河北科技大学化工工艺课程设计剖析

合集下载

化工工艺课程设计

化工工艺课程设计

化工工艺课程设计化工工艺课程设计是指在化学工程及相关领域中,通过合理的理论体系与实际工艺操作相结合,为工艺系统提供优化设计方案的过程。

该过程包括工艺流程设计、设备选型、操作规范、安全评估等多个环节。

下面将从几个方面分析和探讨化工工艺课程设计的重要性,以及如何实施化工工艺课程设计。

1. 重要性化工工艺课程设计在化学工程领域中是一项非常重要的工作。

首先,它是优化工艺流程的关键一步,可以有效地增强化工工艺的效率和经济性。

其次,化工工艺课程设计可以更好地保证化工工艺系统的安全和稳定。

在任何一步操作中,需要考虑潜在的风险和危险,从而减少可能导致人员伤亡、生产设备损坏等问题的发生。

此外,优秀的化工工艺课程设计还能够提高化工工艺的技术含量和科技创新能力,从而推动行业的发展。

2. 实施过程化工工艺课程设计的实施过程分为以下步骤:第一步:确定优化目标和标准。

优化目标和标准是任何化工工艺课程设计的基础。

确定这些目标和标准时,要考虑经济、技术要求、安全规范、环境保护等多方面因素。

第二步:确定工艺流程。

在确定优化目标后,需要分析现有工艺流程中的各个环节,找出可优化的部分,预测优化后的效果,并设计新的工艺流程。

第三步:选择设备。

在新的工艺流程设计后,需要选择适合的设备,以确保工艺运行的稳定和安全。

设备的选择要考虑生产要求、工艺流程、操作舒适度、维护效率以及安全性等方面的综合因素。

第四步:编写操作规范。

操作规范是确保工艺正常运行的关键。

编写操作规范时,要根据设备、流程特点以及安全评估结果编制详细记录,防止操作过程中出现问题。

第五步:进行安全评估。

在课程设计之前和课程设计之后,都需要对化工工艺系统进行严格的安全评估。

评估过程包括工艺流程风险分析、安全设备评估、人员安全教育等环节。

3. 总结化工工艺课程设计是化学工程领域中不可或缺的环节。

实施化工工艺课程设计要充分考虑经济性、技术性、安全性、可操作性等综合因素。

化工工艺课程设计要时刻关注现代行业的发展和技术改革,致力于提高化工工艺的效益和竞争力。

化工课程设计小结(精选多篇)

化工课程设计小结(精选多篇)

化工课程设计小结(精选多篇)第一篇:化工课程设计小结化工原理课程设计小结随着毕业日子的到来,课程设计也接近了尾声。

经过几周的奋战我的课程设计终于完成了。

在没有做课程设计以前觉得课程设计只是对这几年来所学知识的单纯总结,但是通过这次做课程设计发现自己的看法有点太片面。

课程设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。

通过这次课程设计使我明白了自己原来知识还比较欠缺。

自己要学习的东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低。

通过这次课程设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。

在这次课程设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。

我的心得也就这么多了,总之,不管学会的还是学不会的的确觉得困难比较多,真是万事开头难,不知道如何入手。

最后终于做完了有种如释重负的感觉。

此外,还得出一个结论:知识必须通过应用才能实现其价值!有些东西以为学会了,但真正到用的时候才发现是两回事,所以我认为只有到真正会用的时候才是真的学会了。

在此要感谢我们的指导老师罗老师、朱老师和李老师对我们悉心的指导,感谢老师们给我们的帮助。

在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。

在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。

而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。

虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。

课程设计报告主要包括以下几个方面.1.封面(根据自己的个性设计)2.目录3.主界面(介绍这次设计的课题、人员、目标、任务、人员分工)4.主要过程(要告诉别人你的这个作品该怎么用)5.程序流程图(用图来表示主要过程)6.核心源程序(你觉得这个作品它具备的主要功能是什么,就将实现这个功能的代码给COPY下来)7.主要函数(你程序代码里用的函数中你觉得重要的或是难的)8.心得9.附录(你完成这次课程设计参考的书,这个可以多写一点,以示用心认真)我第一次做课程设计时写报告就是这么写的.你参考参考.希望能对你有些帮助第二篇:化工原理课程设计化工原理课程设计摘要本次设计是针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程。

