八年级数学上册《实数》
八年级数学上册14.3《实数》

问题1:无理数是否也可以用数轴上的点来表示吗?
如图,直径为1个单位长度的圆从原点O沿数轴向
Байду номын сангаас
右滚动一周,圆上一点从原点到达A点,则OA的长
度是 点A表示的数就是
。
-4 -3 -2 -1 0O 1 2 3A 4
可以用数轴上的点来表示.
有两个边长为1的小正方形,请大家 拿出剪刀把它剪成四个同样大小的直 角三角形,设法拼成一个大得正方形。
大正方形的面积是 2 ,边长
是
2
。
我们把这个正方形的一个顶点和原点O重合,一条 边恰好落在数轴的正方向上,其另一个顶点为数轴 上的点A.
线段OA的长是多少? 点A 在数轴上对应的数哪个数?
面积为5
面积为2
O
A
-1 2
0
1
2B
可以用数轴上的点来表示.
回顾:一个有理数的相反数的概念
首先回顾 有理数的相反数在数轴上的特点:
冀教版数学 八年级上册
§14.3 实数(二)
承德市双桥区双峰寺镇中学 李振江
昨日点滴
(1)无限不循环小数叫做__无__理__数__ (2)无理数的常见三种形式: ①圆周率π及一些含有π的;如 5π
②开不尽方的数,如 2 ;
③有一定的规律,但不循环的无限小数,如 0.101 001 000 1… (3)
也就是说有理数关于相反数的概念同样适用于无理数。
2+ 2 = 0
的相反数是
3 8 的相反数是
回顾:一个有理数的绝对值的概念 我们再来回顾有理数的绝对值的概念:
-2
0
2
一个数的绝对值是该数在数轴上所对应的 点到原点的距离
八年级上册数学《实数》(含答案)

第1节 实数、平方根【基本知识】1、 有理数 包括有限小数和循环小数,有理数都可以表示为分数形式;2、 无限不循环小数,成为 无理数 ;3、平方根:(1)定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。
(2)性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)算术平方根:正数a 的正的平方根叫做a 。
(4)一个非负数x 有两个平方根a 和b ,则a+b = 0(5)运算:2a = ||a 2)(a = a ;2)(a -= a类型1A :【求下列各数的平方根】(1)324 (2)9624 (3)3.61 (4)971 (5)289【答案】(1)18± (2)21± (3)9.1± (4)34± (5)17±类型1B :【求下列各数的算术平方根】(1)64 (2)2)3(- (3)49151(4) 21(3)- 【答案】(1)8 (2)3 (3)78 (4)31类型2:【已知平方数或平方根,求数】(1)平方等于256的数是 16±(2)若3是x 的一个平方根,则x = 9(3)若一个正数的平方根为12-a 和a -4,则a = -3 ,这个正数为 49 .(4)一个数的平方等于9,则这个数是 3±(5)一个负数的平方等于100,则这个负数是 10-(6)已知2a -1的平方根是3±,3a+b -1的平方根是4±,则a = ,b = 2 5类型3:【开平方,求下列各式中x 的值】(1)09252=-x (2)x 2-144 = 0 (3)(2x )2 = 16【解】 (1)53±=x (2)12±=x (3)2±=x(4)32-=x (5)32=x (6)225360x -=【解】(4)无实根 (5)3±=x (6)56±=x(7)9x 2-1= 0 (8)16)1(2=+x (9)(21x )2 = 1【解】(7)31±=x (8)35或-=x (9)2±=x类型4:【计算】(1)= 3= 5= 7(2) =-2)4( 4 =2)182( 91 =2)5( 5(3)94±=32±-169.= -1.3102-=101(4)81±= 9± 16-= -4 259= 53(5)44.1= 1.2 36-= -6 4925± =75±(6)2)25(-= 25 2)4(-= 4类型5:【化简】(1)已知|x -4|+y x +2= 0,那么x =_______4_,y =________-8(2)=________π-4,)2x ≤=________x -2类型6:【根式的意义】1、如果1-x +x -9有意义,那么代数式|x -1|+2)9(-x 的值为 8.