现代粉末冶金技术雾化制粉
2024年粉末冶金工艺的基本工序(2篇)

2024年粉末冶金工艺的基本工序1、原料粉末的制备。
现有的制粉方法大体可分为两类:机械法和物理化学法。
而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。
其中应用最为广泛的是还原法、雾化法和电解法。
2、粉末成型为所需形状的坯块。
成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。
成型的方法基本上分为加压成型和无压成型。
加压成型中应用最多的是模压成型。
3、坯块的烧结。
烧结是粉末冶金工艺中的关键性工序。
成型后的压坯通过烧结使其得到所要求的最终物理机械性能。
烧结又分为单元系烧结和多元系烧结。
对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。
除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。
4、产品的后序处理。
烧结后的处理,可以根据产品要求的不同,采取多种方式。
如精整、浸油、机加工、热处理及电镀。
此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。
2024年粉末冶金工艺的基本工序(2)2024年的粉末冶金工艺基本工序包括精细化粉末的制备、粉末成型、烧结和后处理等四个环节。
下面将详细介绍这些工序的主要内容。
一、精细化粉末的制备精细化粉末的制备是粉末冶金工艺的第一步,关乎着制备出高质量的粉末。
2024年,精细化粉末的制备将会注重以下几个方面的发展:1.1 原料的选择与准备:2024年,随着科学技术的进步,矿石和废料等资源的利用效率将取得显著提高。
在制备粉末时,将更加注重对原料的选择与准备,使得原料的化学成分更加纯净,杂质含量更低。
1.2 粉末的粒度控制:粉末的粒度对材料的性能影响巨大。
粒度过大会影响材料的强度和塑性,而粒度过小则会降低流动性。
因此,粉末的粒度控制将成为2024年粉末冶金工艺中的重要研究方向。
粉末冶金原理 雾化法

8 C7 或6 O5 , %4
3
2
1
O2
C
0
1
2
3
4
5
6
空气压力X10,MPa
整理课件
(2)金属液流
• 1)表面张力和粘度 • 液体表面张力大难破碎,易成球; • 受化学成分、温度、添加剂影响; • 粘度大难破碎、难成球, • 受化学成分、温度影响; • 2)过热温度 • 过热温度高易粉碎、冷凝时间长、易成球 • 3)液流直径 影响生产率、粒度、漏嘴堵塞、
-100- +145目
24.1
-145- +200目
23.8
粒度组成,%
-200- +250目
15.4
-250- +325目
17.9
-325目 18.2
22.3
22.1
15.7
19.1
20.8
18.6
19.3
15.9
19.5
26.8
整理课件
空气雾化高碳生铁对铁粉碳和氧含量的影响
• 铁中碳氧含量与空气压力的关系
整理课件
5000
2000
1000 粒 500 度
Al Zn
μ
200
Cu-15P
100
Cu-38Zn-2Pb
50
20
10 0.5 1 2 5 10 20 50 100 200
雾化压力,102kPa
粉末粒度与压力的关系
整理课件
(3)其他工艺参数
• 喷射参数 射顶角;
• 聚粉装置 却介质,
金属液流长度,喷射长度,喷 液滴飞行路程,冷却方式,冷
• ρ-气体密度,gs2/cm4 • ν-气流对液滴的相对速度,m
真空感应熔炼气雾化制粉工艺步骤

真空感应熔炼气雾化制粉工艺步骤下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言气雾化制粉工艺已成为现代金属粉末制备领域的主流技术之一,其优点包括制粉粒度均匀、化学成分纯净等。
真空气雾化制粉 参数-概述说明以及解释

