光谱仪基础知识
spectro火花光谱仪培训

打印机
空气光学系统
过虑器
spectro火花光谱仪培训
传导光纤
第12页
9、光学系统结构
帕邢-龙格罗兰圆
spectro火花光谱仪培训
第13页
光学系统结构—罗兰圆
spectro火花光谱仪培训
第14页
仪器结构图— 前面板
spectro火花光谱仪培训
第15页
仪器结构图
-火花台
spectro火花光谱仪培训
3.500 4.000 4.500 5.000 5.500 6.000 6.500
Angstroms
第7页
e、谱线波长与能级关系
能级能量差: E = hv= hc/
E = 原子内两个能级能量差
h = 普朗克常数 6.6256 x 10-27 焦耳 v = 频率 c = 光在真空中传输速度 = 谱线波长
第16页
仪器结构—
后面板
spectro火花光谱仪培训
第17页
仪器结构—左侧面
spectro火花光谱仪培训
第18页
仪器结构--右侧面
spectro火花光谱仪培训
第19页
spectro火花光谱仪培训
第20页
spectro火花光谱仪培训
第21页
spectro火花光谱仪培训
第9页
g、传输介质对谱线强度影响
材料介质 • 玻璃 • 空气 • 石英 • 光导纤维 • 高纯氮气或氩气
> 310 nm > 190 nm > 160 nm > 210 nm > 120 nm
spectro火花光谱仪培训
第10页
4、基础概念
--绝对光强 --相对光强(光强比) --背景强度 --背景等效浓度 BEC --检出限(ILOD) --方法测定下限(MLOD) --暗电流检测 --恒光测试 --标准化(F7) --类型标准化(F8)
光谱仪基础知识应用培训

二、应具备的基本知识:
具备分析化学的基础知识; 具备分析化学实验的基本操作能力; 具备实验室一般仪器和设备的操作能力; 具备金属材料的基础知识; 具备数据统计处理和误差理论的基础知识; 具备一定的电子电路原理及基础知识。
三、OES产品涉及的基本概念及 相关术语
光谱及原子发射光谱 火花光谱 分析基体、分析程序和校准曲线 基态和激发态 原子线和离子线 分析线和参比线 分析强度、参比强度及强度率 内标线和内标元素 罗兰圆
五、发射光谱定量分析方法
• 标准样品曲线法:用单次或多次方程式来近似表 示; • 控制试样法:用一个与分析试样的冶金过程和 物理状态相一致的控制试样用于控制分析试样 的分析结果。 • 选取控制试样原则: 1)元素含量与分析试样相近; 2)有相同的冶炼过程和物理状态; 3)含量准确,成份分布均匀,无物理缺陷。
1
2 3 4
17.44
17.75 17.30 17.60
17.46
17.77 17.37 17.80
17.48
17.78 17.48 17.88
17.51
17.82 17.66 17.48
17.53
17.83 17.67 18.02
17.5 8
17.8 1 17.7 0 18.1 0
17.50
17.(Paschen-Runge)装置
六、光学系统:
1.光栅
b c 光栅方程: ml = d(sin θ + sin Φ) a -法线 θ -入射角 Φ -衍射角 d -光栅常数 M -衍射光谱级次
d a
全息光栅:利用全息照相方法,氩离子激光器作为干涉仪和光致抗 蚀剂作为记录材料制造的光栅.全息光栅能获得较高的线色散率, 分辨率和信噪比,获得更高的刻线数. 线色散率:把不同波长的辐射能色散开的能力.D=m*R/(d*cosΦ) 闪耀角: θ=Φ=β(β光栅槽面与光栅平面的夹角) 分辨率:光学系统能正确分辨出两条紧邻谱线的能力. 集光本领:光学系统传递辐射的能力.
