高中数学必修一函数练习题
数学高中必修一练习题及讲解

数学高中必修一练习题及讲解### 数学高中必修一练习题及讲解#### 练习题一:函数的基本性质题目:已知函数 \(f(x) = 2x^2 - 3x + 1\),求其定义域和值域。
解答:函数 \(f(x) = 2x^2 - 3x + 1\) 是一个二次函数。
二次函数的定义域为全体实数,即 \(x \in (-\infty, +\infty)\)。
要找到值域,我们可以将函数转换为顶点形式。
首先,找到顶点的\(x\) 坐标:\[ x = -\frac{b}{2a} = -\frac{-3}{2 \times 2} = \frac{3}{4} \]将 \(x = \frac{3}{4}\) 代入原函数,得到顶点的 \(y\) 坐标:\[ f\left(\frac{3}{4}\right) = 2\left(\frac{3}{4}\right)^2 -3\left(\frac{3}{4}\right) + 1 \]\[ f\left(\frac{3}{4}\right) = 2\left(\frac{9}{16}\right) -\frac{9}{4} + 1 = \frac{9}{8} - \frac{9}{4} + 1 = -\frac{1}{8} \]因此,函数的最小值为 \(-\frac{1}{8}\),由于开口向上,函数没有最大值,所以值域为 \([-\frac{1}{8}, +\infty)\)。
#### 练习题二:指数函数的运算题目:计算 \(2^3 \cdot 5^3\)。
解答:指数函数的乘法运算可以转换为基数相乘,指数相同的形式。
即:\[ 2^3 \cdot 5^3 = (2 \cdot 5)^3 \]计算基数的乘积:\[ 2 \cdot 5 = 10 \]将结果代入指数:\[ 10^3 = 1000 \]所以 \(2^3 \cdot 5^3 = 1000\)。
#### 练习题三:三角函数的图像和性质题目:已知 \(\sin(\alpha) = \frac{3}{5}\),\(\alpha\) 在第一象限,求 \(\cos(\alpha)\)。
高中数学必修第一册5.2三角函数的概念练习题

,cos sin
.
18. 已知角 的终边在直线
上,则 th
的值为________.
1 . 已知 t 4 ,且 sin 1,则 的值为________.
. h sin
, cos
, tan
是________.
三、解答题(本大题共 2 小题,共 24.0 分)
,则 a,b,c 按从小到大的顺序排列
1. 已知角 的终边经过点 h
sin 4.6 。
因为 sin 4.6 t cos 4.6 ,因而 sin 114.6 t cos 114.6 ,
因此,h t t
21.【答案】解: 1 由三角函数定义可知 sin
,
h8
解得 h 1,
为第一象限角,
则 h 1;
由 1 知 tan
,
第 1 页,共 14页
sin cos
cos
cos
sin
【解析】
【分析】
本题考查三角函数的的基本概念和诱导公式,只需要确定 所对应的角度所在的范围,
然后运用诱导公式确定具体函数值的范围即可求解。
【解答】
解:
114.6 ,即 为第三象限角,所以 h t , t , 。
又因为 sin 114.6 sin
4.6
cos 4.6 ,
且 cos 114.6 sin
4.6
A. sin1 tan1 cos1
C. tan1 sin1 cos1
1 . th1 的值等于
A. 1
B. 1
B. sin1 tan1 cos1 D. tan1 cos1 sin1
C.
D.
14. 如果 sin t 且 tan t ,那么角 的终边位于
高中数学必修一 《3 1 函数的概念及其表示》课时练习09

课时分层作业(十五)函数的表示法(建议用时:60分钟)[合格基础练]一、选择题1.购买某种饮料x听,所需钱数为y元.若每听2元,用解析法将y表示成x(x∈{1,2,3,4})的函数为()A.y=2x B.y=2x(x∈R)C.y=2x(x∈{1,2,3,…}) D.y=2x(x∈{1,2,3,4})D[题中已给出自变量的取值范围,x∈{1,2,3,4},故选D.]2.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图象是如图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2))的值为()x 12 3f(x)230A.3 B.2C.1 D.0B[由函数g(x)的图象知,g(2)=1,则f(g(2))=f(1)=2.]3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()C [距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.]4.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x ,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x -1B [令1x =t ,则x =1t ,代入f ⎝ ⎛⎭⎪⎫1x =x 1-x,则有f (t )=1t1-1t=1t -1,故选B.] 5.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3 B [设f (x )=ax +b ,由题设有 ⎩⎪⎨⎪⎧2(2a +b )-3(a +b )=5,2(0·a +b )-(-a +b )=1. 解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.]二、填空题6.已知f (2x +1)=x 2-2x ,则f (3)=________. -1 [由2x +1=3得x =1,∴f (3)=1-2=-1.] 7.f (x )的图象如图所示,则f (x )的值域为________.[-4,3] [由函数的图象可知,f (x )的值域为[-2,3]∪[-4,2.7],即[-4,3].]8.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm)之间的表达式是________.y =80x (x +10),x ∈(0,+∞) [由题意可知,长方体的长为(x +10)cm ,从而长方体的体积y =80x (x +10),x >0.]三、解答题9.画出二次函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0),f (1),f (3)的大小; (2)求函数f (x )的值域.[解] f (x )=-(x -1)2+4的图象如图所示:(1)f (0)=3,f (1)=4,f (3)=0, 所以f (1)>f (0)>f (3).(2)由图象可知二次函数f (x )的最大值为f (1)=4, 则函数f (x )的值域为(-∞,4].10.(1)已知f (x )是一次函数,且满足2f (x +3)-f (x -2)=2x +21,求f (x )的解析式;(2)已知f (x )为二次函数,且满足f (0)=1,f (x -1)-f (x )=4x ,求f (x )的解析式; (3)已知f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2+1,求f (x )的解析式.