真空气雾化制粉参数-概述说明以及解释1. 引言1.1 概述概述部分应该对本文主要内容进行简要介绍,并指出真空气雾化制粉参数的重要性。
可以按照以下方式编写概述部分的内容:概述部分:真空气雾化制粉是一种重要的粉体制备技术,广泛应用于材料科学、化学工程等领域。
在该技术中,粉末材料通过高温高压气体与粉末雾化剂共同作用,形成气雾射流,并在真空环境中快速冷却凝固,最终获得细小颗粒的粉末产物。
然而,真空气雾化制粉过程中的参数设置对于粉末颗粒的形貌、尺寸和分布具有关键性影响。
在本文中,我们将重点探讨真空气雾化制粉过程中的关键参数,并详细阐述它们对于粉末品质的影响。
首先,我们将介绍真空气雾化制粉参数的基本概念和常用设置,包括雾化剂流率、雾化气压、喷嘴尺寸等。
接着,我们将分别讨论这些参数在制粉过程中的作用机理和影响规律。
具体来说,我们将探讨这些参数如何影响粉末的颗粒大小、形状、分布以及杂质含量等关键品质指标。
值得注意的是,不同材料和不同制粉要求可能需要设置不同的真空气雾化制粉参数。
在本文中,我们将结合实验数据和理论模型,探讨不同参数设置下的粉末品质差异,为制粉工艺的优化提供有益的参考。
最后,我们将总结真空气雾化制粉参数的重要性,并对未来研究方向进行展望。
深入理解和掌握真空气雾化制粉参数的影响规律,将有助于优化制粉工艺,提高粉末品质,推动粉体材料领域的发展。
通过对真空气雾化制粉参数的研究和探讨,我们将为粉体制备领域的研究者和工程师们提供有益的参考和指导,推动粉末制备技术的进一步发展和应用。
文章结构部分内容如下:1.2 文章结构本文分为三部分,即引言、正文和结论。
引言部分包括概述、文章结构和目的。
首先,我们将概述真空气雾化制粉的背景和重要性。
接着,介绍文章的结构,即引言、正文和结论的部分划分。
最后,说明本文的目的,即探讨真空气雾化制粉的参数要点。
正文部分包含三个要点,分别是真空气雾化制粉参数要点1、要点2和要点3。
在这部分,我们将详细讨论每个要点,并分析其在真空气雾化制粉中的作用和影响。
粉末冶金制粉技术 全

粉末冶金制粉技术(一)粉末冶金新技术、新工艺的应用,不但使传统的粉末冶金材料性能得到根本的改善,而且使得一批高性能和具有特殊性能的新一代材料相继产生。
例如:高性能摩擦材料、固体自润滑材料、粉末高温合金、高性能粉末冶金铁基复合和组合零件、粉末高速钢、快速冷凝铝合金、氧化物弥散强化合金、颗粒增强复合材料,高性能难熔金属及合金、超细晶粒及涂层硬质合金、新型金属陶瓷、特种陶瓷、超硬材料、高性能永磁材料、电池材料、复合核燃料、中子可燃毒物、粉末微晶材料和纳米材料、快速冷凝非晶和准晶材料、隐身材料等。
这些新材料都需要以粉末冶金作为其主要的或惟一的制造手段。
本章将简要介绍粉末冶金的基本工艺原理和方法,重点介绍近年米粉末冶金新技术和新工艺的发展和应用状况。
1.雾化制粉技术粉末冶金材料和制品不断增多,其质量不断提高,要求提供的粉末的种类也愈来愈多。
例如,从材质范围来看,不仅使用金属粉末,也要使用合金粉末、金属化合物粉末等;从粉末形貌来看,要求使用各种形状的粉末,如生产过滤器时,就要求球形粉末;从粉末粒度来看,从粒度为500~1000m的粗粉末到粒度小于0.1m的超细粉末。
近几十年来,粉末制造技术得到了很大发展。
作为粉末制备新技术,第一个引人注目的就是快速凝固雾化制粉技术。
快速凝固雾化制粉技术是直接击碎液体金属或合金并快速冷凝而制得粉末的片法。
快速凝固雾化制粉技术最大的优点是可以有效地减少合金成分的偏析,获得成分均匀的合金粉末。
此外,通过控制冷凝速率可以获得具有非晶、准晶、微晶或过饱和固溶体等非平衡组织的粉末。
它的出现无论对粉末合金成分的设计还是对粉末合金的微观结构以及宏观特性都产生了深刻影响,它给高性能粉末冶金材料制备开辟了一条崭新道路,有力地推动了粉末冶金的发展。
雾化法最初生产的是像锡、铅、锌、铝等低熔点金属粉末,进一步发展能生产熔点在1600~1700℃以下的铁粉及其他粉末,如纯铜、黄铜、青铜、合金钢、不锈钢等金属和合金粉末。