河北科技大学化工工艺课程设计剖析复习过程

河北科技大学化工工艺课程设计剖析复习过程

化工工艺与化工设计概论课程设计题目年产四万吨合成氨变换工段工艺初步设计系别化学与制药工程学院专业化学工程与工艺姓名曹泽众学号100101401指导教师刘洪杰孙立明赵瑞红目录1.前言 (2)2.工艺原理 (2)3.工艺条件 (2)4.设计规模及设计方案的确定 (3)5.工艺流程简述 (4)6.主要设备的选择说明 (4)7.对本设计的综述 (4)第一章变换工段物料及热量衡算 (6)第一节变换炉物料及热量衡算 (6)第二节主要设备的物料与热量衡算 (15)第二章设备的计算 (17)主要设备一览表................................................‥ (25)前 言氨是一种重要的化工产品,主要用于化学肥料的生产。

合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。

合成氨的生产主要分为:原料气的制取;原料气的净化与合成。

粗原料气中常含有大量的C ,由于CO 可使氨合成触媒中毒,必须进行净化处理,所以,变换工段的任务就是,使co 转化为易于清除的CO 2和氨合成所需要的H 2。

因此,CO 变换既是原料气的净化过程,又是原料气造气的继续。

最后,少量的CO 用液氨洗涤法,或是低温变换串联甲烷化法加以脱除。

变换工段是指CO 与水蒸气反应生成二氧化碳和氢气的过程。

在合成氨工艺流程中起着非常重要的作用。

工艺原理:一氧化碳变换反应式为:CO+H 2O=CO 2+H 2+Q (1-1)CO+H 2 = C+H 2O (1-2)其中反应(1)是主反应,反应(2)是副反应,为了控制反应向生成目的产物的方向进行,工业上采用对式反应(1—1)具有良好选择性催化剂,进而抑制其它副反应的发生。

一氧化碳与水蒸气的反应是一个可逆的放热反应,反应热是温度的函数。

变换过程中还包括下列反应式: H 2+O 2=H 2O+Q 工艺流程的选择合成氨变换工艺发展至今,工艺主要有4种:全中变、中串低、全低变和中低低。

化工工艺学课程设计

化工工艺学课程设计
化工工艺学课程设计 指导老师:
心得体会
姓名: 学号: 专业:化学工程与工艺
三周的课程设计转眼就要结束了,有 很多心得体会,既有有关制硫酸吸收工段 的,也有关于人际关系方面的。 我们组共4人,我是小组组长,主要 负责工艺计算。在开始阶段,老师给我们 准备一些参考书,并规划我们如何完成课 程设计。但在自己着手准备去完成时,出 现了很不好的现象,我觉得自己没有尽最 大努力去做课程设计。由于是四个人一组, 既有团队合作的时候,也出现了“酱油” 的现象。
在此,感谢老师的指导及帮助和各组员同 到了很多知识。 (1)计算时要耐心,一步错步步错,而且 再查找数据时要仔细,不得一点马虎。比 如:在热量衡算过程中由于查表看错了一 位小数,导致后面整个计算错误,算了好 几遍就是不对,心情很烦躁,等过了一段 时间,重新整理思路后,才最终发现错误 并完成了计算。
(2)分配任务时,我只是按照个人学习 成绩分配任务,但由于没有充分考虑到每 一位组员的性格及其执行能力,导致大家 在做课程设计时有些懈怠。这次不但锻炼 了我的组织领导能力,还让我巩固了以前 学的《化工原理》知识以及查阅资料和鉴 别好的资料的能力。总之,收获还是颇丰 的。