[解] (1)设f (x )=ax +b (a ≠0),则2f (x +3)-f (x -2)=2[a (x +3)+b ]-[a (x -2)+b ]=2ax +6a +2b -ax +2a -b =ax +8a +b =2x +21,所以a =2,b =5,所以f (x )=2x +5. (2)因为f (x )为二次函数,设f (x )=ax 2+bx +c (a ≠0). 由f (0)=1,得c =1. 又因为f (x -1)-f (x )=4x ,所以a (x -1)2+b (x -1)+c -(ax 2+bx +c )=4x ,整理,得-2ax +a -b =4x ,求得a =-2,b =-2,所以f (x )=-2x 2-2x +1.(3)∵f ⎝ ⎛⎭⎪⎫x -1x =⎝ ⎛⎭⎪⎫x -1x 2+2+1=⎝ ⎛⎭⎪⎫x -1x 2+3.∴f (x )=x 2+3.[等级过关练]1.已知函数f (2x +1)=3x +2,且f (a )=2,则a 的值为( ) A .-1 B .5 C .1D .8C [由3x +2=2得x =0, 所以a =2×0+1=1. 故选C.]2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( )A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10) D [由题意得y +2x =20, 所以y =20-2x ,又2x >y ,即2x >20-2x ,即x >5, 由y >0即20-2x >0得x <10, 所以5<x <10.故选D.]3.已知f (x )+2f (-x )=x 2+2x ,则f (x )的解析式为________.f(x)=13x2-2x[以-x代替x得:f(-x)+2f(x)=x2-2x.与f(x)+2f(-x)=x2+2x联立得:f(x)=13x2-2x.]4.设f(x)=2x+a,g(x)=14(x2+3),且g(f(x))=x2-x+1,则a的值为________.-1[因为g(x)=14(x2+3),所以g(f(x))=14[(2x+a)2+3]=14(4x2+4ax+a2+3)=x2-x+1,求得a=-1.]5.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域.[解](1)由已知,横断面为等腰梯形,下底为2 m,上底为(2+2h)m,高为h m,∴水的面积A=[2+(2+2h)]h2=h2+2h(m2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.。
高一数学必修一函数练习题

高一数学必修一函数练习题函数是高中数学中非常重要的概念,它描述了两个集合之间的一种对应关系。
下面为高一学生准备了一系列函数练习题,以帮助学生更好地理解和掌握函数的基本概念和性质。
练习题一:函数的定义域与值域1. 给定函数 \( f(x) = \frac{1}{x - 2} \),求其定义域。
2. 对于函数 \( g(x) = x^2 - 4x + 3 \),找出其值域。
练习题二:函数的单调性1. 判断函数 \( h(x) = x^3 - 3x \) 在 \( x \in (-\infty,\infty) \) 上的单调性。
2. 若函数 \( k(x) = 2x - 1 \) 在 \( x \in [0, 2] \) 上单调递增,求 \( k(x) \) 在 \( x \in [2, 4] \) 上的单调性。
练习题三:函数的奇偶性1. 判断函数 \( f(x) = |x| \) 是否为奇函数或偶函数。
2. 若函数 \( g(x) = x^2 + 1 \) 是偶函数,求证。
练习题四:复合函数1. 已知 \( f(x) = x^2 \) 和 \( g(x) = x + 3 \),求复合函数\( (f \circ g)(x) \)。
2. 若 \( h(x) = \sqrt{x} \) 和 \( k(x) = x - 1 \),求 \( (h \circ k)(x) \)。
练习题五:反函数1. 若 \( f(x) = 2x + 1 \),求其反函数 \( f^{-1}(x) \)。
2. 对于函数 \( g(x) = x^2 \),讨论其反函数的存在性。
练习题六:函数的图像与性质1. 画出函数 \( y = |x - 1| \) 的图像,并标出其顶点坐标。
2. 对于函数 \( y = x^3 \),描述其在 \( x = 0 \) 附近的图像变化趋势。
练习题七:函数的实际应用1. 某工厂生产的产品数量与时间的关系为 \( P(t) = 100t - 5t^2 \),求出生产量达到最大时的时间。
高中数学必修一《函数的概念》经典练习(含详细解析)

高中数学必修一《函数的概念》经典练习(含详细解析)一、选择题1.函数f(x)=(x∈R)的值域是( )A.[0,1]B.[0,1)C.(0,1]D.(0,1)2.下列各组函数中,表示同一个函数的是( )A.y=与y=x+1B.y=与y=C.y=-1与y=x-1D.y=x与y=3.已知函数f(x)的定义域为[0,1),则函数f(1-x)的定义域为( )A.[0,1)B.(0,1]C.[-1,1]D.[-1,0)∪(0,1]4.函数y=的定义域是(-∞,1)∪[2,5),则其值域是( )A.(-∞,0)∪B.(-∞,2]C.∪[2,+∞)D.(0,+∞)5.函数f(x)的定义域为[-6,2],则函数y=f()的定义域为( )A.[-4,4]B.[-2,2]C.[0,]D.[0,4]二、填空题6.函数y=x2-2x的定义域为{0,1,2,3},那么其值域为.7.若函数y=的定义域是A,函数y=的值域是B,则A∩B= .8.函数y=f(x)的图象如图所示,那么f(x)的定义域是;其中只与x的一个值对应的y值的范围是.9.给出定义:若m-<x≤m+(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m.在此基础上给出下列关于函数f(x)=|x-{x}|的四个结论.①f=;②f(3.4)=-0.4;③f=f;④y=f(x)的定义域为R,值域是.则其中正确的序号是.三、解答题10.(10分)已知函数y=(1<x≤2),求函数值域.11.(10分)记函数f(x)=的定义域为集合A,函数g(x)=图象在二、四象限时,k的取值集合为B,函数h(x)=x2+2x+4的值域为集合C.(1)求集合A,B,C.B),A∩(B∪C).(2)求集合A∪(R参考答案与解析1【解析】选C.因为x2≥0,所以x2+1≥1,所以0<≤1,所以值域为(0,1]. 2【解析】选D.对于选项A:函数y=的定义域不包含1,而y=x+1的定义域是R,显然不是同一个函数.对于选项B:函数y=的定义域为x≥0,而函数y=的定义域是{x|x≠0},显然不是同一个函数.对于选项C:函数y=-1的值域是大于等于-1的,而直线y=x-1的值域是R,显然不是同一个函数.