meta分析概念与stata实现
Stata在Meta分析中应用

Begg's funnel plot with pseudo 95% confidence limits .5
logor
0
-.5
0
.1
.2
.3
s.e. of: logor
例2 Gotzsche收集了有关短程小剂量强的松 VS安慰剂或非甾体抗炎药治疗类风湿性关 节炎的7个临床随机对照试验(RCTs),观察 类风湿性关节炎患者的关节压痛指数 (rechie’s index)。
Experimental treatment Control treatment First author Publication year
No Mean SD No Mean SD
Jasni
1968
9 16.2
Jadad量表由 Alejandro Jadad-Bechara 制定,作为哥 伦比亚的一名医生,他还是牛津大学内纳菲尔德麻醉剂部 研究减轻疼痛的研究员。Jadad和他的组员在1996年的 《临床对照试验杂志》上发表了一篇有关盲法效应的文章 。在该文章的附录中,通过评价,给不同临床试验评分, 从最差的0分到最高的5分。Jadad认为随机对照试验是现 代医学研究的一大进步,在一本2007年写的一本书中, 他说“这是一种最简单,但又最有效、最具有革命性的研 究形式”。
Meta-analysis fixed-effects estimates (exponential form) Study ommited
MRC-1
CDP
MRC-2
GASP
PARIS
AMIS
ISIS-2
0.80
0.84
0.90
0.96
1.02
Publication bias命令: metabias logor selogor, graph(begg)
meta分析简介【精选】

Meta分析在医学研究中,绝大多数的医学现象都呈一定的随机性,因此医学研究的结果都受随机抽样误差影响而有所差异。
所以对于同一研究问题的多个研究结果往往不全相同,有些研究的结论甚至相反。
因此如何从结果不一的同类研究中综合出一个较为可靠的结论是医学研究中常常需要面临的问题。
Meta分析就是研究如何综合同类研究结果的一种统计分析方法。
Meta分析就是把相同研究问题的多个研究结果视为一个多中心研究的结果,运用多中心研究的统计方法进行综合分析。
Meta统计分析可以分为确定性模型分析方法和随机模型分析方法。
较常用的确定性模型Meta分析有Mantel-Haeszel统计方法(仅适用于效应指标为OR)和General-Variance-Based统计方法。
然而所有的确定性模型统计方法都要求Meta分析中的各个研究的总体效应指标(如:两组均数的差值等)是相等的,并称为齐性的(Homogeneity),而随机模型对效应指标没有齐性要求。
因此Meta分析可以采用下列分析策略:1)如果各个研究的效应指标是齐性的,则选用确定性模型统计方法:●效应指标为OR,则采用Mantel-Haeszel统计方法●效应指标为两个均数的差值、两个率的差值、回归系数、对数RR等近似服从正态分布的效应指标,则采用General-Variacne-Based方法进行Meta统计分析。
2)如果各个研究的效应指标不满足齐性条件或者研究背景无法用确定性模型进行解释的,则采用随机模型进行Meta 统计分析。
为了使读者较容易地掌握Meta 分析方法,以下将结合STATA软件的Meta 分析操作命令,通过实例介绍Meta 分析步骤和软件操作以及相应的统计分析结果解释,然后对Meta 分析中所涉及的统计公式进行分类汇总小结。
确定性模型的Meta 分析方法例1:为了研究Aspirin 预防心肌梗塞(MI)后死亡的发生,美国在1976年-1988年间进行了7个关于Aspirin 预防MI 后死亡的研究,其结果见表1,其中6次研究的结果表明Aspirin 组与安慰剂组的MI 后死亡率的差别无统计意义,只有一个研究的结果表明Aspirin 在预防MI 后死亡有效并且差别有统计意义。
用stata实现诊断性试验的meta分析