《化工专业课程设计》课件

《化工专业课程设计》课件


工艺流程设计的基本步骤
确定生产任务和目标
明确产品的规格、产量和品质要 求。
收集资料
了解原料、产品、工艺条件等相 关信息。
工艺流程构思
根据生产任务和目标,初步确定 工艺流程方案。
工艺流程优化与改进
根据实际情况,对工艺流程进行 优化和改进,提高生产效益。
工艺流程图绘制
用图形符号表示工艺流程中各个 单元操作和设备。
课程设计的成果展示与评价
成果展示
通过PPT课件详细介绍了课程设计的 成果,包括工艺流程图、设备布置图 、管道布置图等。
评价标准
建立了科学的评价标准,从设计方案 的可行性、技术创新性、经济性等方 面对课程设计进行了全面评价。
课程设计的经验教训与改进建议
经验教训
总结了课程设计过程中遇到的问题和困难,如方案调整、团队协作等,并分析其原因。
确保管道系统在各种工况下的安全稳定运 行,避免出现泄漏、超压等问题。
在满足工艺要求的前提下,尽可能降低管 道系统的投资和运行成本。
环保性原则
适应性原则
合理选用绿色环保的管材和防腐保温材料 ,减少对环境的污染和破坏。
根据工艺流程和设备布置,合理确定管道 走向和支架位置,方便后期维护和改造。
管道设计的材料与规格
改进建议
针对经验教训,提出了具体的改进措施和建议,如加强前期调研、提高团队协作能力等 。
化工专业课程设计的未来发展
发展趋势
分析了化工专业课程设计的发展趋势,如数字化、智能化、绿色化等。
展望未来
基于发展趋势,对未来化工专业课程设计的发展方向进行了展望,并提出了相应的对策和建议。
THANK YOU
制定合理的维护和检修计划,定期对管道 进行检查、清洗、维修和更换,确保管道 系统的长期稳定运行。

河北科技大学

河北科技大学

3)、自动化程度提高 微机控制 连锁装置 报警装置 自动分析仪器 4)、 操作环境的改善 5)、 新技术的应用
第三节 我国氨合成工业的发展及方向
------从建设中型氮肥厂开始
1956年,化工部化工设计院自行设计年产7.5万吨合成氨装置以及建设了 四川化工厂。 1958年,原化工部氮肥设计院编制了年产5万吨合成氨的定型设计,相继 建成了衢州化工厂合成氨分厂、吴泾化工厂和广州氮肥厂。 1964~1966年,我国建设了四川泸州天然气化工厂。其合成氨装置从英 国引进,采用天然气加压蒸汽转化法制合成氨原料气,年产合成氨10万 吨;其尿素装置从荷兰引进,采用水溶液全循环法,年产尿素16万吨。 1965年,陕西兴平化肥厂开始建设从意大利引进的年产5万吨合成氨重油 加压部分氧化法装置,国内配套合成氨、硝酸、硝铵部分,于1970年建 成投产。与此同时,还采用加压碳化法合成氨流程制碳酸氢铵工艺,之 后又相继建成了宝鸡等8个厂。

下游产品主要是尿素和硝酸铵
小型合成氨装置
700多套,生产能力约为3000万t/a

其下游产品原来主要是碳酸氢铵,现有 112套经过改造生产尿素。 经4改6或1830工程

以煤、焦为原料的占96%,以气为原料的 仅占4%。
小氮肥企业协会寿终正寝

2007年11月27日,全国小氮肥第13次技
术经验交流会是以小氮肥名义召开的最
我国第一套自主设计自主建设的年产2.5万吨合成氨装置
1963年9月投产时的上海吴泾化工厂, 因厂区及环保问题已于2007年9月拆除
我国小氮肥的发展和壮大
目前,15套“18/30”装置, 90多套“8/13”装置
九十年代,40000吨/年 八十年代,15000吨/年 文化大革命,5000吨/年