对于选项D:因为y=x与y=的最简解析式相等,且定义域都为R,所以为同一个函数.3【解题指南】原函数的定义域,即为1-x的范围,解不等式组即可得解.【解析】选B.因为原函数的定义域为[0,1),所以0≤1-x<1,即所以0<x≤1,所以函数f(1-x)的定义域为(0,1].4【解题指南】根据定义域求值域.【解析】选A.因为x∈(-∞,1)∪[2,5),所以x-1∈(-∞,0)∪[1,4),当x-1∈(-∞,0)时,∈(-∞,0);当x-1∈[1,4)时,∈.5【解析】选D.因为函数f(x)的定义域为[-6,2],所以-6≤≤2,又因为≥0,所以0≤≤2,所以0≤x≤4.6【解析】当x=0时,y=0;当x=1时,y=-1;当x=2时,y=0;当x=3时,y=3.故函数的值域为{-1,0,3}.答案:{-1,0,3}【补偿训练】已知函数f(x)=2x-3,x∈A的值域为{-1,1,3},则定义域A 为.【解析】值域为{-1,1,3},即令f(x)分别等于-1,1,3,求出对应的x,则由x组成的集合即为定义域A,为{1,2,3}.答案:{1,2,3}7【解析】由题意知A={x|x≠2},B={y|y≥0},则A∩B=[0,2)∪(2,+∞).答案:[0,2)∪(2,+∞)8【解析】观察函数图象可知,f(x)的定义域是[-3,0]∪[2,3];只与x的一个值对应的y值的范围是[1,2)∪(4,5].答案:[-3,0]∪[2,3] [1,2)∪(4,5]9【解析】①因为-1-<-≤-1+,所以=-1,所以f===,所以①正确;②因为3-<3.4≤3+,所以{3.4}=3,所以f(3.4)=|3.4-{3.4}|=|3.4-3|=0.4,所以②错误;③因为0-<-≤0+,所以=0,所以f==,因为0-<≤0+,所以=0,所以f==,所以f=f,所以③正确;④y=f(x)的定义域为R,值域是,所以④错误.答案:①③10【解析】设x1,x2∈(1,2]且x1<x2,则f(x1)-f(x2)=-=,因为x1<x2,所以x2-x1>0,因为x1,x2∈(1,2],所以(2x1-1)(2x2-1)>0,所以f(x1)-f(x2)>0,所以f(x)在(1,2]上单调递减,所以当1<x≤2时,f(2)≤f(x)<f(1),即≤f(x)<1,所以函数的值域为.【补偿训练】已知函数f(x)=(a∈R且x≠a),当f(x)的定义域为时,求f(x)的值域.【解析】f(x)==-1+.当a+≤x≤a+时,-a-≤-x≤-a-,-≤a-x≤-,-3≤≤-2,于是-4≤-1+≤-3,即f(x)的值域为[-4,-3].11【解析】(1)由2x-3>0,得x>,所以A=, 又由k-1<0,得k<1,所以B=,而h(x)=x2+2x+4=+3≥3,所以C=.(2)A∪(B)=,A∩(B∪C)=.R。
高中数学必修一练习题(4)函数(含详细答案)

• 高中数学必修一复习练习(四)函数班 号 姓名 指数函数及其性质1.下列函数中指数函数的个数为( )①y =(12)x -1; ②y =2·3x ; ③y =a x (a >0且a ≠1,x ≥0); ④y =1x ; ⑤y =(12)2x -1.A .1个B .2个C .4个D .5个2.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x3.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M NB . M ⊆NC .N MD .M =N4.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )5.若函数y =(2a -1)x 为指数函数,则实数a 的取值范围是________. 6.函数y =a x +1(a >0且a ≠1)的图象必经过点________(填点的坐标). 7.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值; (2)求函数y =f (x )(x ≥0)的值域.8.已知指数函数f (x )=a x 在区间[1,2]上的最大值比最小值大a2,求a 的值.1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)2.函数y =⎝⎛⎭⎫121-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.下列不等关系中,正确的是( ) A .(12)23<1<(12)13B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<14.函数f (x )=2|x |,则f (x )( )A .在R 上是减函数B .在(-∞,0]上是减函数C .在[0,+∞)上是减函数D .在(-∞,+∞)上是增函数 5.方程3x -1=19的解是________.6.已知函数y =(13)x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.7.已知2x ≤(14)x -3,求函数y =(12)x 的值域.8.已知函数f (x )=a 2-3x(a >0,且a ≠1).(1)求该函数的图象恒过的定点坐标; (2)指出该函数的单调性.1.使式子log (x -1)(x 2-1)有意义的x 的值是( ) A .x <-1或x >1 B .x >1且x ≠2 C .x >1D .x ≠22.方程2log 3x =14的解是( )A.33B.3C.19D .93.化简:2lg (lg a 100)2+lg (lg a )的结果是( )A.12B .1C .2D .44.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 485.若log a x =2,log b x =3,log c x =6,则log abc x 的值为________.6.已知x ,y ∈(0,1),若lg x +lg y =lg(x +y ),则lg(1-x )+lg(1-y )=________. 7.计算下列各式的值:(1)lg12.5-lg 58+lg 12; (2)12lg25+lg2+lg 10+lg(0.01)-1; (3)log 2(log 264).8.方程lg 2x +(lg2+lg3)lg x +lg2lg3=0的两根之积为x 1x 2,求x 1x 2的值.1.下列函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,a ≠1) B .y =x 与y =x C .y =lg x 与y =lg xD .y =x 2与y =lg x 22.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 3.函数y =log 12(3x -2)的定义域是( )A .[1,∞)B .(23,+∞)C .[23,1]D .(23,1]4.函数y =lg(x +1)的图象大致是( )5.函数y =log x (2-x )的定义域是________.6.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 7.