类型6:【平方数与平方根相关训练】(1)21++a 的最小值是 ________2,此时a 的取值是 ________-1(2)如果一个正数的两个平方根为1a +和27a -,则这个正数是 9(3)若2+x = 2,则2x + 5的平方根是 3±(4)若14+a 有意义,则a 能取的最小整数为 0类型7:【能力提升训练】(1)已知501.6=x ,650.12 = 422630,则x = 42.263(2)已知2+x =3,则2)2(+x 等于 81(3)已知12++-b a =0,则a +b 的值是 1(4)一个自然数的算术平方根是x(5)一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是 22+m(6)自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =,有一铁球从19.6米高的建筑物上自由下落,到达地面需要 2 秒(7)若一个数a 的平方根等于它本身,数b 的算术平方根也等于它本身,则a b +的平方根 为 0或1±类型8:【比较实数大小】1、平方法:(1; (2)534< 11; (3) 2、求差法:215- < 13、求商法:23平方根 (作业)一、写出下列各数的平方根:(1)2)6(- (2)2)36(- (3)8116(4)16 (5)2)7(-【解】(1)6± (2)6± (3)94±(4)2± (5)7± 二、已知平方数或平方根,求数:(1)一个数的平方为719,这个数为 34±(2)一个数x 的平方根为9±,则x = 81(3)若一个正数的平方根是12-a 和2+-a ,则a = -1 ,这个正数是 9三、开平方,求下列各式中x 的值:(1)2732=x (2)2516902x -= (3)()12892-=x【解】(1)3±=x (2)513± (3)1816或-=x(4)(x +5)2 = 144 (5)009.02=-x【解】(4)177-=或x (5)3.0±=x(6)(x +1)2=36 (7)27(x +1)3=64【解】(6)75-=或x (7)31=x四、化简:1、若x <2,化简|3|)2(2x x -+-的正确结果是 x 25-2、当21≤a 时,化简|12|4412-++-a a a = a 42-3、已知实数a 、b 在数轴上表示的点如上图,b a ++2)1(+-b a = 12-b化简五、平方数与平方根相关训练:(1)若2m -10与3m 是同一个数的平方根,则m 的值是 2(2)使3+-x 有意义的x 的取值范围是 3≤x。
北师大版数学八年级上册2.6《实数》教案

三、教学难点与重点
1.教学重点
-实数的定义:理解实数的概念,掌握实数包括有理数和无理数。
-实数的性质:掌握实数的封闭性、有序性、完备性等核心性质。
-实数的运算:熟练掌握实数的四则运算,特别是乘方和开方的运算规则。
北师大版数学八年级上册2.6《实数》教案
一、教学内容
本节课选自北师大版数学八年级上册第二章第六节《实数》。教学内容主要包括以下几部分:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无限不循环小数等。
2.无理数的概念:介绍无理数的定义,如π、e等,以及无理数的性质和表示方法。
3.实数的性质:探讨实数的封闭性、有序性、完备性等特性。
-实数与数轴的关系:理解实数与数轴上点的对应关系,能够用数轴表示实数。
举例:重点讲解无理数的概念,如π和e,并强调它们是实数的一部分,通过具体的例子(如圆的周长与直径比是π)来加深学生对实数性质的理解。
2.教学难点
-无理数的理解:无理数的概念对学生来说是抽象的,难以直观理解。
-实数的运算:特别是无理数的运算,学生对运算规则和步骤不够熟悉。
3.重点难点解析:在讲授过程中,我会特别强调实数的定义和性质这两个重点。对于难点部分,如无理数的理解,我会通过举例(如π、√2等)和比较(无理数与有理数的区别)来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如无理数的估算、实数在数轴上的表示等。
-实数与数轴的联系:学生可能难以将实数的概念与数轴上的点联系起来,对数轴上的无理数位置把握不准确。
八年级数学 实数

一、基础测试1.算术平方根:如果一个正数x 等于a ,即x 2=a ,那么这个x 正数就叫做a 的算术平方根,记作 ,0的算术平方根是 。
2.平方根:如果一个数x 的 等于a ,即x 2=a 那么这个数a 就叫做x 的平方根(也叫做二次方根式),正数a 的平方根记作 .一个正数有 平方根,它们 ;0的平方根是 ;负数 平方根. 特别提醒:负数没有平方根和算术平方根.3.立方根:如果一个数x 的 等于a ,即x 3= a ,那么这个数x 就叫做a 的立方根,记作 .正数的立方根是 ,0的立方根是 ,负数的立方根是 。
4、实数的分类_________⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎨⎬⎪⎪⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎭⎩⎩⎪⎪⎪⎪⎫⎧⎨⎬⎪⎩⎪⎭⎩______整数____________有限小数或循环小数______实数负分数____________________________________________5.实数与数轴:实数与数轴上的点______________对应.6.实数的相反数、倒数、绝对值:实数a 的相反数为______;若a,b 互为相反数,则a+b=______;非零实数a 的倒数为_____(a ≠0);若a ,b 互为倒数,则ab=________。