《化工工艺学》 说课稿

《化工工艺学》 说课稿
《化工工艺学》 说课稿
化工学院 王燕霞
主要内容
课程简介 课程目标 课程教学设计 课程教学内容 教学方法 作业布置 考核办法 改革思路 教学特色
课程简介
1 2 所面向的专业
应用化工技术
课程的性质
专业课
3
前期课程
无机化学、有机化学、 化工制图、化工原理等
4
课程的作用
教学特色
1、实现实践性课程教学体系构建,体现职 业特色 2、实现“教、学、做” 合一,提高了教学 效果 3、实现了教学过程控制,保证了教学质量 4、保证了学生综合素质培养
改革思路
通过仿真实训、单元操作实习实训,进行 工学结合,注重操作技能的培训,引导学 生对产品生产工艺的熟悉和掌握。 融入到专业模块化教学中。 开辟实训、实践基地进行现场参观和学习。
考核方法
该课程的平时练习以必须掌握教学中规定的主要 内容为主,其形式以书面和平时(课堂)口头提 问相结合,书面作业主要是一些基本原理或计算, 在设计题目时,以综合分析类题为主,尽可能将 工程概念和内容设计进入练习题,最好使原理、 工艺过程,条件与设备要求进行综合穿插,做成 较大作业,以提高学生的工程意识和理论与实践 相结合的能力。 该课程的考核以考查方式为主。主要考查学生的 工程概念和工艺系统分析意识与能力。
学生的需要
确定教学方法和实施 过程
将“教、学、做”有 机结合,调动学习 主动性
课程教学设计-程序
岗位调研
分析相关岗位 典型工作任务
确定教 学内容
设计教 学情境
设计教 学方法
设计考 核方法
学科理论体 系分析
课程教学内容
序 号 1 主要内容 绪论 1、化学工业的分类和特点 2、化学工业发展史 3、化工原料及主要产品 4、我国化学工业的发展 第一章 合成氨原料气的制备 1、固体燃料气化 2、烃类蒸汽转化 3、重油部分氧化 介绍以上三种方法造气的原理、工 艺流程、工艺条件及主要设备 第二章 合成氨原料气的净化 分别介绍脱硫、变换、脱碳、铜洗 这四道工序的原理、流程及工艺条 件的选择 学时分配 1 作业题量

化工工艺设计课程设计

化工工艺设计课程设计

化工工艺设计课程设计一、教学目标本课程旨在让学生掌握化工工艺设计的基本原理和方法,培养学生运用理论知识解决实际问题的能力。

具体目标如下:1.知识目标:(1)了解化工工艺设计的概念、目的和意义;(2)掌握化工工艺流程的基本组成部分及其相互关系;(3)熟悉常用的化工工艺设计方法和步骤;(4)了解化工工艺设计中的常用设备和参数选择。

2.技能目标:(1)能够运用所学知识对简单的化工工艺进行设计;(2)具备对化工工艺流程进行分析和优化能力;(3)学会使用化工工艺设计软件进行工艺模拟和计算;(4)具备一定的工艺创新能力,为我国化工行业的发展贡献力量。

3.情感态度价值观目标:(1)培养学生对化工行业的热爱和敬业精神;(2)增强学生的责任感和使命感,关注化工工艺设计的安全、环保和可持续发展;(3)培养学生团队协作和沟通交流的能力,提高综合素质。

二、教学内容本课程的教学内容主要包括以下几个部分:1.化工工艺设计的基本概念、目的和意义;2.化工工艺流程的组成、结构和功能;3.常用化工工艺设计方法和步骤;4.化工工艺设计中的设备选择和参数计算;5.化工工艺流程的优化和调整;6.化工工艺设计软件的应用;7.化工工艺设计案例分析。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学,具体包括:1.讲授法:系统地传授化工工艺设计的基本概念、原理和方法;2.案例分析法:通过分析实际案例,使学生更好地理解和掌握化工工艺设计的方法和技巧;3.实验法:学生进行化工工艺实验,提高学生的动手能力和实际操作技能;4.讨论法:鼓励学生积极参与课堂讨论,培养学生的思维能力、沟通能力和团队协作精神。