求下列函数的定义域:(1)y =log 2(4x -3); (2)y =log 5-x (2x -2).8.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.参考答案指数函数及其性质1.选A 由指数函数的定义可判定,只有③正确. 2.B3.选A x ∈R ,y =2x >0,y =x 2≥0,即M ={y |y >0},N ={y |y ≥0},所以M N. 4.选C 由0<m <n <1可知①②应为两条递减曲线,故只可能是选项C 或D , 进而再判断①②与n 和m 的对应关系,判断方法很多,不妨选择特殊点,令x =1, 则①②对应的函数值分别为m 和n ,由m <n 知选C.5.解析:函数y =(2a -1)x 为指数函数,则2a -1>0且2a -1≠1,∴a >12且a ≠1. 答案:a >12且a ≠16.∵指数函数y =a x 恒过定点(0,1).∴y =a x +1的图象必过点(0,2).答案:(0,2) 7.解:(1)函数图象过点(2,12),所以a 2-1=12,则a =12.(2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1,于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2]. 8.解:由指数函数的概念知a >0,a ≠1.当a >1时,函数f (x )=a x 在区间[1,2]上是增函数,所以当x =2时,f (x )取最大值a 2,当x =1时,f (x )取最小值a , 由题意得a 2=a +a 2,即a 2=32a ,因为a >1,所以a =32;当0<a <1时,函数f (x )=a x 在区间[1,2]上是减函数,同理可以求得a =12.综上可知,a 的值为32或12✠✠指数函数及其性质的应用1.选D 不等式2x +1<1=20,∵y =2x 是增函数,∴x +1<0,即x <-1.2.选A 定义域为R.设u =1-x ,y =⎝⎛⎭⎫12u,∵u =1-x 在R 上为减函数,又∵y =⎝⎛⎭⎫12u在(-∞,+∞)上为减函数,∴y =⎝⎛⎭⎫121-x在(-∞,+∞)上是增函数.3.选D ∵函数y =(12)x 在R 上是减函数,而0<13<23,∴(12)23<(12)13<(12)0,即(12)23<(12)13<1.4.选B ∵y =2x 在R 上递增,而|x |在(-∞,0]上递减,在[0,+∞)是递增,∴f (x )=2|x |在(-∞,0]上递减,在[0,+∞)上递增.5.解析:∵3x -1=19,∴3x -1=3-2,∴x -1=-2,∴x =-1. 答案:-16.解析:函数y =(13)x 在定义域内单调递减,∴m =(13)-1=3,n =(13)-2=9, ∴m +n =12. 答案:127.解:∵2x ≤(14)x -3,即2x ≤26-2x ,∴x ≤6-2x ,∴x ≤2,∴y = (12)x ≥ (12)2=14,∴函数值域是[14,+∞).8.解:(1)当2-3x =0,即x =23时,a 2-3x =a 0=1. 所以,该函数的图象恒过定点(23,1)(2)∵u =2-3x 是减函数,∴当0<a <1时,f (x )在R 上是增函数;当a >1时,f (x )在R 上是减函数.❑❑对数与对数运算1.选B 由⎩⎪⎨⎪⎧x -1>0,x 2-1>0,x -1≠1,解得x >1且x ≠2.2.选C 由已知得log 3x =-2 ,∴ x =3-2=19.3.选C 由对数运算可知:lg(lg a 100)=lg(100lg a )=2+lg(lg a ),∴原式=2. 4.选A 由2x =3得:x =log 23.∴x +2y =log 23+2log 483=log 23+2log 283log 24=log 23+(3log 22-log 23)=3.5.解析:log a x =1log x a =2,∴log x a =12. 同理log x b =13,log x c =16.log abc x =1log x abc =1log x a +log x b +log x c =1. 答案:16.解析:lg(x +y )=lg x +lg y =lg(xy )⇒x +y =xy ,lg(1-x )+lg(1-y )=lg[(1-x )(1-y )]=lg(1-x -y +xy )=lg1=0. 答案:0 7.解:(1)原式=lg(252×85×12)=lg10=1.(2)原式=lg[2512×2×1012×(10-2)-1]=lg(5×2×1012×102)=lg1072=72.(3)原式=log 2(log 226)=log 26=1+log 23.8.解:因为lg2x +(lg2+lg3)lg x +lg2lg3=(lg x +lg2)(lg x +lg3),所以lg x =-lg2=lg2-1或lg x =-lg3=lg3-1,即x 1=12,x 2=13,所以x 1x 2=16.对数函数及其性质1.C2.选C 当x ≥1时,log 2x ≥0,所以y =2+log 2x ≥2.3.选D 由函数的解析式得log 12(3x -2)≥0=log 121.∴0<3x -2≤1,解得:23<x ≤1.4.选C 当x =0时y =0,而且函数为增函数,可见只有C 符合.5.解析:由对数函数的意义可得⎩⎪⎨⎪⎧2-x >0x >0x ≠1⇒⎩⎪⎨⎪⎧x <2x >0且x ≠1⇒0<x <2且x≠1. 答案:(0,1)∪(1,2)6.解析:当x =2时y =1. 答案:(2,1)7.解:(1)要使函数有意义,须满足:log 2(4x -3)≥0=log 21,⇒1≤ 4x -3⇒x ≥1,∴函数的定义域为[1,+∞).(2)要使函数有意义,须满足⎩⎪⎨⎪⎧2x -2>05-x >05-x ≠1⇒1<x <5且x ≠4. ∴函数的定义域为(1,4)∪(4,5).8.解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 的值.。
【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

07课 对数运算1.下列式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32③log a (bc)=(log a b)·(log a c) ④log a x 2=2log a xA.0B.1C.2D.3 2.log 22的值为( )A.- 2B. 2C.-12D.123.如果lgx=lga +2lgb -3lgc ,则x 等于( )A.a +2b -3cB.a +b 2-c 3C.ab 2c 3D.2ab 3c4.计算2log 510+log 50.25=( )A.0B.1C.2D.4 5.已知a=log 32,那么log 38-2log 36用a 表示为( )A.a -2B.5a -2C.3a -(1+a)2D.3a -a 2-16.已知f(log 2x)=x ,则f(12)=( )A.14B.12C.22 D. 2 7.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a8.