在职研究生数值分析复习资料与答案
数值分析期末复习题答案

数值分析期末复习题答案一、选择题1. 以下哪个算法是用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 共轭梯度法D. 辛普森积分法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的主要区别是什么?A. 插值点的选取不同B. 插值多项式的构造方式不同C. 计算复杂度不同D. 适用的函数类型不同答案:B3. 在数值积分中,梯形法则和辛普森法则的主要区别是什么?A. 精度不同B. 适用的积分区间不同C. 计算方法不同D. 稳定性不同答案:A二、简答题1. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性指的是数值方法在计算过程中对于舍入误差的敏感程度。
例如,在求解线性方程组时,如果系数矩阵的条件数很大,则该方程组的数值解对舍入误差非常敏感,即数值稳定性差。
2. 说明数值微分与数值积分的区别。
答案:数值微分是估计函数在某一点的导数,而数值积分是估计函数在某个区间上的积分。
数值微分通常用于求解函数的局部变化率,而数值积分用于求解函数在一定区间内的累积效果。
三、计算题1. 给定一组数据点:(1, 2), (2, 3), (3, 5), (4, 6),请使用拉格朗日插值法构造一个三次插值多项式。
答案:首先写出拉格朗日插值基函数,然后根据数据点构造插值多项式。
具体计算过程略。
2. 给定函数 f(x) = x^2,使用牛顿-科特斯公式中的辛普森积分法在区间 [0, 1] 上估计积分值。
答案:首先确定区间划分,然后应用辛普森积分公式进行计算。
具体计算过程略。
四、论述题1. 论述数值分析中误差的来源及其控制方法。
答案:误差主要来源于舍入误差和截断误差。
舍入误差是由于计算机在进行浮点数运算时的精度限制造成的,而截断误差是由于数值方法的近似性质导致的。
控制误差的方法包括使用高精度的数据类型、选择合适的数值方法、增加计算步骤等。
五、综合应用题1. 给定一个线性方程组 Ax = b,其中 A 是一个 3x3 的矩阵,b 是一个列向量。
数值分析复习题参考答案

x1 )
h
2
x 0 x x1 6
4
所以, R x
h 10
2
8
解得, h 0 . 000383
4. 习题(第二章) 7
5. 习题(第二章) 9
6. 习题(第二章) 11
7. 习题(第二章) 13
8. 习题(第二章) 14
9. 习题(第二章) 20
10. 习题(第四章) 1
2
, k 0 ,1, 2 2 3 2a 3x
3
此时, ( x )
2x a 3x
, '( x) 2a
所以, ' ( 3 a )
2 3
3(
3
a)
3
0 1, 所以该迭代公式收敛。
21. 习题(第七章) 13
本题没有给出精度要求, 但x3与x2之间的差为 已经很小了,足以满足 精度。
[ f ( x n , y n ) f ( x n 1 , y n 1 )]
( 3 ) 基于 Taylor 展开法:
y ( x n 1 ) y ( x n h ) y ( x n ) y ' ( x n ) h
h
2
2
y ''( xn )
取 y ( x n 1 ) y ( x n ) y ' ( x n ) h ,即 y n 1 y n hf ( x n , y n )
k 个点的值
求解隐式:先用欧拉公 求解多步法:单步法开
式求得一个初步的近似 表头,然后预报
修正 校正 修正。
( 其实只要给出公式会用
就行!! )
数值分析期末复习-福大研究生版

数值分析期末复习题型:一、填空 二、判断 三、解答(计算) 四、证明第一章 误差与有效数字一、 有效数字1、 定义:若近似值x*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说x*有n 位有效数字。
2、 两点理解:(1) 四舍五入的一定是有效数字(2) 绝对误差不会超过末位数字的半个单位eg. 3、 定理1(P6):若x*具有n 位有效数字,则其相对误差限为4、 考点:(1)计算有效数字位数:一个根据定义理解,一个根据定理1(P7例题3)二、 避免误差危害原则 1、 原则:(1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:x1*x2= c / a )(2) 避免相近数相减(方法:有理化)eg. 