四、教学资源为了保证教学质量和效果,我们将准备以下教学资源:1.教材:选用权威、实用的化工工艺设计教材,为学生提供系统的理论知识;2.参考书:提供相关的化工工艺设计参考书籍,丰富学生的知识体系;3.多媒体资料:制作精美的课件、教学视频等,增强课堂教学的趣味性和生动性;4.实验设备:配备齐全的化工工艺实验设备,为学生提供实践操作的机会;5.网络资源:利用网络资源,为学生提供更多的学习资料和信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工工艺与化工设计概论课程设计题目年产四万吨合成氨变换工段工艺初步设计系别化学与制药工程学院专业化学工程与工艺姓名曹泽众学号*********指导教师刘洪杰孙立明赵瑞红目录1.前言 (2)2.工艺原理 (2)3.工艺条件 (2)4.设计规模及设计方案的确定 (3)5.工艺流程简述 (4)6.主要设备的选择说明 (4)7.对本设计的综述 (4)第一章变换工段物料及热量衡算 (6)第一节变换炉物料及热量衡算 (6)第二节主要设备的物料与热量衡算 (15)第二章设备的计算 (17)主要设备一览表................................................‥ (25)前 言氨是一种重要的化工产品,主要用于化学肥料的生产。

合成氨生产经过多年的发展,现已发展成为一种成熟的化工生产工艺。

合成氨的生产主要分为:原料气的制取;原料气的净化与合成。

粗原料气中常含有大量的C ,由于CO 可使氨合成触媒中毒,必须进行净化处理,所以,变换工段的任务就是,使co 转化为易于清除的CO 2和氨合成所需要的H 2。

因此,CO 变换既是原料气的净化过程,又是原料气造气的继续。

最后,少量的CO 用液氨洗涤法,或是低温变换串联甲烷化法加以脱除。

变换工段是指CO 与水蒸气反应生成二氧化碳和氢气的过程。

在合成氨工艺流程中起着非常重要的作用。

工艺原理:一氧化碳变换反应式为:CO+H 2O=CO 2+H 2+Q (1-1)CO+H 2 = C+H 2O (1-2)其中反应(1)是主反应,反应(2)是副反应,为了控制反应向生成目的产物的方向进行,工业上采用对式反应(1—1)具有良好选择性催化剂,进而抑制其它副反应的发生。

一氧化碳与水蒸气的反应是一个可逆的放热反应,反应热是温度的函数。

变换过程中还包括下列反应式: H 2+O 2=H 2O+Q 工艺流程的选择合成氨变换工艺发展至今,工艺主要有4种:全中变、中串低、全低变和中低低。

对于每一种变换工艺,由于采用不同的热回收方式而使变换工艺的流程及设备结构有所不同。

合理选择变换工艺应考虑一下因素:半水煤气、水和蒸汽的质量,半水煤气中硫化氢的质量;变换气中CO 含量要求;对变换后续工段的影响;企业现有管理水平和操作水平。

本设计采用全低变流程。

变换炉的段间降温方式有:半水煤气冷机降温、水冷激降温和蒸汽冷激降温。

由于水的蒸发潜热大,少量的水就能达到降温的目的,用它降温既方便又灵敏,另外,由于水冷激降温是将气体的显热转变为蒸汽的潜热,降温后系统内总的热负荷并没有增加多少,相应的系统阻力也变化较小。