水雾化铁粉与钢粉新产品的开发

水雾化铁粉与钢粉新产品的开发1 前言铁粉和钢粉的生产历来在粉末冶金工业中占有重要地位,其生产工艺、产品种类、质量和产量直接影响粉末冶金工业的发展。
在粉末冶金技术领域中,雾化法制取金属粉末是一种现代化的生产工艺。
自1965年美国A.O.Smith公司率先以工业规模生产水雾化铁粉以来,由于水雾化铁粉生产工艺的高灵活性和工业化生产潜力大,世界各工业国家纷纷采用和发展了水雾化铁粉和钢粉的生产工艺,并形成规模经济生产。
瑞典、美国、德国、加拿大和日本等国均先后相应建立了技术先进的水雾化制取铁粉和钢粉的工业生产体系,各自拥有众多优质品牌产品系列。
从近年来世界各地的发展情况看,水雾化铁粉和钢粉的产量已超过钢铁粉末总产量的半数以上,且价格往往低于还原铁粉。
鞍钢冶金粉材厂是国内唯一从德国曼内斯曼公司引进全套设备的大型水雾化铁粉和钢粉的生产厂家。
建厂初期的主要产品是与德国牌号相同的WPL200、WP200和FeNiMo纯铁粉和预合金粉。
随着近年来粉末冶金技术的飞速发展,为适应粉末原料逐渐向“用途专一,品种多样”的发展方向转化和市场竞争的需要,我厂近几年来在新产品的开发和研制上做了大量工作,由原来只能生产单一品种的水雾化铁粉,发展到现已能规模生产7大系列20多个品种的水雾化铁粉和钢粉。
本文主要重点介绍低合金钢粉、无偏析混合钢粉、易切削钢粉、烧结贝氏体钢粉和阀座粉等5个系列新产品。
2 新产品的主要品种2.1 低合金钢粉具有高强度和极好热处理性能的FeNiMo(FJSY200.28)和FeMo低合金钢粉,是近年来在粉末冶金高强度、高密度零部件上应用较多的两种典型粉末。
FeNiMo和FeMo两种典型的低合金钢粉的化学成分和工艺性能见表1。
合金元素Ni、Mo以预合金方式加入,所以合金成分均匀,在1120℃烧结便能得到均匀合金化的组织和高的淬透性。
以预合金粉方式加入得到的FeNiMo、FeMo合金粉,比用纯铁粉与Ni、Mo细粉混合得到的FeNiMo、FeMo合金粉,其抗拉强度更高,组织更均匀,热处理性能更好。
现代粉末冶金技术雾化制粉

引入先进的自动化控制系统和数据分析技术,实现雾化过程的精 确控制和优化。
强化设备维护与管理
定期对生产设备进行维护和保养,确保设备处于良好状态,提高 生产稳定性和产品质量。
05
产品性能评价与应
用领域拓展
粉末性能评价指标及方法介绍
粉末粒度分布
通过粒度分析仪等设备测量粉末的粒度分布,以评估粉末的均匀性 和细度。
表面涂层领域
要求粉末具有优异的耐磨、耐腐蚀等性能,以提 高涂层的质量和寿命。
拓展新型应用领域探索
1 2
生物医疗领域
探索利用粉末冶金技术制备生物相容性良好的金 属粉末,用于生物医疗领域如骨科植入物等。
新能源领域
研究粉末冶金技术在新能源领域的应用,如制备 高性能电池材料、燃料电池催化剂等。
3
航空航天领域
粒度在线监测
通过激光粒度分析仪等实时监测 设备,对粉末粒度进行在线监测,
及时调整工艺参数。
温度与湿度监测
实时监测雾化过程中的温度和湿 度变化,确保粉末质量和生产效
率。
气体成分分析
对雾化环境中的气体成分进行实 时监测,以确保生产安全和产品
质量。
提高雾化效率和产品质量方法
优化工艺流程
通过改进生产工艺流程,减少生产环节和能源消耗,提高生产效 率。
优势
粉末冶金制品具有高精度、高性能、高附加值等特点,广泛 应用于汽车、航空航天、电子、能源等领域。与传统的铸造 、锻造等加工方法相比,粉末冶金技术具有材料利用率高、 生产周期短、成本低等优点。
雾化制粉在粉末冶金中地位
雾化制粉定义
雾化制粉是一种将液态金属或合金通过喷嘴喷入高速气流中,使其迅速冷却凝固成粉末 的制粉方法。
粉末冶金工艺

粉末冶金工艺过程粉末冶金材料是指不经熔炼和铸造,直接用几种金属粉末或金属粉末与非金属粉末,通过配制、压制成型,烧结和后处理等制成的材料。