X射线荧光光谱分析仪基础知识

连续谱和特征谱
莫塞莱定律
阳极靶材不同产生的特征X射线不同。
为常数,均为特性系数随K,L,M,N等谱系而定。
所以通过测定X射线的能量和波长即可获知其为何种元素,识别物质组成。
特征谱线 L壳层 K壳层
Lα2
Lα1
Lβ1
Kβ
K:p→s L:p→s, s→p, d→p,
电磁波谱
X射 线
X射线的产生
X射线管结构
X射线是高速运动的粒子与某种物质相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。 X射产生的条件: 产生并发射自由电子(加热钨灯丝)。 在真空中迫使自由电子朝一定方向高速运动(加一很高的管电压)。 在高速电子流的运动路程上设置一障碍物(阳极靶),使高速运动的电子突然受阻。
ML K
连续谱和特征谱
X特征谱Kα
当高速电子能量足够大时, 阳极中处于基态的K层电子被击出, 原子系统能量由基态升到K激发态, 高能级电子向K层空位填充时长生K 系辐射。L层电子填充空位时,产生 Kα 系辐射;M层电子填充空位时产 生Kβ辐射。
所以当电压不断提高至超过临界电压时,在某些固定的波长位置,形成远高于连续谱强度的 强度峰——特征峰。
荧光产额
一般而言随原子序数的增加,荧光产额显著上升,对轻元素,荧光产额很低,这也是利用XRF 分析轻元素比较困难的原因。
元素 C
不同元素的K系荧光产额
O
Na
Si
K
Ti
Fe Mo Ag Ba
ωK 0.0025 0.0085 0.024 0.047 0.138 0.219 0.347 0.764 0.83 0.901
因散射构成待测元素的背景,对元素的测定特别是痕量元素的测定带来不利的影响,然而利用散 射线作为内标,则可以校正基体的吸收效应和非均匀效应,因此研究X射线在物质中的散射现象是十 分重要的。
岛津原子吸收光谱仪基础知识培训课件

光程中的样品颗粒产生加宽吸收谱带的效应
(c) 光谱干扰
样品中分析物和其他自由原子的原子吸收发 生重叠,两光谱的吸收波长非常接近
光谱线干扰
目标元素
Al Ca Cd Co Cu Fe Ga Hg Mn Sb Si Zn
光谱线 (nm)
干扰元素
V Ge As In Eu Pt Mn Co Ga Pb V Fe
岛津原子吸收光谱仪基础知识
分析中心
原子吸收光谱法的基础
原子吸收光谱分析概况
1802年伍郎斯顿(W.H.Wollasten)研究太阳光谱, 发现连续光谱中有暗线
1860年克希霍夫(G.Kirchhoff)和本生 (R.B.Bunsen)研究碱金属和碱土金属
1955年澳大利亚物理学家瓦尔什(A.Walsn)发表著 名论文《原子吸收光谱在化学分析中的应用》
传统GFA
电流控温
(目标元素挥发)
的问题 (样品易爆沸)
1000~3000℃
100℃
300~900℃
时间
干燥
灰化 原子化
传统GFA
GFA-EX7 GFA-EX7i
传统电流控温
自动温度校准 电流控制
光学控温 光学控温
高灵敏度GFA
新设计的优点
高灵敏度 长寿命的石墨管 适合连续多样品分析减少操作成本
E2
hn
E2 = 激发态 E1 = 基态 h = Planck 常数 n = 光谱频率
E1
e-
钠线
eV 6
4 2.2eV
2 589nm
基态
3.6eV 330.3nm
Lambert-Beer定律
Io
I
原子蒸汽
光谱仪基础知识

第1章衍射光栅:刻划型和全息型衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。
(更多信息详见Diffraction Gratings Ruled & Holographic Handbook).经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。
全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。
全息光栅可在平面、球面、超环面以及很多其他类型表面生成。
本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。
1.1 基础公式在介绍基础公式前,有必要简要说明单色光和连续谱。
提示:单色光其光谱宽度无限窄。
常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。
这些即为大家所熟知的“线光源”或者“离散线光源”。