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A.pqB.q p +qC.pp +qD.pq1+pq 9.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于()A.1B.-2C.-103D.-410.计算:log 6[log 4(log 381)]=________.11.使对数式log (x -1)(3-x)有意义的x 的取值范围是________.12.已知5lgx=25,则x=________,已知log x 8=32,则x=________.13.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.14.计算:log 23·log 34·log 45·log 56·log 67·log 78= 15.设log 89=a ,log 35=b ,则lg2=________.16.已知log 34·log 48·log 8m=log 416,求m 的值.17.设4a =5b=m ,且1a +2b=1,求m 的值.18.计算(lg 12+lg1+lg2+lg4+lg8+……+lg1024)·log 210.19.已知lg(x +2y)+lg(x -y)=lg2+lgx +lgy ,求xy的值.20.若25a =53b =102c,试求a 、b 、c 之间的关系.21.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.指数函数练习题1.函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.函数的单调减区间为()A. B.C. D.4.设全集U=R,A={x|<2},B={x|},则右图中阴影部分表示的集合为( )A.{x|1≤x<2}B.{x|x≥1}C.{x|0<x≤1}D.{x|x≤1}5.计算所得的结果为()A.1B.2.5C.3.5D.46.设, 则()A. B. C. D.7.设全集,集合,,则 ( )A. B. C. D.8.已知集合,则( )A. B. C. D.9.已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且,则不等式的解集为()A. B. C. D.10.已知x, y为正实数, 则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y) =2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy) =2lg x·2lg y11.已知集合A={x|0<log4x<1}, B={x|x≤2}, 则A∩B=( )A.(0,1)B.(0,2]C.(1,2)D.(1,2]12.设a=log36, b=log510, c=log714, 则( )A.c> b> aB.b> c> aC.a> c> bD.a> b> c13.若a=log43,则2a+2-a=________.14.已知4a=2,lg x=a,则x=________.15.函数f(x) =lg(x-2) 的定义域是.16.函数f(x) =的定义域为.17.函数f(x) =log5(2x+1)的单调增区间是.18.函数f (x)=的定义域为.19.关于x的不等式|log2x|>4的解集为.20. 函数的定义域为___________ .21. .22.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域. (用a表示)答案[答案] 1.C[答案] 2.D[答案] 3.D[答案] 4.A[答案] 5.A[答案] 6.C[答案] 7.B[答案] 8.C[答案] 9.C[答案] 10.D[答案] 11.D[答案] 12.D[答案] 13.[答案] 14.[答案] 15. (2,+∞)[答案] 16.[3, +∞)[答案] 17.(-0.5,+∞)[答案] 18.{x|0<x≤}[答案] 19.[答案] 20.[-0.25,0)∪(0.75,1][答案] 21.4。
高中数学必修一函数的最大(小)值练习题测试题及答案解析

1.3.1.2函数的最大(小)值双基限时练 新人教A 版必修11.函数y =1x -1在[2,3]上的最小值为( ) A.13 B .-12C .1 D.12解析 函数y =1x -1在[2,3]上是减函数,∴当x =3时,取最小值为12. 答案 D2.若f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1,则函数f (x )的最大值和最小值分别为( )A .8,6B .8,8C .10,6D .10,8解析 当x ∈[1,2]时,f (x )∈[8,10];当x [-1,1)时,f (x )∈[6,8),∴f (x )的最大值和最小值分别为10,6.答案 C3.函数y =|x +1|+2的最小值是( ) A .0 B .-1 C .2D .3解析 y =|x +1|+2的图象如下:所以最小值为2. 答案 C4.函数f (x )=x 2+2x -1,x ∈[-3,2]的最大值、最小值分别为( ) A .9,0 B .7,3 C .2,-2D .7,-2解析 f (x )=x 2+2x -1=(x +1)2-2,∴当x =-1时,有最小值-2,当x =2时,有最大值7.答案 D5.函数f (x )=2x -1+x 的值域是( ) A.⎣⎢⎡⎭⎪⎫12,+∞ B.⎝⎛⎦⎥⎤-∞,12C .(0,+∞)D .[1,+∞)解析 易知当x ≥12时,函数f (x )为增函数,故值域为⎣⎢⎡⎭⎪⎫12,+∞.答案 A6.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,若该公司在两地共销售15辆(销售量单位:辆),则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元解析 设在甲地销售x 辆,则在乙地销售(15-x )辆,则利润y =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝⎛⎭⎪⎫x -1922+4814∴当x =9或10时,可获最大利润120万元. 答案 C7.函数y =1x 在[1,a ]上的最小值为14,则a =______.解析 ∵y =1x在[1,a ]上是减函数,∴最小值为f (a )=1a =14,∴a =4.答案 4 8.函数f (x )=xx -1在区间[2,5]上的值域为________.解析 f (x )=xx -1=1+1x -1,易知f (x )在[2,5]上为减函数,∴最小值为f (5)=54,最大值为f (2)=2,故f (x )的值域为⎣⎢⎡⎦⎥⎤54,2.答案 ⎣⎢⎡⎦⎥⎤54,2 9.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则实数m 的取值范围是________.解析 y =x 2-2x +3=(x -1)2+2,作出图象,由图象知,1≤m ≤2.答案 [1,2]10.函数f (x )=ax 2-2ax +2+b (a ≠0)在[2,3]上有最大值5和最小值2,求a ,b 的值. 