7.______(0)||______(0)a a a ≥⎧=⎨<⎩ 8. 数轴上两个点表示的数,______边的总比___边的大;正数_____0,负数_____0,正数___负数;两个负数比较大小,绝对值大的反而____。
9.实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用._______(0,_______(0,0).a b a b =≥≥=≥>二、专题讲解:专题1 平方根、算术平方根、立方根的概念若a ≥0,则a的平方根是a;若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a【例1______【例2】327 的平方根是_________【例3】下列各式属于最简二次根式的是( ) A【例4】(2010山东德州)下列计算正确的是(A)020=(B)331-=- (C) (D)【例5】(2010A .3B .3-C .3±D . 9 专题2 实数的有关概念无理数即无限不循环小数,初中主要学习了四类:含π的数,如:12,2ππ等,开方开不尽010 001…等;某些三角函数,如sin60o ,cos45 o等。
八年级数学上册实数计算题

八年级数学上册实数计算题一、实数计算题20题。
1. 计算:√(4) + sqrt[3]{-8}- 解析:- 先分别计算各项。
- 因为√(4)=2,sqrt[3]{-8}=-2(因为(-2)^3 = -8)。
- 所以√(4)+sqrt[3]{-8}=2+( - 2)=0。
2. 计算:√(9)-√(16)- 解析:- 先计算根号下的数。
- √(9) = 3,√(16)=4。
- 则√(9)-√(16)=3 - 4=-1。
3. 计算:√(25)+√(36)- 解析:- √(25)=5,√(36)=6。
- 所以√(25)+√(36)=5 + 6=11。
4. 计算:√(1)-√(0)- 解析:- 因为√(1)=1,√(0)=0。
- 所以√(1)-√(0)=1-0 = 1。
5. 计算:√(121)-√(144)- 解析:- √(121)=11,√(144)=12。
- 则√(121)-√(144)=11-12=-1。
6. 计算:√(169)+√(196)- 解析:- √(169)=13,√(196)=14。
- 所以√(169)+√(196)=13 + 14=27。
7. 计算:√(49)-√(64)- 解析:- √(49)=7,√(64)=8。
- 所以√(49)-√(64)=7-8=-1。
8. 计算:√(81)+√(100)- 解析:- √(81)=9,√(100)=10。
- 所以√(81)+√(100)=9 + 10=19。
9. 计算:sqrt[3]{27}+sqrt[3]{-1}- 解析:- 因为sqrt[3]{27}=3(因为3^3 = 27),sqrt[3]{-1}=-1(因为(-1)^3=-1)。
- 所以sqrt[3]{27}+sqrt[3]{-1}=3+( - 1)=2。
10. 计算:sqrt[3]{64}-sqrt[3]{125}- 解析:- sqrt[3]{64}=4(因为4^3 = 64),sqrt[3]{125}=5(因为5^3 = 125)。
八年级数学上册第二章实数知识点总结+练习

第二章:实数【无理数】1. 定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。
2. 常见无理数的几种类型:(1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2-π,3π等;(2)特殊结构的数(看似循环而实则不循环):如: 010 001 000 01…(两个1之间依次多1个0)等。
(3)无理数与有理数的和差结果都是无理数。
如:2-π是无理数 (4)无理数乘或除以一个不 为0的有理数结果是无理数。
如2π,(5)开方开不尽的数,如:39,5,2等;应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π)(3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例:(1)下列各数:①、②……、③75-、④π、⑤252.±、⑥32-、⑦……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。
(填序号) (2)有五个数:…,…,-π,4,32其中无理数有 ( )个 【算术平方根】:1. 定义:如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。
例如32=9,那么9的算术平方根是3,即39=。
特别规地,0的算术平方根是0,即00=,负数没有算术平方根。
2.算术平方根具有双重非负性:(1)若a 有意义,则被开方数a 是非负数。
(2)算术平方根本身是非负数。
