①如果a<b,则a+c<b+c;②如果a<b 且 c>0,则ac<bc;③如果a<b 且 c<0,则ac>bc;④如果a>b,则a-c>b-c。

初中数学实数代数式整式知识点归纳

初中数学实数代数式整式知识点归纳

第一章 数与式第⼀节 实数考点⼀:实数的分类与实数的有关概念<实数的分类>实数:是有理数和⽆理数的总称。

定义为与数轴上的点相对应的数。

有理数:整数和分数统称为有理数整数:正整数、零和负整数统称为整数正数:⼤于零的数,正数前⾯可以放上正号“+”来表⽰(常省略不写)负数:⼩于零的数,⽤⼤于零的数前⾯放上负号“-”来表⽰0既不是正数也不是负数分数:正分数、负分数统称为分数⽆理数:⽆限不循环⼩数叫⽆理数。

即⾮有理数之实数,不能写作两整数之⽐。

若将它写成⼩数形式,⼩数点之后的数字有⽆限多个,并且不会循环。

常见的⽆理数有⼤部分的平⽅根、π等。

<数轴、相反数、绝对值、倒数>数轴:规定了原点、单位长度和正⽅向的直线叫做数轴。

任何⼀个有理数都可以在数轴上表⽰。

相反数:如果两个数只有符号不同,那么我们称其中⼀个数为另⼀个数的相反数,也称这两个数互为相反数。

零的相反数是零。

数轴上,表⽰互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

绝对值:把⼀个数载数轴上对应的点到原点的距离叫做这个数的绝对值。

⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;零的绝对值是零。

互为相反数的两个数的绝对值相等。

在数轴上表⽰的两个数,右边的数总⽐左边的数⼤。

倒数:如果两个数互为倒数,则它们的乘积为1。

注意:1.零没有倒数2.求分数的倒数,就是把分数的分⼦分母颠倒位置。

⼀个带分数要先化成假分数。

3.正数的倒数是正数,负数的倒数是负数。

⾃然数⽆理数实数<平⽅根、算术平⽅根、⽴⽅根>平⽅根:⼀般地如果⼀个数的平⽅等于a,那么这个数叫做a的平⽅根,也叫a的⼆次⽅根.⼀个正数有正负两个平⽅根,它们互为相反数;0的平⽅根是0;负数没有平⽅根。

开平⽅:求⼀个数的平⽅根的运算叫做开平⽅。

开平⽅是平⽅运算的逆运算,因此,可以运⽤平⽅运算求⼀个数的平⽅根。

算数平⽅根:正数的正平⽅根称为算数平⽅根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学实数知识点整理
初二数学实数知识点整理
一、实数的有关概念
1、无理数:无限不循环小数叫做无理数,这说明无理数有两个基本特征:一是小数位数无限多,二是不循环。

2、无理数的表现形式
在初中阶段,无理数的表现形式有几下三种:
①开方开不尽而得到的数,如、、等
②含有的'数,如、等
③无限不循环的小数,如1.1010010001(每二个1之间依次多一个0)
二、实数的分类
有理数、无理数统称实数;它可以按以下两种方式分类
实数或实数
三、实数的重要性质
1、有理数范围内的一些定义,概念和性质在实数范围内仍然适用,如绝对值、相反数、倒数等。

2、两个实数大小的比较;正数大于0;0大小一切负数;二个负实数,绝对值大的反而小
3、在实数范围内,加、减、乘、除(除数不能为0)、乘方五种运算畅通无阻,在开方运算中,正实数和0总能进行开方运算,负实数只能开立方,不能开平方,
4、在有理数范围内的运算顺序和运算律在实数范围内仍然适用。

四、实数和数轴的关系
实数和数轴上的点存在着一一对应关系,即:任何一个实数都可以用数轴上的一个点表示,反之,数轴上的任何一个点都表示一个
实数。

因此,我们不但可以将一个有理数用数轴上的一个点表示,
同时,也可以将一个无理数用数轴上的点表示出来。

相关文档
最新文档