提示:连续谱光谱宽度有限,如“白光”。
理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。
有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。
本书中的公式适用于空气中的情况,即m0=1。
因此,l=l0=空气中的波长。
定义单位α - (alpha) 入射角度β - (beta) 衍射角度k - 衍射阶数整数定义单位n - 刻线密度刻线数每毫米DV- 分离角度µ- 折射率无单位λ - 真空波长纳米λ0 - 折射率为µ0介质中的波长其中λ0 = λ/µ1 nm = 10-6 mm; 1 mm = 10-3 mm; 1 A = 10-7 mm最基础的光栅方程如下:(1-1)在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。
因此,分离角D V成为常数,由下式决定,(1-2)对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为:(1-3)假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。
紫外光谱分析仪基础知识

紫外光谱分析仪基础知识紫外,可见光谱法及相关仪器UV-VIS Spectrometry & Instrument紫外,可见光谱法及相关仪器一(紫外,可见吸收光谱概述二(紫外,可见分光光度计21(紫外,可见分光光度计的主要部件2(紫外,可见分光光度计的分类3(紫外,可见分光光度计的各项指标含义4(紫外,可见分光光度计的校正三(紫外,可见分光光度计的应用四(紫外,可见分光光度计的进展一(紫外,可见吸收光谱概述利用紫外,可见吸收光谱来进行定量分析由来已久,可追溯到古代,公元60年古希腊已经知道利用五味子浸液来估计醋中铁的含量,这一古老的方法由于最初是运用人眼来进行检测,所以又称比色法。
到了16、17世纪,相关分析理论开始蓬勃发展,1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的朗伯,比尔定律。
1(紫外,可见吸收光谱的形成吸光光度法也称做分光光度法,但是分光光度法的概念有些含糊,分光光度是指仪器的功能,即仪器进行分光并用光度法测定,这类仪器包括了分光光度计与原子吸收光谱仪(AAS)。
吸光光度法的本质是光的吸收,因此称吸光光度法比较合理,当然,称分子吸光光度法是最确切的。
紫外,可见吸收光谱是物质中分子吸收200-800nm光谱区内的光而产生的。
这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级跃迁(原子或分子中的电子,总是处在某一种运动状态之中。
每一种状态都具有一定的能量,属于一定的能级。
这些电子由于各种原因(如受光、热、电的激发)而从一个能级转到另一个能级,称为跃迁。
)当这些电子吸收了外来辐射的能量就从一个能量较低的能级跃迁到一个能量较高的能级。
因此,每一跃迁都对应着吸收一定的能量辐射。
具有不同分子结构的各种物质,有对电磁辐射显示选择吸收的特性。
ARL3460直读光谱仪基础知识培训.

直读光谱仪分析环境
仪器的周围环境:尽量防尘
防震。 温度允许范围:16-30摄氏 度,每小时变化不超过5摄氏 度。 湿度允许范围:20-80%。 鉴于温湿度的要求,直读光 谱室就要求有空调及除湿机 (南方比较潮湿,空调可能 达不到除湿要求)。 光谱分析室还需要有温湿度 计,用来测室内温湿度是否 达到要求。
了一种完善的分光装置,这个装置就是世界上第一台实用的 光谱仪器,从而建立了光谱分析的初步基础。 1882年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面 上。凹面光栅实际上是光学仪器成象系统元件的合为一体的 高效元件,凹面光栅的问世不仅简化了光谱仪器的结构,而 且还提高了它的性能。 1928年以后,由于光谱分析成了工业的分析方法,光谱仪 器得到迅速的发展,一方面改善激发光源的稳定性,另一方 面提高光谱仪器本身性能。 六十年代由于计算机技术的发展,电子技术的发展,电子计 算机的小型化及微处理机的出现和普及,成本降低等原因、 于上世纪的七十年代光谱仪器几乎100%地采用计算机控制, 这不仅提高了分析精度和速度,而且对分析结果的数据处理 和分析过程实现自动化控制。