所以,本次设计变换炉段间降温方式采用水冷激降温。

工艺流程简述 下边原料及主要工艺条件 写任务书上的 其他条件 任务书压力:压力对变换反应的平衡几乎没有影响。

但是提高压力将使析炭和生成甲烷等副反应易于进行。

单就平衡而言,加压并无好处。

但从动力学角度,加压可提高反应速率。

从能量消耗上看,加压也是有利。

由于干原料气摩尔数小于干变换气的摩尔数,所以,先压缩原料气后再进行变换的能耗,比常压变换再进行压缩的能耗底。

具体操作压力的数值,应根据中小型氨厂的特点,特别是工艺蒸汽的压力及压缩机投各段压力的合理配置而定。

一般小型氨厂操作压力为0.7-1.2MPa,中型氨厂为1.2-1.8Mpa 。

本设计压力取1.7MPa.温度:变化反应是可逆放热反应。

从反应动力学的角度来看,温度升高,反应速率常数增大对反应速率有利,但平衡常数随温度的升高而变小,即 CO 平衡含量增大,反应推动力变小,对反应速率不利,可见温度对两者的影响是相反的。

因而存在着最佳反应温度。

对一定催化剂及气相组成,从动力学角度推导的计算式为Tm=1212ln 1E E E E RT T e e-+式中Tm 、Te —分别为最佳反应温度及平衡温度,最佳反应温度随系统组成和催化剂的不同而变化。

汽气比:水蒸汽比例一般指H 2O/CO 比值或水蒸汽/干原料气.改变水蒸汽比例是工业变换反应中最主要的调节手段。

增加水蒸汽用量,提高了CO 的平衡变换率,从而有利于降低CO 残余含量,加速变换反应的进行。

由于过量水蒸汽的存在,保证催化剂中活性组分Fe 3O 4的稳定而不被还原,并使析炭及生成甲烷等副反应不易发生。

但是,水蒸气用量是变换过程中最主要消耗指标,尽量减少其用量对过程的经济性具有重要的意义,蒸汽比例如果过高,将造成催化剂床层阻力增加;CO 停留时间缩短,余热回收设备附和加重等。

设计规模及设计方案的确定 1)原料组成本设计采用的原料的组成,如表1所示。

表1 半水煤气的组成(干基)组分H2CO CO2O2N2CH4合计含量/%41.0 27.0 12.0 0.3 18.7 1.0 1002)建设规模年生产40000t合成氨厂生产能力,年工作日按330天计,日产量40000/330/24=5.05t/h。

3)设计方案本工艺采用以煤为原料一氧化碳低温变换工艺设计。

催化剂采用B302Q,该催化剂的活性温度为180℃~500℃之间,变换炉为二段,一二段采用换热器降温,最终一氧化碳的变换率达到符合生产的需要。

工艺流程简述半水煤气温度35℃,压力0.88MPa,进入饱和塔加热增湿,出塔气体补充蒸汽达到所需的蒸汽比后进入蒸汽混合器,饱和塔出气所夹带的少量水雾皆可蒸发成蒸汽,而保证进入热换热器的半水煤气的干燥,半水煤气在热交换器中被加热到38℃左右,进入变换炉,经一段变换后的气体由变换炉引到热交换器降温后气体再回到变换炉二段触媒层,完成全部变换反应,出炉气体先去热交换器与部分半水煤气换热后依次进入水加热器和热水塔加热系统中循环热水,出热水塔的变换气进入第二水加热器加热锅炉给水后,再进入冷凝塔,被冷却水所洗涤和冷却。