或(3) 减少运算次数(方法:秦九韶算法)eg.P20习题14三、 数值运算的误差估计 1、 公式:(1) 一元函数:|ε*( f (x *))| ≈ | f ’(x *)|·|ε*(x )|或其变形公式求相对误差(两边同时除以f (x *)) eg.P19习题1、2、5(2) 多元函数(P8)eg. P8例4,P19习题4第二章 插值法一、 插值条件1、 定义:在区间[a,b]上,给定n+1个点,a ≤x 0<x 1<…<x n ≤b 的函数值yi=f(xi),求次数不超过n 的多项式P(x),使 2、 定理:满足插值条件、n+1个点、点互异、多项式次数≤n 的P(x)存在且唯一二、 拉格朗日插值及其余项1、 n 次插值基函数表达式(P26(2.8))2、 插值多项式表达式(P26(2.9))3、 插值余项(P26(2.12)):用于误差估计*(1)11102n r a ε--≤⨯;x εx εx εx ++=-+();1ln ln ln ⎪⎪⎭⎫ ⎝⎛+=-+x εx εx x cos 1-2sin 22x =n i y x P ii n ,,2,1,0)(Λ==4、 插值基函数性质(P27(2.17及2.18))eg.P28例1三、 差商(均差)及牛顿插值多项式 1、 差商性质(P30):(1) 可表示为函数值的线性组合(2) 差商的对称性:差商与节点的排列次序无关 (3) 均差与导数的关系(P31(3.5)) 2、 均差表计算及牛顿插值多项式四、埃尔米特插值(不用背公式) 两种解法:(1) 用定义做:设P 3(x)=ax 3+bx 2+cx+d ,将已知条件代入求解(4个条件:节点函数值、导数值相等各2个)(2) 牛顿法(借助差商):重节点eg.P49习题14 五、三次样条插值定义(1) 分段函数,每段都是三次多项式(2) 在拼接点上连续(一阶、二阶导数均连续) (3)考点:利用节点函数值、导数值相等进行解题第三章 函数逼近与曲线拟合一、 曲线拟合的最小二乘法解题思路:确定ϕi ,解法方程组,列方程组求系数(注意ϕi 应与系数一一对应)eg.P95习题17nj y x S j j ,,1,0,)(Λ==形如y=ae bx 解题步骤: (1) 线性化(2)重新制表(3)列法方程组求解(4)回代第四章 数值积分与数值微分一、 代数精度 1、 概念:如果某个求积公式对于次数不超过m 的多项式准确成立,但对于m+1次多项式不准确成立,则称该求积公式具有m 次代数精度 2、 计算方法:将f(x)=1,x,x 2, …x n 代入式子求解 eg.P100例1二、 插值型的求积公式求积系数定理:求积公式至少具有n 次代数精度的充要条件是:它是插值型的。
研究生数值分析练习题答案

------------------------------------------------ 装 ---------------------------------订 ---------------------------------线 ------------------------------------------------装 订 线 左 侧 不 要 书 写 内 容允许使用计算器一、 填空题 (本大题共10小题,每小题 2分,共 20分)1. 若2.71828x e == ,取近似值* 2.7180x =,则*x 具有 4 位有效数字。
2.为了提高数值计算精度,应将8格式进行计算。
3.已知n=3时牛顿—柯特斯系数(3)(3)(3)012133,,888C C C ===,那么(3)3C =18 。
4.设3()1f x x x =+-,则函数的四阶差商[0,1,2,3,4]f = 0 。
5. 用牛顿迭代法解方程0x x e --=在0.5x =附近的近似实根的牛顿迭代格式为)1,0(e 1e )()(1=+--='-=--+n x x x f x f x x nnx x n n n n n n6. 对给定的剖分01:n a x x x b ∆=<<<= ,当()s x 满足条件 ()s x 在[a,b]有2阶连续导数且在每个子区间上是个3次多项式 时是三次样条函数。
7.用最小二乘法拟合三点()()()0,1,1,3,2,2A B C 的直线是1322y x =+。
8.向量序列()211cos ,sin ,3Tk k x e k k k k -⎛⎫=+ ⎪⎝⎭ 的极限向量为()0,1,3T9.求积公式 10311()()(1)434f x dx f f ≈+⎰的代数精度为 2 。
10.若绝对误差限为31102-⨯,那么近似数0.03600有 2 位有效数字二、单项选择题(本大题共5小题,每小题 2 分,共 10分)1. 已知实验数据555521111(,)(1,2,3,4,5),15,31,55,105.5,k k k k kk k k k k k x y k x y x x y =========∑∑∑∑其中则用最小二乘法求近似公式01y a a x =+的法方程为( C )A 0101153155105.5a a a a +=⎧⎨+=⎩B 0101515551531105.5a a a a +=⎧⎨+=⎩C 0101515311555105.5a a a a +=⎧⎨+=⎩ D0101531153155105.5a a a a +=⎧⎨+=⎩ 2. 以下矩阵是严格对角占优矩阵的是( B )A 3210141011410012⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭ B 2100131013610113-⎛⎫⎪--⎪ ⎪-- ⎪-⎝⎭C 5210113121410012-⎛⎫⎪--⎪ ⎪⎪⎝⎭D 4211141021411315⎛⎫⎪ ⎪⎪- ⎪⎝⎭3.已知两种递推公式11(1)35(1,2,,20)31(2)(20,,1)55n n n n I nI n I I n n n--=-==-= 则在数值计算过程中( C )。