解 由f (x )=ax 2-2ax +2+b 的对称轴为x =1知,无论f (x )的单调性怎样,f (x )在[2,3]上存在最值的情况有两种:⎩⎪⎨⎪⎧f =2,f=5,或⎩⎪⎨⎪⎧f =5,f=2.解得⎩⎪⎨⎪⎧a =1,b =0,或⎩⎪⎨⎪⎧a =-1,b =3.11.已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最值; (2)若f (x )是单调函数,求实数a 的取值范围.解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,∵x ∈[-5,5],∴当x =1时,f (x )取得最小值1;当x =-5时,f (x )取得最大值37.(2)函数f (x )=x 2+2ax +2的图象是抛物线,其对称轴为x =-a . 若函数f (x )=x 2+2ax +2,x ∈[-5,5]. 是单调函数,则有-a ≤-5,或-a ≥5, ∴a ≥5,或a ≤-5.故所求实数a 的取值范围是(-∞,-5]∪[5,+∞). 12.若二次函数满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解 (1)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=1,∴c =1, ∴f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x , ∴2ax +a +b =2x ,∴⎩⎪⎨⎪⎧2a =2,a +b =0.∴⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +1.(2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立, 即x 2-3x +1-m >0在[-1,1]上恒成立.令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,其对称轴为x =32,∴g (x )在区间[-1,1]上是减函数, ∴g (x )min =g (1)=1-3+1-m >0, ∴m <-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课 函数的概念【考点导读】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数. 【基础练习】1.设有函数组:①y x =,y =;②y x =,y;③y =,y =;④1(0),1(0),x y x >⎧=⎨-<⎩,x y x =;⑤lg 1y x =-,lg 10x y =.其中表示同一个函数的有_____. 2.设集合{02}M x x =≤≤,{02}N y y =≤≤,从M 到N 有四种对应如图所示:其中能表示为M 到N 的函数关系的有_______. 3.写出下列函数定义域:(1) ()13f x x =-的定义域为______; (2) 21()1f x x =-的定义域为______________;(3) 1()f x x =的定义域为______________;(4) 0()f x =__4.已知三个函数:(1)()()P x y Q x =;(2)y =(*)n N ∈; (3)()log ()Q x y P x =.写出使各函数式有意义时,()P x ,()Q x 的约束条件: (1)____________(2)_______________;①②③④(3)______________________________. 5.写出下列函数值域:(1) 2()f x x x =+,{1,2,3}x ∈;值域是 (2) 2()22f x x x =-+; 值域是. (3) ()1f x x =+,(1,2]x ∈. 值域是. 【例解析】例1.设有函数组:①21()1x f x x -=-,()1g x x =+;②()f x =,()g x =③()f x =()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有③④.点评:两个函数当它们的三要素完全相同时,才能表示同一函数.而当一个函数定义域和对应法则确定时,它的值域也就确定,故判断两个函数是否为同一函数,只需判断它的定义域和对应法则是否相同即可. 例2.求下列函数的定义域:①12y x =- ②()f x = 例3.求下列函数的值域:(1)242y x x =-+-,[0,3)x ∈;(2)221x y x =+()x R ∈;(3)y x =-点评:二次函数或二次函数型的函数求值域可用配方法;逆求法利用函数有界性求函数的值域;用换元法求函数的值域应注意新元的取值围. 【反馈演练】1.函数f (x )=x 21-的定义域是___________. 2.函数)34(log 1)(22-+-=x x x f 的定义域为_________________. 3. 函数21()1y x R x=∈+的值域为________________. 4.函数23y x =-的值域为_____________.5.函数)34(log 25.0x x y -=的定义域为_____________________. 【真题再现】1.(2014)函数f (x )= 1-2x+1x +3的定义域为( )2.(2014)函数y =lgx +1x -1的定义域是( )3(2014).已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+f ⎝ ⎛⎭⎪⎫lg 12=( )4.(2013)函数f (x )=log 2(3x +1)的值域为( )5.(2013·)已知函数f(x)= x-1,若f(a)=3,则实数a= .6.(2013天津)设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧gx +x +4,x <g x ,gx -x ,x ≥g x.则f (x )的值域是(第2课 函数的表示方法【考点导读】1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2.求解析式一般有四种情况:(1)根据某个实际问题须建立一种函数关系式;(2)给出函数特征,利用待定系数法求解析式;(3)换元法求解析式;(4)解方程组法求解析式. 【基础练习】1.设函数()23f x x =+,()35g x x =-,则(())f g x =_________;(())g f x =__________.2.设函数1()1f x x=+,2()2g x x =+,则(1)g -=____________;[(2)]f g =;[()]f g x = 3.已知函数()f x 是一次函数,且(3)7f =,(5)1f =-,则(1)f =_____.4.设f (x )=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f [f (21)]=_____________.5.如图所示的图象所表示的函数解析式为__________________________. 