粉末冶金是金属冶金工艺与陶瓷烧结工艺的结合,它通常要经过以下几个工艺过程:一、粉料制备与压制成型常用机械粉碎、雾化、物理化学法制取粉末。
制取的粉末经过筛分与混合,混料均匀并加入适当的增塑剂,再进行压制成型,粉粒间的原子通过固相扩散和机械咬合作用,使制件结合为具有一定强度的整体。
压力越大则制件密度越大,强度相应增加。
有时为减小压力合增加制件密度,也可采用热等静压成型的方法。
二、烧结将压制成型的制件放置在采用还原性气氛的闭式炉中进行烧结,烧结温度约为基体金属熔点的2/3~3/4倍。
由于高温下不同种类原子的扩散,粉末表面氧化物的被还原以及变形粉末的再结晶,使粉末颗粒相互结合,提高了粉末冶金制品的强度,并获得与一般合金相似的组织。
经烧结后的制件中,仍然存在一些微小的孔隙,属于多孔性材料。
三、后处理一般情况下,烧结好的制件能够达到所需性能,可直接使用。
但有时还需进行必要的后处理。
如精压处理,可提高制件的密度和尺寸形状精度;对铁基粉末冶金制件进行淬火、表面淬火等处理可改善其机械性能;为达到润滑或耐蚀目的而进行浸油或浸渍其它液态润滑剂;将低熔点金属渗入制件孔隙中去的熔渗处理,可提高制件的强度、硬度、可塑性或冲击韧性等。
粉末冶金工艺的优点1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。
2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。
用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。
3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高熔点金属液滴凝固时间长,易 得到球形粉。
精选课件
33
粉末颗粒表面形貌和内部结构
精选课件
34
粉末纯度和杂质含量
粉末氧含量与金属活性及氧化膜 性质相关;
与雾化条件相关:采用去离子水、 添加酒精和表面活性剂等;
Fe: 1000~4000ppm; Ag-28Cu: 285ppm; Au-Ni: 57ppm; 304L: 2000ppm.
影响金属熔体粘度和表面张力:
Zn: 过热度从100增至300°C, dm 从150降 至100um; Co基合金:过热度增加150 °C, dm 减少 13.5%; 提高过热度可防止喷嘴处堵嘴(Freeze-up).
精选课件
29
喷嘴形状
喷射角越大,dm越小
精选课件
30
水喷射速度
dm = (5500/Vm)
料等用途。
精选课件
18
高压水雾化
• 水压:100~150MPa;粉末粒度:15um
dm=114P-0.58 (conical)
dm=68精P选-课0.件56 (V-shaped)
19
高压气雾化
• 层流雾化:
=0;利用气体的纯剪切 作用破碎金属熔体;粉末 粒度可达10um以下
• 紧耦合式雾化喷嘴:
精选课件
35
气雾化粉末特性
•粉末粒度与粒度分布
影响因素与水雾化类似; 气体比耗(specific gas consumption): 气体与金属液流的质量比, F,m3/kg;
dm = KF-1/2
• 含过饱和溶度气体的金属熔体在气压作用下喷 入真空腔体中。
• H2
2H(dissolved in M)
• H含量0.0001~0.001w/o; 气体压力:1~3MPa;
• 粉末粒度:40~70um(1~500um);
• 冷却速度:~102C/s
精选课件
14
精选课件
15
旋转电极雾化
• 1963年Nuclear Metals Inc.发明; • 主要用来生产球形、高活性、无污染粉
• 分类:
– 按破碎方:双流雾化(气、水、 油);真空雾化;旋转电极雾化、机 械力雾化(旋转盘、轧辊(roller)、 旋转杯(spinning cup))
精选课件
3
商业化粉末雾化技术
双流雾化: • 水雾化:
– 起源:1872年Marriott(英国)发明蒸汽 熔化金属并雾化;1950’s英国PM Ltd.发 明雾化喷嘴,制备有色金属;1954英国 B.S.A.Co Ltd 和瑞典Hoganas生产水雾化 铁粉
24
精选课件
25
水雾化粉末颗粒特性
A. 粉末粒度与粒度分布
影响因素:水速、金属液流量、水 压、熔体过热度、喷嘴形状等
精选课件
26
水、金属液流量
dm = f(Vm/VL) Vm: 金属液流量; VL : 水流量;
精选课件
27
水压
dm = ln(P/A)n; dm = KP-n;
精选课件
28
熔体过热度
精选课件
4
自由落体式( Free-fall mode)水雾化
精选课件
5
雾化喷嘴
分离式喷嘴(discrete multiple
nozzles)
环缝式喷嘴
(annular ring nozzle)
精选课件
6
水雾化影响参数
精选课件
7
工艺特性:
• 水雾化工艺条件
工艺参数
熔体流量/kg/min 水流量/kg/min
水速/m/s 水压/ MPa
过热度
通常范围 4.5~90 110~380 70~230 5.5~21
75~150C
316L 22 200 110 9 80
粒度分布:10~300um;冷却速度:103~105 C
精选课件
8
油雾化
• 1980’s Sumitomo Metals 发明,主 要用来制备低氧含量粉末。
– 充分利用气体能量; – 气体压力:10~20MPa; 粉
末粒度:10~20um;
精选课件
20
精选课件
21
喷嘴口压力vs 气体压力
喷嘴口压力越 小,粉末越细
精选课件
22
雾化粉末特性
精选课件
23
粉末颗粒特性的表征
•颗粒形状 •粉末粒度 •粉末粒度分布、中位径dm •粉末颗粒表面粗糙度
精选课件
现代粉末冶金技术
第二章 粉末雾化技术
精选课件
1
粉末雾化技术
• 概况 • 商业化的粉末雾化技术 • 雾化粉末特性 • 粉末雾化模型及机制
精选课件
2
• 概况
• 粉末雾化概念
– The dispersion of a molten metal into particles by a rapidly moving gas or liquid stream or by mechanical means
10
精选课件
11
精选课件
12
气雾化制粉的基本工艺条件
工艺参数
气体流量/m3/s 熔体流量 kg/min
气体压力/Mpa 气体流速/m/s
过热度/C
通常条件 0.02~0.24
1~70
0.5~9 20~超音速
75~150
粉末粒度:50~300um
Ni 基合金
20 2 100 150
精选课件
13
真空雾化
末,如Ti合金粉; • 粉末粒度:200um (50~400um); • 冷却速度:< 102 C/s; • 转速:1570~2100rps • 局限:过热度小,不宜生产熔点范围宽
的合金。
精选课件
16
精选课件
17
细粉末雾化制备技术:
• 细粉末定义:<20um;
• 细粉末的意义:
• 快速凝固粉末的研究与商业化需要; • 粉末注射成形需要(5~15um); • 细粉末改善烧结性能; • 热喷涂用; • 复合材料、电磁、催化剂、医药、导电塑
• 优点:杂质含量低:O (<0.01%) • 缺点:C含量不易控制;
多生产高碳钢粉末 粉末粒度:~70um
精选课件
9
气雾化
• 1920’s 发明空气雾化,二战期间德国 开始采用双流空气雾化生产钢粉
• 工艺装置可利用水雾化的自由落体式, 但多采用限制式,能量利用率高;喷嘴 可采用环缝式和分离式。
精选课件
精选课件
31
•粉末颗粒形状
粉末颗粒形状主要决定于:
金属液滴在表面张力作用下球化的 时间:0.1~10us for 100um
金属液滴凝固的时间: 100~1000us
实际影响因素很多:如颗粒球化 前须经过液滴形成、加速、穿过
紊流区等,约20精选0课u件 s时间
32
•氧化膜的形成
抵消表面张力,高熔点氧化膜的 形成(Cr、Al、Ti、Mg)易得到 不规则形状颗粒。