我国光谱仪发展历程
1958年开始试制光谱仪器,生产了我国第一
台中型石英摄谱仪,大型摄谱仪,单色仪等。 59年上海光学仪器厂,63年北京光学仪器厂 开始研究刻制光栅,63年研制光刻成功。 1966—1968年北京光学仪器厂和上海光学仪 器厂先后研制成功中型平面光栅摄谱仪和一 米平面光栅摄谱仪及光电直读头。1971— 1972年由北京第二光学仪器厂研究成功国内 第一台WZG—200平面光栅光量计,结束了 我国不能生产光电直读光谱仪的历史。
光谱仪的ቤተ መጻሕፍቲ ባይዱ本结构
光谱仪的基本结构
光谱仪的基本结构
X射线荧光光谱仪的基本原理及应用

所有元素的最大计数率不超过 20000 计数/秒,仪器灵敏度差
高能端(Ag/Sn/Sb K系光谱),能量色散分辨率优于波长色散 中能端(Fe/Mn/Cr K系光谱),分辨率相同 低能端 (Na/Mg/Al/Si K系光谱),能量色散分辨率不如波长散射
3.2 定性与定量分析——半定量分析
半定量分析样品过程:
o 对未知样进行全程扫描 o 对扫描谱图进行Search and Match(包括谱峰的识别, 背景扣除,谱峰净强度计算,谱峰的匹配) o 输入未知样的有关信息 (金属或氧化物;液体,粉末压 片或熔融片;已知浓度组分的输入;是否归一) o 进行半定量分析
光电吸收,非相干散射,气体电离 和产生闪光等现象,以一定的能量 和动量为特征;
E=h , =c /
微粒性
能量、电离、光电吸 收、非相干散射
能量色散X荧光分析
能量单位:eV
同一切微观粒子一样,X射线也具有波动和微粒的 双重性;无论是测量能量还是波长,都可以实现对相应 元素的分析,其效果是一样的。
在停机状态时使用,保护光管免受粉尘污染,还可避免检 1000um Pb 测器的消耗。
2.3 准直器
准直器由一组薄片组成,目的是使从样品发出的X射线以平行 光束的形式照射到晶体。薄片之间的距离越小,越容易形成平 行光,产生的谱线峰形也更锐利,更容易与附近的谱线区分。
准直器以薄片间距来分类
薄片间距
4
一、基础理论与知识
X射Байду номын сангаас荧光的产生
碰撞
内层电子跃迁↑
空位
X射线荧光
外层电子跃迁↓
一、基础理论与知识
X射线荧光分析的分类
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章衍射光栅:刻划型和全息型衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。
(更多信息详见Diffraction Gratings Ruled & Holographic Handbook).经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。
全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。
全息光栅可在平面、球面、超环面以及很多其他类型表面生成。
本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。
1.1 基础公式在介绍基础公式前,有必要简要说明单色光和连续谱。
提示:单色光其光谱宽度无限窄。
常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。
这些即为大家所熟知的“线光源”或者“离散线光源”。
提示:连续谱光谱宽度有限,如“白光”。
理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。
有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。
本书中的公式适用于空气中的情况,即m0=1。
因此,l=l0=空气中的波长。
定义单位α - (alpha) 入射角度β - (beta) 衍射角度k - 衍射阶数整数定义单位n - 刻线密度刻线数每毫米DV- 分离角度µ- 折射率无单位λ - 真空波长纳米λ0 - 折射率为µ介质中的波长其中λ0= λ/µ1 nm = 10-6 mm; 1 mm = 10-3 mm; 1 A = 10-7 mm最基础的光栅方程如下:(1-1)在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。