【例解析】例1.已知二次函数()y f x =的最小值等于4,且(0)(2)6f f ==,求()f x 的解析式.分析:给出函数特征,可用待定系数法求解.第5题例 2.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y(km)与时间x(分)的关系.试写出()y f x=的函数解析式.【反馈演练】1.若()2x xe ef x--=,()2x xe eg x-+=,则(2)f x=()A.2()f xB.2[()()]f xg x+C.2()g xD.2[()()]f xg x⋅2.设[x]表示不大于x的最大整数, 则对任意实数x,有( )A .[-x]=-[x] B. [x +12]=[x] C. [2x]=2[x] D.[][][2]2x x x++=【真题再现】1.(2013已知函数ƒ(x)=⎩⎪⎨⎪⎧2x,x>0,x+1,x≤0.若ƒ(a)+ƒ(1)=0,则实数a的值等于()2.(2013)函数f(x)=⎩⎪⎨⎪⎧log12x,x≥1,2x,x<1的值域为________.3.(2012)设f(x)=⎩⎪⎨⎪⎧1,x>0,0,x=0,-1,x<0,g(x)=⎩⎪⎨⎪⎧1,x为有理数,0,x为无理数,则f(g(π))的值为.4.(2010)已知函数f(x)=⎩⎪⎨⎪⎧3x+2,x<1,x2+ax,x≥1,若f(f(0))=4a,则实数a=________.5.(2013)函数f(x)=ln(x2+1)的图像大致是()6.(2014)已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x+a,x<1,-x-2a,x≥1.若f(1-a)=f(1+a),则a的值为________.7.(2012)设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)=⎩⎪⎨⎪⎧ax+1,-1≤x<0,bx+2x+1,0≤x≤1,其中a,b∈R.若f(12)=f(32),则a+3b的值为________.第3课函数的单调性xyO123410 20 30 40 50 60例2【考点导读】1.理解函数单调性,最大(小)值及其几何意义;2.会运用单调性的定义判断或证明一些函数的增减性. 【基础练习】 1.下列函数中: ①1()f x x=; ②()221f x x x =++; ③()f x x =-; ④()1f x x =-.其中,在区间(0,2)上是递增函数的序号有______. 2.函数y x x =的递增区间是___ _.3.已知函数()y f x =在定义域R 上是单调减函数,且(1)(2)f a f a +>,则实数a 的取值围__________.4.已知下列命题:①定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 是R 上的增函数; ②定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 在R 上不是减函数;③定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间[0,)+∞上也是增函数,则函数()f x 在R 上是增函数;④定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间(0,)+∞上也是增函数,则函数()f x 在R 上是增函数.其中正确命题的序号有_________. 【例解析】1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( )A .y =1xB .y =e -xC .y =-x 2+1D. y =lg|x |2.下列函数中,既是偶函数,又在区间(1,2)是增函数的为( )A .y =cos 2x ,x ∈B .y =log 2|x |,x ∈R 且x ≠0C .y =e x -e -x2,x ∈R D .y =x 3+1,x ∈R 【反馈演练】1.已知函数1()21x f x =+,则该函数在R 上单调递___,(填“增”“减”)值域为_________. 2.已知函数2()45f x x mx =-+在(,2)-∞-上是减函数,在(2,)-+∞上是增函数,则(1)f =_____.3. 函数2()1f x x x =-+的单调递减区间为 【真题再现】1.( 2011新课标全国)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是A .y =x 3B . y =|x |+1C .y =-x 2+1D .y =2-|x |2.(2009·)已知偶函数f (x )在区间[0,+∞)单调增加,则满足f (2x -1)<f (13)的x 的取值围是( )3.(2012)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.4.(2013·高考文科)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( ) A .奇函数 B .偶函数 C .增函数D . 周期函数第4课 函数的奇偶性与周期性【考点导读】1.了解函数奇偶性与周期性的含义,能利用定义判断一些简单函数的奇偶性与周期性;2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数. 【基础练习】1.给出4个函数:①5()5f x x x =+;②421()x f x x-=;③()25f x x =-+;④()x x f x e e -=-. 其中奇函数的有_____;偶函数的有______;既不是奇函数也不是偶函数的有_______. 2. 设函数()()()xa x x x f ++=1为奇函数,则实数=a .3.下列函数中,在其定义域既是奇函数又是减函数的是( )A.R x x y ∈-=,3B.R x x y ∈=,sinC.R x x y ∈=,D.R x x y ∈=,)21(【例解析】1定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( ) 2. 已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )3. 已知定义在R 上的函数()f x 是奇函数,且当0x >时,2()22f x x x =-+,求函数()f x 的解析式,并指出它的单调区间. 【反馈演练】1.已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则( ) A .()()76f f > B .()()96f f > C .()()97f f > D .()()107f f >2. 在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ( ) A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数 3. 设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为____. 4.