研究生数值分析答案_2

● 当22()3x x ϕ+=时,'12()3x x ϕ=,因此'1(2) 1.3333ϕ=>1,,因此,该迭代格式不收敛。
● 当2()x ϕ='2()x ϕ=,因此'2(2)0.75ϕ=<1,,因此,该迭代格式收敛。
● 当32()3x x ϕ=-时,'322()x xϕ=,因此'3(2)0.5ϕ=<1,,因此,该迭代格式收敛。
● 当242()23x x x ϕ-=- 时,2'44224()1213x x x x x ϕ--=-+,因此'4(2)0ϕ=<1,,因此,该迭代格式收敛。
(2)、● 当22()3x x ϕ+=时,迭代法计算公式是20122.5,3k k x x x ++==,程序如下: >> fi=inline('(x.*x+2)/3');x0=2.5;er=1;k=0;while er>0.00001x=fi(x0);er=abs(x-x0);x0=xk=k+1end运行结果如下:x0 =2.7500k =1x0 =3.1875k =2x0 =4.0534k =3x0 =6.1433k =x0 =13.2468k =5x0 =59.1589k =6x0 =1.1673e+003 k =7x0 =4.5416e+005 k =8x0 =6.8755e+010 k =9x0 =1.5757e+021 k =10x0 =8.2765e+041 k =11x0 =2.2834e+083 k =12x0 =1.7379e+166 k =13x0 =Infk =14x0 =Infk =15由以上计算结果看,序列是发散的,运行14次已经超出计算机的识别范围,当2()x ϕ迭代法计算公式是1k x +=程序运行结果如下:>> fi=inline('sqrt(3*x-2)');x0=2.5;er=1;k=0;while er>0.00001x=fi(x0);er=abs(x-x0);x0=xk=k+1;endx0 =2.3452x0 =2.2440x0 =2.1753x0 =2.1274x0 =2.0934x0 =2.0689x0 =2.0510x0 =2.0379x0 =2.0282x0 =2.0211x0 =2.0157x0 =2.0118x0 =2.0088x0 =2.0066x0 =2.0049x0 =2.0037x0 =2.0028x0 =2.0021x0 =2.0016x0 =2.0012x0 =2.0009x0 =2.0007x0 =2.0005x0 =2.0004x0 =2.0003x0 =2.0002x0 =2.0002x0 =2.0001x0 =2.0001x0 =2.0001x0 =2.0000x0 =2.0000x0 =2.0000>>由以上计算结果看,序列收敛与2,所以x=2是f(x)= 232x x -+=0的根。
研究生数值分析练习题答案

允许使用计算器一、 填空题 (本大题共10小题,每小题 2分,共 20分) 1. 若 2.71828x e ==,取近似值* 2.7180x =,则*x 具有 4 位有效数字。
2.为了提高数值计算精度,应将8格式进行计算。
3.已知n=3时牛顿—柯特斯系数(3)(3)(3)012133,,888C C C ===,那么(3)3C =18 。
4.设3()1f x x x =+-,则函数的四阶差商[0,1,2,3,4]f = 0 。
5. 用牛顿迭代法解方程0xx e在0.5x 附近的近似实根的牛顿迭代格式为)1,0(e 1e )()(1=+--='-=--+n x x x f x f x x nnx x n n n n n n6. 对给定的剖分01:n a x x x b ∆=<<<=,当()s x 满足条件 ()s x 在[a,b]有2阶连续导数且在每个子区间上是个3次多项式 时是三次样条函数。
7.用最小二乘法拟合三点()()()0,1,1,3,2,2A B C 的直线是1322y x =+。
8.向量序列()211cos ,sin ,3Tk k xe k k k k -⎛⎫=+ ⎪⎝⎭的极限向量为()0,1,3T9.求积公式 10311()()(1)434f x dx f f ≈+⎰的代数精度为 2 。