3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个例:(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=;(C )、81的平方根是3±; (D )、0没有平方根;(2)下列各式正确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=- (3)2)3(-的算术平方根是 。
苏科版数学八年级上册4.3《实数》教学设计1

苏科版数学八年级上册4.3《实数》教学设计1一. 教材分析苏科版数学八年级上册 4.3《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统性的认识和理解。
本节课主要内容包括实数的分类、实数与数轴的关系、实数的运算等。
通过本节课的学习,学生能够更好地理解实数的内涵和外延,为后续的数学学习打下坚实的基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对有理数和无理数有一定的了解。
但是,学生对实数的认识还比较片面,对于实数与数轴的关系、实数的运算等知识点的理解还不够深入。
因此,在教学过程中,需要教师引导学生从实际问题出发,通过观察、思考、操作、交流等活动,深化对实数概念的理解。
三. 教学目标1.理解实数的定义,掌握实数的分类。
2.理解实数与数轴的关系,能正确地在数轴上表示实数。
3.掌握实数的运算方法,能熟练地进行实数的运算。
4.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的分类2.实数与数轴的关系3.实数的运算五. 教学方法1.情境教学法:通过实际问题引导学生思考,激发学生的学习兴趣。
2.数形结合法:利用数轴直观地表示实数,帮助学生理解实数与数轴的关系。
3.合作学习法:引导学生分组讨论,培养学生的团队协作能力。
4.练习法:通过适量练习,巩固所学知识,提高学生的实际操作能力。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.数轴教具:准备数轴教具,方便学生直观地理解实数与数轴的关系。
3.练习题:准备适量练习题,用于课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引导学生思考实数的概念,例如:“小明家距离学校2.5公里,小红家距离学校3公里,小明和小红家分别位于学校的哪个方向?他们两家之间的距离是多少?”2.呈现(10分钟)教师利用课件呈现实数的定义和分类,实数与数轴的关系,实数的运算等知识点,引导学生初步认识实数。
3.操练(10分钟)教师引导学生分组讨论,利用数轴表示实数,并进行实数的运算。
八年级数学上册 第二章 实数

第二章实数目录第二章实数 (1)第一课时:实数的认识 (1)知识要点一:认识无理数 (1)知识要点二:平方根 (2)知识要点四:算术平方根 (2)拓展:随机的n (3)知识要点五:立方根 (4)知识要点五:估算无理数的大小 (5)知识要点六:实数的概念 (6)知识要点七:实数的性质 (6)知识要点八:实数与数轴 (7)知识要点九:实数的比较大小 (9)知识要点10:实数的运算 (10)总练习题 (10)C 基础巩固 (10)B 能力提升 (11)A 拔尖训练 (13)第二课时:二次根式的性质、化简与运算 (14)知识要点一:二次根式的概念 (14)知识要点二:二次根式有意义的条件 (15)知识要点三:二次根式的性质与化简 (15)知识要点四:最简二次根式 (16)知识要点五:分母有理化 (17)知识要点六:二次根式的乘除法 (18)知识要点七:同类二次根式 (19)知识要点八:二次根式的加减法 (20)知识要点九:二次根式的混合运算 (20)知识要点十:二次根式的化简求值 (21)知识要点十一:二次根式的应用 (22)总练习题 (23)C 基础巩固 (23)B 能力提升 (24)A 拔尖训练 (24)第一课时:实数的认识知识要点一:认识无理数伟大的数学家——毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了.可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m 等于多少?是整数呢,还是分数?这个问题引起了学派成员希帕斯的兴趣,他花费了很多的时间去钻研,最终希帕斯断言:m 既不是整数也不是分数,是当时人们还没有认识的新数.希帕斯的发现,推翻了毕达哥拉斯学派的理论,动摇了这个学派的基础,为此引起了他们的恐慌.为了维护学派的威信,他们残忍地将希帕斯扔进地中海.这样,无理数的发现人被谋杀了!定义1 无限不循环小数叫做无理数。
常见的无理数的类型:(1)有规律但不循环的小数;(2)有特定意义的符号,如π;(3)方开不尽的数(见知识要点二之开方的概念)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
7
负实数: 2,3.14,39;
有理数:1,0,15, 4,3.14,22,327;
2
7
无理数: 2,π,3 9.