STATA已经有独立的模块(metandi)来做诊断性试验的meta分析,所用方法是拟合了一个两水平的混合logistic回归模型。
虽然该模块还没有与metan模块类似的对话框,但是应该来说已经是一个比较大的进步。
最终的呈现结果不仅能给出基于多水平模型估计得到的南京58信息网ROC曲线下面积(hierarchical summary receiver operating characteristic,hsroc),同时能得到“拐点”信息(summary point),以下摘选该模块的帮助内容来简要介绍该模块。
Titlemetandi -- Meta-analysis of diagnostic accuracySyntaxmetandi tp fp fn tn [if] [in] [, plot gllamm force ip(g|m) nip(#) nobivariate nohsroc nosummarypt detail level(#) trace nolog]by is allowed with metandi; see [D] by.See metandi postestimation for features available after estimation, in particular, the predict command. metandiplot graphs the results from metandi.Descriptionmetandi performs meta-analysis of diagnostic test accuracy studies in which both the index test under study and the reference test (gold standard) are dichotomous. It takes as input four variables: tp, fp, fn, and tn, giving the number of true positives, false positives, false negatives, and true negatives within each study. It fits a two-level mixed logistic regression model, with independent binomial distributions for the true positives and true negatives conditional on the sensitivity and specificity in each study, and a bivariate normal model for the logit transforms of sensitivity and specificity between studies.In Stata 10, metandi fits the model by using the official Stata command xtmelogit by default. In Stata 8 or 9, metandi uses the user-written command gllamm, which must be installed.To ensure you have the most recent version of gllamm, type ssc install gllamm, replace.metandi does not allow covariates to be fit; i.e., meta-regression of diagnostic accuracy is not supported.。
《2024年Stata在Meta分析中的应用》范文

《Stata在Meta分析中的应用》篇一一、引言Meta分析是一种综合多个独立研究结果的方法,旨在通过合并不同研究的数据来得出更全面、更准确的结论。
随着统计软件的发展,Stata作为一种强大的统计分析工具,在Meta分析中得到了广泛应用。
本文将介绍Stata在Meta分析中的应用,并探讨其优势和局限性。
二、Stata在Meta分析中的应用1. 数据准备与处理在Meta分析中,首先需要收集各个独立研究的数据,包括研究设计、样本大小、实验组和对照组的效应指标等。
Stata提供了强大的数据处理功能,可以方便地导入和处理这些数据。
同时,Stata还支持多种数据格式的转换和整合,使得数据准备和处理的流程更加高效。
2. 模型选择与构建Meta分析中常用的模型包括固定效应模型和随机效应模型。
Stata提供了多种Meta分析模型的选择和构建功能,用户可以根据研究特点和数据特征选择合适的模型。
此外,Stata还支持模型的扩展和调整,如考虑异质性、发表偏倚等。
3. 效应指标计算与合并效应指标是Meta分析的核心内容之一,常用的效应指标包括相对危险度、比值比、加权平均数等。
Stata提供了多种效应指标的计算和合并方法,包括固定效应法、随机效应法等。
用户可以根据需要选择合适的效应指标和合并方法,得出更准确的综合结果。
4. 结果解释与可视化Stata具有强大的结果解释和可视化功能,可以将Meta分析的结果以图表的形式展示出来,使得结果更加直观易懂。
同时,Stata还支持多种结果解释的方法,如森林图、漏斗图等,帮助用户更好地理解Meta分析的结果。
三、Stata在Meta分析中的优势1. 强大的统计分析功能:Stata具有丰富的统计分析功能,可以满足Meta分析的各种需求。
2. 操作简便:Stata的界面友好,操作简便,用户可以快速上手。
3. 数据处理能力强:Stata支持多种数据格式的转换和整合,使得数据准备和处理的流程更加高效。
《2024年Stata在Meta分析中的应用》范文