10.若绝对误差限为31102-⨯,那么近似数有 2 位有效数字二、单项选择题(本大题共5小题,每小题 2 分,共 10分)1. 已知实验数据555521111(,)(1,2,3,4,5),15,31,55,105.5,k k k k kk k k k k k x y k x y x x y =========∑∑∑∑其中则用最小二乘法求近似公式01y a a x =+的法方程为( C )A 0101153155105.5a a a a +=⎧⎨+=⎩B 0101515551531105.5a a a a +=⎧⎨+=⎩C 0101515311555105.5a a a a +=⎧⎨+=⎩D 0101531153155105.5a a a a +=⎧⎨+=⎩2. 以下矩阵是严格对角占优矩阵的是( B )A 3210141011410012⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭ B 2100131013610113-⎛⎫⎪--⎪ ⎪-- ⎪-⎝⎭C 5210113121410012-⎛⎫ ⎪--⎪ ⎪ ⎪⎝⎭ D 4211141021411315⎛⎫⎪ ⎪⎪- ⎪⎝⎭3.已知两种递推公式11(1)35(1,2,,20)31(2)(20,,1)55n n n n I nI n I I n n n--=-==-=则在数值计算过程中( C )。
数值分析参考答案(第二章)doc资料

证明:
(1)
得证。
+
得证。
14. 求 及 。
解:
若
则
15.证明两点三次埃尔米特插值余项是
解:
若 ,且插值多项式满足条件
插值余项为
由插值条件可知
且
可写成
其中 是关于 的待定函数,
现把 看成 上的一个固定点,作函数
根据余项性质,有
由罗尔定理可知,存在 和 ,使
即 在 上有四个互异零点。
根据罗尔定理, 在 的两个零点间至少有一个零点,
数值分析参考答案(第二章)
第二章插值法
1.当 时, ,求 的二次插值多项式。
解:
则二次拉格朗日插值多项式为
2.给出 的数值表
X
0.4
0.5
0.6
0.7
0.8
lnx
-0.916291
-0.693147
-0.510826
-0.356675
-0.223144
用线性插值及二次插值计算 的近似值。
解:由表格知,
若采用线性插值法计算 即 ,
则
若采用二次插值法计算 时,
3.给全 的函数表,步长 若函数表具有5位有效数字,研究用线性插值求 近似值时的总误差界。
解:求解 近似值时,误差可以分为两个部分,一方面,x是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。
解:函数 的 展式为
其中
又 是次数为 的多项式
为 阶多项式
为 阶多项式
依此过程递推,得 是 次多项式
硕士课程—数值分析题集(附答案).docx

2009-2010数值分析第一章绪论 (1)第二章函数插值 (2)第三章函数逼近 (5)第四章数值积分与数值微分 (10)第五章解线性方程组的直接解法 (12)第六章解线性方程组的迭代解法 (16)第七章非线性方程求根 (19)第九章常微分方程初值问题的数值解法 (21)第一章绪论1.1要使胸的相对误差不超过0.1%,应取几位有效数字?解:面的首位数字%=4。
设/有n位有效数字,由定理知相对误差限k(.r*)|<—xlO1^ =-xl0^1 r 1 2x4 84-xio1-" <0.1%, 8解得〃Z3.097,即需取四位有效数字.1.2 序列{/}满足关系式y,,=10y,_]-l(n = l,2,...),若y0=V2«1.41,计算到M。
,误差有多大?这个算法稳定吗?解:y0 = V2,y* =1.41,|y0 -y*| <^-xl0-2=5 ,于是|/i 一川=|1。
》0 —IT。
〉;+1| = 1。
|光 - 司 < 1。
5卜2-》;| = |10》1一1一10》;+1| = 10卜1一酣〈10逆, 一般地|儿一司<103 因此计算到Mo其误差限为1010^,可见这个计算过程是不稳定的。
1. 3计算球的体积,要使相对误差限为1%,问测量半径R时允许的相对误差限是多少?解:5,、九兀K ~-7tK R_R* R2+R*R + R*2R_R* 37?2R_R*。
,“ ,(v)= _2 ---------- 2 «■«.____________ = _____ 3 = 1% ' 4 f RR- R R 2 R-7lR 3》=一' ,即测量半径R 时允许的相对误差限是一、。
R 300300第二章函数插值2.1、利用如下函数值表构造差商表,并写出牛顿插值多项式。
进而得牛顿多项式为 地⑴=f (.%) + /■氏次』吼⑴+ /[.r (p x 1,.r 2]<»2(.r) + /[.r (p x 1,.r 2,.r 3]<»3(.r)1 1 33A^3 (x) = 3 + — (x -1) + — (x -1)(尤)-2(x- l)(x )x2. 2、已知f(-2) = 2, f(-1) = 1, f (0) = 2, f (0.5) = 3试选用合适的插值节点利用Lagrange 二次插值多项式计算f (-o.5)的近似值,使之精度 尽可能高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在职研究生数值分析复习资料考试时间:120分钟一、单项选择题(每小题4分,共20分)1. 用3.1415作为π的近似值时具有( B )位有效数字。
(A) 3 (B) 4 (C) 5 (D) 62. 下列条件中,不是分段线性插值函数 P(x)必须满足的条件为( A )。