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值围是【真题再现】1.(2013)已知函数f (x )为奇函数,且当x >0时, f (x ) =x 2+1x ,则f (-1)=( ) 2.(2011)已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=________. 3.(2010)设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 4.()[)()21,3=f x x f x ∈是以为周期的函数,且当时,2-x ,则=-)1(f5.已知函数))((R x x f y ∈=满足)1()1(-=+x f x f ,且当[]1,1-∈x 时,2)(x x f =则)(x f y =与xy 5log = 的图象的交点个数为.第5课 二次函数,幂函数,指对函数【考点导读】1.理解二次函数的概念,掌握二次函数,幂函数,指对函数图像和性质;2.能结合二次函数的图像判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系. 【基础练习】1. 二次函数2223y x mx m =-+-+的图像的对称轴为20x +=,则m =____,递增区间为____,递减区间为____ 2. 实系数方程20(0)ax bx c a ++=≠有两正根的充要条件为___;有两负根的充要条件为3. 已知函数2()23f x x x =-+在区间[0,]m 上有最大值3,最小值2,则m 的取值围是__________. 【例解析】1. 已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0 2. 设3log 2a =,5log 2b =,2log 3c =,则( )A.a c b >>B.b c a >>C.c b a >>D.c a b >> 3.函数f (x )=㏑x 的图像与函数g (x )=x2-4x+4的图像的交点个数为( )4.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数有_____5.已知a =5-12,函数f (x )=a x,若实数m 、n 满足f (m )>f (n ),则m 、n 的大小关系为________.6.已知函数21()1x f x a -=-(0,1)a a >≠过定点,则此定点坐标为________7.函数]1,0[)1(log )(在++=x a x f a x上的最大值和最小值之和为a ,则a 的值为.8.函数)10()(≠>=a a a x f x且对于任意的实数y x ,都有( ) A .)()()(y f x f xy f =B .)()()(y f x f xy f +=C .)()()(y f x f y x f =+D .)()()(y f x f y x f +=+9.将y =2x 的图像 ( ) 再作关于直线y =x 对称的图像,可得到函数2log (1)y x =+的图像.A .先向左平行移动1个单位B .先向右平行移动1个单位C .先向上平行移动1个单位D . 先向下平行移动1个单位10.函数bx a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( ) A .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a11.函数xa y =在[]1,0上的最大值与最小值的和为3,则a 的值为____. 【反馈演练】1.函数[)()+∞∈++=,02x c bx x y 是单调函数的充要条件是2.已知二次函数的图像顶点为(1,16)A ,且图像在x 轴上截得的线段长为8,则此二次函数的解析式为 3. 设0>b ,二次函数122-++=a bx ax y 的图象为下列四图之一:则a 的值为 ( )A .1B .-1C .251-- D .251+- 1O-1 1xy 第10题1(2010)函数y =2x -x 2的图象大致是( )2.(2013)设a ,b ,c 均为不等于1的正实数, 则下列等式中恒成立的是( )A .log a b ·log c b =log c aB .log a b ·log c a =log c bC .log a (bc )=log a b ·log a cD .log a (b +c )=log a b +log a c 3.(2010)设2a =5b =m ,且1a +1b=2,则m =( )4(2012)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.5.(2011新课标全国)已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )6(2009·)若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=( )第6课 函数与方程【考点导读】1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.2.能借助计算器用二分法求方程的近似解,并理解二分法的实质. 【基础练习】1.函数2()44f x x x =++在区间[4,1]--有_______个零点. 2.已知函数()f x 的图像是连续的,且x 与()f x 有如下的对应值表:x1 2 3 4 5 6 ()f x-2.33.4-1.3-3.43.4则()f x 在区间[1,6]上的零点至少有_____个. 【例解析】1.函数f(x)=2x|log0.5x|-1的零点个数为 ( )2.若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)两个零点分别位于区间 ( ) A.(a,b)和(b,c)B.(-∞,a)和(a,b)C.(b,c)和(c,+∞)D.(-∞,a)和(c,+∞)3.设函数2,0,()2,0.x bx c x f x x ⎧++≤=⎨>⎩若(4)(0)f f -=,(2)2f -=-,则关于x 的方程()f x x =解的个数为( )1.(2011)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)2(2011天津)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图像与x 轴恰有两个公共点,则实数c 的取值围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1] 3.(2011)方程|x |=cos x 在(-∞,+∞)( )A .没有根B .有且仅有一个根C .有且仅有两个根D .有无穷多个根4. (2010)函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0-2+ln x ,x >0,的零点个数为( )5(2014天津)函数f (x )=e x +x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)。