因此,分离角D V成为常数,由下式决定,(1-2)对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为:(1-3)假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。
图 1.1 单色仪结构示意图 1.2 摄谱仪结构示意L= 入射臂长度AL= 波长l n处出射臂长度Bb=光谱面法线和光栅面法线的夹角HL=光栅中心到光谱面的垂直距离H表1.1给出了a和b如何随分离角改变,是以图1.1中单色仪为例,在光栅刻线数1200gr/mm的,衍射波长500nm的条件下计算得到的。
表1.1 1200gr/mm光栅的一阶衍射波长500nm处入射角、衍射角随分离角DV的变化DV αβ0 17.458 17.458 (Littrow)10 12.526 22.52620 7.736 27.73624 5.861 29.86130 3.094 33.09440 -1.382 38.61850 -5.670 44.3301.2 角色散rad/nm (1-4)dβ = 两个不同波长衍射后角度的差值(弧度)dλ = 两个波长的差值(nm)1.3 线色散线色散定义为聚焦平面上沿光谱展开方向单位长度对应的光谱宽度,单位是nm/mm,Å/mm,cm-1/mm。
以两台线色散不同的光谱仪为例,其中一台将一段0.1nm宽的光谱衍射展开为1mm,而另一台则将10nm宽的光谱衍射展开为1mm。
很容易想象,精细的光谱信息更容易通过第一台光谱仪得到,而非第二台。
相比于第一台的高色散,第二台光谱仪只能被称为低色散仪器。
线色散指标反映了光谱仪分辨精细光谱细节的能力。
中心波长l在垂直衍射光束方向的线色散可表示为:nm/mm (1-5)式中L B为等效出射焦距长度,单位mm,而dx是单位间隔,单位mm。
参见图1.1。
单色仪中,L B为聚焦镜到出口狭缝的距离,或者当光栅为凹面型时光栅到出口狭缝的距离。
因此,线色散与cos b成正比,而与出射焦长L B、衍射级数k以及刻线密度n这些参数成反比。
对于摄谱仪而言,任一波长的线色散可通过衍射方向垂直光谱面的波长l n其色散值经倾斜角(g)的余弦修正得到。
图1.2给出了“平场”摄谱仪的结构,通常它同线阵二极管配合使用。
线色散:(1-6)(1-7)(1-8)1.4 波长和衍射阶次图1.3给出了摄谱仪中聚焦光谱面上光谱范围从200nm到1000nm的一级衍射谱。
当光栅刻槽密度n、a以及b均已知的情况下,根据式(1-1)得到:kλ=常数 (1-9)即当衍射级数k值变为两倍原值时, l减半。
依此类推。
图1.3 色散和衍射级数以一台可产生波长范围从20nm到1000nm的连续谱光源为例,这一连续谱进入光谱仪分光后,在光谱面上波长800nm的一阶衍射位置上(参看图1.3),其他三个波长400nm、266.6nm、200nm也会出现,从而能够被探测器测得。
为了仅仅对波长800nm进行测量,必须采用滤色片来消除高阶衍射。
波长范围从200nm到380nm的一阶衍射测量通常不需要滤色片,原因在于波长数值小于190nm的光均被空气吸收。
但是如果光谱仪内部为真空或者填充氮气,这种情况下高阶滤色片又必不可少。
1.5 分辨“能力”分辨能力是一个理论概念,由下式给出(无单位) (1-10)式中,dl为两个强度相等的光谱线之间的波长间距。
因此,分辨率指标代表光谱仪甄别相邻谱线的能力。
如果两条谱线谱峰之间的距离满足其中一条谱线谱峰位于另一条谱线谱峰的最近极小值处,即认为两个谱峰被很好的分辨出来,这一规则被称为瑞利判据(“Rayleigh criterion”)。
R可进一步表示为:(1-11)λ = 待检测谱线的中心波长W= 光栅上光照射区域的宽度gN = 为光栅的刻槽总数不要将分辨能力“R”这一数值量与光谱仪的分辨率或者光谱带宽这些参数混淆(参看第2章)。
理论上讲,一片刻线密度为1200gr/mm、宽度110mm的光栅,当采用它的一级衍射光时,分辨能力的数值通过计算得到R=1200×110=132,000。
因此,在波长为500nm处,光谱带宽等于然而,实际情况中仪器的几何尺寸由式(1-1)决定。