(A) P(x) 在各节点处可导 (B) P(x) 在 [a ,b] 上连续 (C) P(x) 在各子区间上是线性函数 (D) P(x k )=y k ,(k=0,1, … ,n)3. n 阶差商递推定义为:01102110],,[],,[],,[x x x x x f x x x f x x x f n n n n --=-ΛΛΛ,设差商表如下:那么差商f [1,3,4]=( A )。
A. (15-0)/(4-1)=5B. (13-1)/(4-3)=12C. 4D. -5/4 4. 分别改写方程042=-+x x 为42+-=x x 和2ln /)4ln(x x -=的形式,对两者相应迭代公式求所给方程在[1,2]的实根,下列描述正确的是:( B )(A) 前者收敛,后者发散 (B) 前者发散,后者收敛 (C) 两者均收敛发散 (D) 两者均发散5. 区间[a ,b]上的三次样条插值函数是( A )。
A. 在[a ,b]上2阶可导,节点的函数值已知,子区间上为3次的多项式B. 在区间[a ,b]上连续的函数C. 在区间[a ,b]上每点可微的函数D. 在每个子区间上可微的多项式二、填空题(每空2分,共20分)1. 当x =1,-1,2时,对应的函数值分别为f (-1)=0,f (0)=2,f (4)=10,则f (x )的拉格朗日插值多项式是226104()25555P x x x =-++(题目有问题,或许应该是:x = -1,0,4时…) 2. 求解非线性方程01=-x xe 的牛顿迭代公式是1,(0,1,2...)1kx k k k k x e x x k x -+-=-=+3. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列{}()k X 收敛的充分必要条件是k k X X →∞=()*lim 。
4 .设 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=32,1223X A , ‖A ‖∞=___5____,‖A ‖1=___5___,‖X ‖∞=__ 3 _____。
5. 已知a =3.201,b =0.57是经过四舍五入后得到的近似值,则a ⨯b 有 2 位有效数字,a +b 有 1 位有效数字。
6. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 。
7. 求积公式)43(32)21(31)41(32)(10f f f dx x f +-≈⎰具有___3__ 次代数精度。
三、利用100,121,144的平方根,试用二次拉格朗日插值多项式求115的近似值。
要求保留4位有效数字,并写出其拉格朗日插值多项式。
四、已知:已知有数据表如下,用n=8的复合梯形公式()]()(2)([211b f x f a f hT n k k n ++=∑-=),计算积分⎰=10dx e I x ,并估计误差(),(),("12)(2b a f h a b f R n ∈--=ηη)。
五、已知方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛121212212321x x x a a a(1)写出解此方程组的雅可比法迭代公式; (2)证明当4>a 时,雅可比迭代法收敛;(3)取5=a ,T X )101,51,101()0(=,求出)2(X 。
六、用改进的欧拉公式求解以下初值问题(取步长为0.1,只要求给出x=0.1至0.5处的y 值,保留小数点后四位)。
⎪⎩⎪⎨⎧=<<-=1)0()10(2'y x y x y y ΛΛΛ 七. 用列主元高斯消元法解线性方程组。
(计算时小数点后保留5位)。
⎪⎩⎪⎨⎧=++-=+--=+-112123454321321321x x x x x x x x x 八、用高斯赛德尔方法求下列方程组的解,计算结果保留4位小数。
⎪⎩⎪⎨⎧=+--=-+-=--1052151023210321321321x x x x x x x x x 九、设(0)1,(0.5)5,(1)6,(1.5)3,(2)2f f f f f =====,()k f M ≤(2,3,4)k =, (1)计算⎰20)(dx x f ,(2)估计截断误差的大小 十、设有线性方程组b Ax =,其中 ⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=582,3015515103531b A(1)求A LU =分解; (2) 求方程组的解 (3) 判断矩阵A 的正定性 十一、用牛顿迭代法求方程0xx e--=的根。
(迭代三步即可)十二、已知单调连续函数y=f(x)的如下数据,若用插值法计算,x约为多少时f(x)=0.5,要求计算结果保留小数点后4位。