实数与数轴的关系
1.如图1所示,将面积分别为2和3的两个正方形放置在 数轴上,使得正方形的一个顶点和原点O重合,一条 边恰好落在数轴正方向上,其另一个顶点分别为数 轴上的点A和点B.
无限不循
负_无__理__数_ 环小数
按照正负性分类:
正
实
数
正
正
有 无
理 理
数 数
实
数
0
.
负
实
数
负
负
有 无
理 理
数 数
例1 把下列各数分别填入相应的圈:
1 ,0 ,1 5 , 4 ,2 ,π ,-3 .1 4 ,2 2 , 39 ,32 7 .
2
7
…
…
…
…
正实数
负实数
有理数 无理数
解:正实数:1,15, 4,π,22,327;
在实数范围内 ,相反数、倒数、绝对值的意义 ,和有理数范 围内的相反数、倒数、绝对值的意义完全一样.
谢谢!
结论
实数和数轴上的点是一一对应的,即每 一个实数都可以用数轴上的一个点来表示; 反过来,数轴上的每一个点都表示一个实 数.
实数的性质
参照有理数的有关概念,谈谈实数的下列概念: (1)实数的绝对值. (2)互为相反数的实数. (3)—个实数的倒数.
在有理数范围内的一些基本概念(如绝对值、相反数、
倒数)在实数范围内依然适用.
(1)绝对值:一个正实数的绝对值是它本身,一个负实
数的绝对值是它的相反数,0的绝对值是0.
a (a 0 ),
即:|a|=
0
(
a
0 ),
a ( a 0 ) .
(2)相反数:实数a的相反数为-a,若a,b互为相反数,
则a+b=0;
(3)非零实数a的倒数为 1 ,若a,b互为倒数,则ab=1. a
14.3 实 数
第十四章 实 数
第2课时 实数的性质
回顾旧知
学习有理数时,我们知道 和整数_____分数统
称为有理数.
任意一个整数都可以看成一个有限小数,任
意一个分数都可以化成有限小数或无限循环
小数.所以说 有限和小_数____无__限_循__环称小为数 有理数.
叫做无理数.
和 无限不统循称环小为数实数.
有理数
无理数
现阶段,学到的数已经达到 实数,你能试着对实数进行分 类吗?
类比我们对有理数分类的方法对实数进行分类:
按照定义分类:
实数
正整数
整数 _____ 0
有__理__数__
分数 ____
负__整__数_ _正__分__数_ _负__分__数_
有限小数 或无限循 环小数
无理数 正无理数 ______
例2 :
1、-5的相反数是
,绝对值是
.
2、- 的相反数是
,绝对值是
.
3、 2 的相反数是
,绝对值是
.
4、- 的倒数是________ .
2
实数的分类
按照定义分类:
实数
正整数
整数 _____ 0
有__理__数__
分数 ____
负__整__数_ _正__分__数_ _负__分__数_
有限小数 或无限循 环小数
无理数 正无理数 ______
无限不循
负_无__理__数_ 环小数
实数的分类
按照正负性分类:
正
实
数
正
正
有 无
理 理
数 数
实
数
0
.
负
实
数
负
负Hale Waihona Puke 有 无理 理数 数
实数与数轴上的点
1.实数与数轴上的点是一一对应的. 2.每一个实数都可以用数轴上的点来表示; 3.反过来,数轴上的点都表示一个实数. 实数的倒数、相反数及绝对值
(1)线段OA,OB的长分别是多少? (2)点A,B在数轴上对应的数分别是哪两个数?
2.如图2所示,设一枚5角硬币的直径为1个单位长度, 将这枚硬币放置在平面内一条数轴上,使硬币边缘 上的一点P与原点O重合.让这枚硬币沿数轴的正方向 无滑动滚动一周,这时点P转到数轴上点P′的位置.
(1)线段OP′的长是多少? (2)在数轴上与点P′,对应的数是哪个数?