改写为k 的表达(1-12)光栅上刻线的总宽度W g为,因此,(1-13)式中,(1-14)将式(1-12)和(1-13)代入式(1-11)中,得到分辨能力亦可以表示为:(1-15)因此,光栅的分辨能力取决于:•光栅上刻线区域的总宽度•所关注的中心波长•工作时的几何值(入射角、衍射角)由于光谱带宽还取决于光谱仪的狭缝宽度以及系统的校正,因此上述情况是100%的理论情况,即系统的衍射极限 (更深入的讨论请参看第2章 )。
1.6 闪耀光栅闪耀定义为将一段光谱的衍射最大转移到其他衍射阶次而非零阶。
通过特殊设计,闪耀光栅能够实现在特定波长的最大衍射效率。
因此,一片光栅的闪耀波长可以是250nm或者1mm等等,这取决于刻槽几何尺寸的选择。
闪耀光栅其刻槽断面为直角三角形,其中一个锐角为闪耀角w,如图1.4所示。
然而,110°的顶角在闪耀全息光栅中同样可能出现。
选择不同的顶角大小能够优化光栅的整个效率曲线。
1.6.1 Littrow条件闪耀光栅的几何尺寸可以通过满足Littrow条件的情况下计算得到。
Littrow条件是指入射光和衍射光处于自准直状态(如a=b),即入射光.线和出射光线沿同一路径。
在这一条件下,假定“闪耀”波长为λB(1-16)比如, 1200gr/mm光栅闪耀波长为250nm且衍射阶次为一阶时,闪耀角(w)等于8.63°。
图1.4 闪耀光栅的刻槽断面示意图,“Littrow条件”1.6.2 效率曲线除非特别声明,衍射光栅的效率在Littrow条件下某一已知波长处测得。
绝对效率(%)=输出能量/输出能量*100%(1-17)相对效率(%)=光栅效率/反射效率*100%(1-18)相对效率测量需要将反射镜表面镀膜(膜层材料与光栅表面反射膜层材料相同),并且采用与光栅相同的角度设置。
图5a和5b分别给出了闪耀刻线光栅和非闪耀全息光栅的典型效率曲线。
一般而言,闪耀光栅的效率在2/3闪耀波长处和1.8倍闪耀波长处减小为最大值的一半。
(a)刻线闪耀光栅的典型效率曲线(b)非闪耀全息光栅的典型效率曲线1.6.3 效率和阶次一片闪耀光栅不仅有一阶闪耀角,而且也有高阶闪耀角。
比如,一片一阶闪耀波长为600nm的光栅,同样也有二阶闪耀波长300nm,以此类推更高阶次。
高阶衍射效率通常与一阶衍射效率趋势相同。
对一片一阶闪耀的光栅而言,每个阶次的最大效率值随着阶次k的增加而减小。
衍射效率也随着光栅使用时偏离Littrow条件(a≠b)程度的增加而逐渐减小。
全息光栅能够通过设计刻槽的形状来消除高阶衍射的影响。
根据这一性质,通过离子刻蚀工艺制作的浅槽(laminar)光栅其效率曲线在紫外(UV)和可见(VIS)波段能够显著改善。
提示:光栅是非闪耀的并不意味着它的效率较低。
参见图1.5b,图中给出了一片1800gr/mm正弦型刻槽全息光栅的衍射效率曲线。
1.7 衍射光栅的杂散光除被测波长外探测器接收到的其他波长(通常包括一种或者多种“杂散光”)统称为杂散光。
1.7.1 散射光散射光可能由于下列原因造成:•由于光学元件表面的缺陷造成的随机散射光•由于刻划光栅刻槽时的非周期失误造成的聚焦散射光1.7.2 鬼线如果衍射光栅上存在周期性刻划失误,那么鬼线(并非散射光)将聚焦在衍射平面上。
鬼线强度由下式给出:(1-19)其中,= 鬼线强度IG= 母光强度IPn = 刻线强度k = 阶次e = 刻槽中失误的位置鬼线在单色仪的色散平面上聚焦并成像。
全息光栅的杂散光水平一般比经典刻线光栅的1/10还要小。
杂散光通常是非聚焦的,并且出现在2p 全角度各个方向。
全息光栅没有鬼线,因为它不可能出现周期性的刻划失误。
因此,它是克服鬼线问题最好的解决方案。
1.8 光栅的选择1.8.1 什么时候选择全息光栅1.当光栅是凹面的。
2.当用到激光时,比如拉曼光谱、激光激发荧光光谱等。
3.刻线密度必须不小于1200gr/mm(最高可到6000gr/mm,尺寸可达120mm×140mm)而且光谱范围为近紫外、可见和近红外的任何时候。
4.当光谱工作范围在紫外波段,波长小于200nm甚至到3nm时。
5.实现高分辨率的方法中,高刻线密度光栅优于高衍射阶次的低刻线密度光栅。
6.离子刻蚀全息光栅能够适用的任何场合。
1.8.2 什么时候选择刻线光栅1.工作波长高于1.2mm的红外波段,且无法选用离子刻蚀全息光栅。
2.需要低刻槽密度的场合,如刻槽密度小于600gr/mm。
请记住,鬼线及相应的杂散光强度正比于阶次和刻槽密度乘积的平方(式(1-19)中的n2和k2)。
尽量避免使用高刻线密度或者高衍射阶次的刻线光栅。
第2章单色仪和摄谱仪2.1 基本组成在光源的所有波长上,单色仪和摄谱仪系统在出口平面上形成入口狭缝的像。