参考答案三、解 利用抛物插值,这里x0=100,y0=10,x1=121,y1=11,x2=144,y2=12,令x=115代入抛物插值多项式求得115近似值为10.7228 四、解720519.1)]1()(2)0([161718=++=∑=f x f f T k k71828.1)]1())75.0()5.0()25.0((2))875.0()625.0()375.0()125.0((4)0([2414=+++⨯++++⨯+=f f f f f f f f f S 750035942968.0)81(121|)("12||)(|1228=≤--=e f h a b f R η 54)4(44107272.4)41(28801|)(2880||)(|-⨯=≤--=e f h a b f R η五、解 (1)对3,2,1=i ,从第i 个方程解出i x ,得雅可比法迭代公式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--=--=+++Λ,1,0,)21(1)222(1)21(1)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1m x x a x x x a x x x a x m m m m m m m m m (2)当4>a 时,A 为严格对角占优矩阵,所以雅可比迭代法收敛。
(3)取5=a ,T X )101,51,101()0(=由迭代公式计算得 101)1(1=x , 258)1(2=x , 101)1(3=x 25013)2(1=x , 258)2(2=x , 25013)2(3=x 则 )(2X =(25013, 258,25013)T六、解 改进的欧拉公式为),(1n n n n y x hf y y +=+)],(),([2111+++++=n n n n n n y x f y x f hy y七、解(1,5,2)最大元5在第二行,交换第一与第二行:⎪⎩⎪⎨⎧=++-=+--=+-1124 12345321321321x x x x x x x x x L 21=1/5=0.2,l 31=2/5=0.4 方程化为:⎪⎩⎪⎨⎧=--=+--=+-8.152.06.26.1 0.4 2.0123453232321x x x x x x x (-0.2,2.6)最大元在第三行,交换第二与第三行:⎪⎩⎪⎨⎧-=+-=--=+-6.1 0.4 2.08.152.06.2123453232321x x x x x x xL32=-0.2/2.6=-0.076923,方程化为:⎪⎩⎪⎨⎧-==--=+-38466.00.38462 8.152.06.212345332321x x x x x x回代得:⎪⎩⎪⎨⎧-===00010.1 99999.500005.3321x x x 八. 解答:⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=++++++)210(51)215(101)23(101111112121331321k k k k k k k k k x x x x x x x x x⎪⎪⎩⎪⎪⎨⎧++=++=++=++++++)4.02.02)1.02.05.1)1.02.03.0111112121331321k k k k k k k k k x x x x x x x x x 取x0=(0,0,0)x1=(0.3,1.56,2.684)x2=(0.8804,1.9445,2.9539) x3=(0.9843,1.9923,2.9938) x4=(0.9978,1.9989,2.9991) x5=(0.9997,1.9999,2.9999) x6=(1.0000,2.0000,3.0000) x7=(1.0000,2.0000,3.0000)九、根据给定数据点的个数应该用复化simpson 公式计算由公式得⎰20)(dx x f ≈))2()1(2))5.1()5.0((4)0((3f f f f f h++++ =476 , 21=h )(2880),()4(414ηf h a b s f R --=h h MM 2,14402880021==-≤十、因为 13521352[,]31015831025153055055A b ⎛⎫⎡⎤ ⎪⎢⎥=⇒ ⎪⎢⎥⎪⎢⎥⎣⎦⎝⎭(1)A =LU=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛500010531105013001 (2) 方程组的解为;⎪⎩⎪⎨⎧-===121321x x x (3) 由于A=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛500010531105013001=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛100010531511105013001 所以矩阵A 是对称正定的十二、)1)(4(281)3)(1)(4(61)3)(1(84133)13)(43()0)(1)(4(2)30)(10)(40()3)(1)(4(0)31)(1)(41()3)(0)(4()1()34)(4)(14()3)(0)(1()(+++-++--+-=⨯++-+++⨯-++-+++⨯---+---++-⨯---+---+=y y y y y y y y y y y y y y y y y y y y y y l l(0.5)=2.91667。