《Stata在Meta分析中的应用》篇一摘要:本文将介绍Stata软件在Meta分析中的应用。
首先概述Meta 分析的概念、背景及其重要性。
然后介绍Stata软件的基本功能和其在Meta分析中的应用优势。
通过一个实际案例,详细阐述Stata在Meta分析中的具体操作步骤和结果解读。
最后,总结Stata在Meta分析中的价值和未来发展趋势。
一、引言Meta分析是一种通过综合多个独立研究结果来得出综合结论的统计方法。
在医学、社会科学等领域,Meta分析被广泛应用于证据综合和系统评价。
Stata作为一种功能强大的统计分析软件,在Meta分析中发挥着重要作用。
本文将详细介绍Stata在Meta分析中的应用。
二、Meta分析概述2.1 定义与背景Meta分析是一种通过收集、整理和综合多个独立研究结果来得出综合结论的统计方法。
它可以帮助研究者对多个研究结果进行定量综合,提高证据的可靠性和说服力。
2.2 Meta分析的重要性Meta分析在医学、社会科学等领域具有重要价值。
通过对多个研究的综合分析,可以更准确地评估干预措施的效果,为政策制定和临床实践提供有力依据。
三、Stata软件基本功能及其在Meta分析中的应用优势3.1 Stata软件基本功能Stata是一款功能强大的统计分析软件,具有数据管理、描述性统计、推断性统计等功能。
它支持多种统计方法,包括回归分析、方差分析、生存分析等。
3.2 Stata在Meta分析中的应用优势Stata在Meta分析中具有以下优势:(1)操作简便:Stata具有友好的用户界面和丰富的命令系统,使得操作简便快捷。
(2)功能全面:Stata支持多种Meta分析方法,包括固定效应模型、随机效应模型等。
(3)结果直观:Stata可以生成直观的图表和统计结果,便于结果解读。
四、Stata在Meta分析中的具体应用案例4.1 案例背景以一项关于药物治疗糖尿病效果的Meta分析为例,介绍Stata在Meta分析中的具体应用。
《2024年Stata在Meta分析中的应用》范文

《Stata在Meta分析中的应用》篇一一、引言Meta分析是一种用于综合多个独立研究结果,从而得出更为准确和可靠结论的统计方法。
随着科学研究的不断发展,越来越多的学者开始使用Meta分析来整合和解释多个独立研究的结果。
Stata作为一种强大的统计分析软件,在Meta分析中发挥着重要作用。
本文旨在探讨Stata在Meta分析中的应用,并展示其优势和效果。
二、Stata在Meta分析中的优势1. 强大的数据处理能力:Stata具有强大的数据处理能力,可以方便地处理多个独立研究的数据,包括数据的导入、清洗、转换等操作。
这为Meta分析提供了重要的支持。
2. 丰富的统计方法:Stata提供了多种Meta分析方法和模型,包括固定效应模型、随机效应模型、贝叶斯模型等。
这些方法可以根据研究的具体需求进行选择,从而提高分析的准确性和可靠性。
3. 友好的操作界面:Stata的操作界面友好,易于学习和使用。
即使是没有编程基础的学者,也可以通过简单的操作完成Meta分析。
三、Stata在Meta分析中的应用实例以一项关于药物治疗糖尿病效果的Meta分析为例,我们将介绍Stata在Meta分析中的应用。
1. 数据导入与处理:首先,我们将多个独立研究的数据导入到Stata中,并进行数据清洗和转换。
这包括删除重复数据、处理缺失值、转换数据格式等操作。
2. 模型选择与设置:根据研究的具体需求,我们选择固定效应模型或随机效应模型进行Meta分析。
在模型设置中,我们需要设置效应量、置信区间、显著性水平等参数。
3. 数据分析与结果输出:在Stata中运行Meta分析程序后,我们可以得到多个研究合并后的效应量、合并效应量的置信区间以及合并效应量的P值等结果。
这些结果可以直观地展示多个独立研究的结果,并得出更为准确和可靠的结论。
四、Stata在Meta分析中的效果与评价通过实际案例的应用,我们可以发现Stata在Meta分析中具有以下优势:1. 提高了分析的准确性和可靠性:Stata提供了多种Meta分析方法和模型,可以根据研究的具体需求进行选择,从而提高分析的准确性和可靠性。
Meta分析系列之二Meta分析的软件