然后进变换气储罐。

画方框图图1 一氧化碳变换生产流程主要设备的选择说明低温变换流程中,主要设备有低变炉、饱和热水塔、换热器、水加热器等。

以上设备的选择主要是依据所给定的合成氨系统的生产能力、原料气中碳氧化物的含量以及变换气中所要求的CO浓度。

对本设计评述半水煤气的变换是合成氨生产中较为关键的一步,因为能否正常生产出合格的变换气,是后面的所有工序正常运转的前提条件。

因此,必须控制一定的工艺条件,使转化气的组成,满足的工艺生产的要求。

在本设计中,根据已知的原料气组成,操作条件,采用了全低变变换的工艺流程路线。

首先进行物料和热量衡算,在计算的基础上,根据计算结果对主要设备选型,最终完成了本设计的宗旨。

在本设计中,主要参考了《小合成氨厂工艺技术与设计手册》和《合成氨工艺学》《化工原理》《物理化学》等书。

第一章变换工段物料及热量衡算第一节变换炉物料衡算及热量衡算已知条件(1)生产流程见图1;(2)干半水煤气成分见表1;(3)每吨氨消耗干半水煤气量 3270Nm3;(4)半水煤气温度35℃;变换气温度38℃;(5)触媒型号B302Q(6)变换气中一氧化碳(干基)1.5%;(7)各设备的热损失按5%计算;(8)热水塔出口变换气温度:75-80℃;(9)加入蒸汽为饱和蒸汽:压力1.0Mpa(表);冷却水温度:37℃1.确定转化气组成:已知条件低变炉进口气体组成:表1 半水煤气的组成(干基)年产10万吨合成氨生产能力:日生产量:100000/330/24=12.63t/h要求出低变炉的变换气干组分中CO%小于1.5%表2 进低变炉的变换气干组分2.变换炉工艺条件计算(1)进出口温度的估计根据触媒B302Q的活性温度,选取变换炉进气温度为200℃(此值尚待以后计算检验是否合适)。

因系煤气冷激气流程,进出口温度差可稍小一点,现取为20℃,则变换炉出口温度为200+20=220℃。

(2)蒸汽比的选择假定汽气比为1.2,则单位干混合煤气应加入水蒸气:882.9×1.2=1059.48N 3m ;n (水) =56.76kmol则进变换器总的湿转化气量为 v 总=3270+1059.48=4329.48N 3m表3 变换进口的湿气组成生产中可测定原料气及变换气中一氧化碳的含量(干基),而由下式计算一氧化碳的实际变换率x :X p %=()a a a a Y Y Y Y '+'-1×100 式中a Y 、'a Y 分别为原料及变换气中CO 的摩尔分率(干基)。

所以:X p %=()()27% 1.5%100%1 1.5%27%X -+⨯=93.0%变换后气体中有关成分的浓度为(氧气与氢气的反应略去不计;转化率为93.0%) H 2=0.3097+0.2039×0.930=0.4993 CO=0.2039×(1-0.930)=0.0143 CO 2=0.0906+0.2039×0.930=0.2802 H 2O=0.2447-0.2039×0.930=0.0551 出口组成的平衡常数由下试算出: K=222%%%%CO H CO H O ⨯⨯=0.2802*0.49930.0551*0.0143=177.56相应的平衡温度由参考《无机化工工艺学》P88查得,T=200℃时,K=227.9;T=250℃时,K=86.51.内插法求得K=177.56时,T为217.8℃。

出口平衡温差为220-217.8=2.2℃。

计算所得出口平衡温差在合理范围之内,不必重新假设蒸汽比,原假设的蒸汽比可用。

(3)湿半水煤气组成上一个表中的数据3.低变炉一段催化剂床层的物料衡算计算基准:1吨氨。

假设CO在一段催化床层的实际变换率为70%。

因为进低变炉一段催化床层的变换气湿组分:见上表假设O2与H2完全反应,O2完全反应掉故在一段催化床层反应掉的CO的量为:70%×882.9=618.03M3(标)=27.59koml出一段催化床层的CO的量为:882.9*(1-30%)=264.87M3(标)故在一段催化床层反应后剩余的H2的量为: 1340.7 +508.61-2×9.56=1777.02(标)=79.33koml故在一段催化床层反应后剩余的CO2的量为:376.66+508.61=885.27M3(标)=39.52koml出低变炉一段催化床层的变换气干组分:剩余的H 2O 的量为:1017.31-508.61+2×9. 56=527.82M3(标)=23.56koml 所以出低变炉一段催化床层的变换气湿组分:对出低变炉一段催化床层的变换气的温度进行计算: 根据:K=222%%%%CO H CO H O ⨯⨯=(0.2134*0.4284)/(0.0817*0.1273)=8.7901查《无机工艺学》知当t=450℃ K=7.311;t=400℃ K=11.70。

相关文档
最新文档