Meta分析系列之二Meta分析的软件一、本文概述随着医学和科研领域的快速发展,越来越多的研究者在面对大量的研究数据时,需要一种有效且科学的方法来进行综合分析和评价。
Meta 分析作为一种重要的统计学方法,能够通过整合多个独立研究的结果,提供更可靠、更有说服力的证据。
然而,要进行Meta分析,除了掌握其基本原理和方法外,还需要合适的软件工具来辅助实现。
本文将详细介绍几种常用的Meta分析软件,包括其特点、适用场景以及操作步骤,帮助读者更好地选择和应用这些软件,提高Meta分析的效率和准确性。
二、Meta分析软件概览随着统计软件和计算机技术的不断发展,越来越多的专业软件被开发出来用于执行Meta分析。
这些软件不仅提高了Meta分析的效率和精度,也使得复杂的数据处理和分析过程变得相对简单和直观。
以下是对一些常用的Meta分析软件的概览。
Stata:Stata是一款功能强大的统计软件,其内置的meta命令可以方便地进行Meta分析。
Stata提供了多种Meta分析方法,包括固定效应模型、随机效应模型等,同时也支持对异质性、发表偏倚等进行检验和处理。
Stata的图形化界面使得操作更加直观,适合初学者使用。
RevMan:RevMan(Review Manager)是由Cochrane协作网开发的一款免费的Meta分析软件。
它提供了全面的Meta分析功能,包括数据输入、数据分析、图形生成等。
RevMan还支持对研究质量进行评估,提供了一系列工具和指南帮助研究者进行高质量的Meta分析。
R语言:R语言是一款开源的统计软件,其强大的编程能力和丰富的包资源使得它在Meta分析领域具有广泛的应用。
通过安装相应的包,如“metafor”“meta”等,可以轻松进行各种复杂的Meta分析。
R 语言的灵活性使得研究者可以根据需要进行自定义分析,但同时也需要一定的编程基础。
SAS:SAS是一款商业统计软件,其PROC MIED和PROC GLM过程可以用于执行Meta分析。
Stata在Meta分析中的应用

Stata在Meta分析中的应用Stata是一款强大且广泛使用的统计软件,能够进行多种统计分析,包括描述性统计、回归分析、生存分析、多层次模型等。
在Meta分析中,Stata具备了进行效应量合并和散点图绘制等功能,使得探究者能够更便利地进行Meta分析的各个步骤。
起首,Stata能够进行单探究效应量的计算。
探究者需要将各个独立探究的原始数据输入到Stata软件中,并进行合适的数据处理和变量定义。
然后,通过利用meta指令,Stata可以依据原始数据计算出每个探究的效应量和其对应的标准误差。
而不同效应量的选择可以依据探究的详尽目标和特点进行。
其次,Stata能够进行效应量合并和效应量模型的构建。
效应量合并是Meta分析的核心步骤之一,用于将各个独立探究的效应量整合成一个总体效应量。
Stata提供了多种合并效应量的方法,包括固定效应模型和随机效应模型。
探究者可以依据数据的异质性和探究的特点选择不同的合并方法。
通过利用meta指令,Stata 可以进行效应量合并,并为合并效应量提供置信区间和显著性检验的结果。
此外,Stata还能够进行Meta回归和亚组分析。
Meta回归是一种用于探究影响效应量异质性的方法,可以依据不同探究的特征进行回归分析,来寻找可能导致异质性的因素。
Stata可以通过利用metareg指令进行Meta回归分析,并提供回归系数和显著性检验的结果。
亚组分析是一种用于探究可能的效应量差异的方法,可以将探究样本按照一定的特征分组,然后对不同亚组进行效应量比较。
Stata可以通过利用metan指令进行亚组分析,并提供亚组间效应量比较的结果。
最后,Stata还能够进行散点图绘制和敏感性分析。
散点图是一种直观展示不同探究效应量的方法,可以反映出总体效应量和各个探究效应量之间的干系。
而敏感性分析是一种用于评估总体效应量稳健性的方法,可以通过排除某些特殊探究或改变分析策略来检验分析结果的稳定性。
Stata可以通过利用metareg指令和metainf指令进行散点图绘制和敏感性分析,并提供直观和可靠的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)合并率的meta分析
例如一篇2016年发表在BMC public health上的 meta分析
漏选了李昕、郑亮为共同第一作者的文章
17.48%
数据录入格式(自己录入)
率
操作步骤与森林图—— 复制输入
gen ser=sqrt(r*(1-r)/n)
metan r ser,random label(namevar=study)
机效应模型
结果
前瞻干预,只有RR值
漏斗图
漏斗图
Funnel plot with pseudo 95% confidence limits
0
.05
.1
se(logRR)
.15
.2Βιβλιοθήκη .25.4.6
.8
1
1.2
1.4
RR
学习统计方法的意境
挑灯夜读,红袖添香;
书中自有黄金屋,书中 自有颜如玉;
昔去雪如花,今来花似雪;---范云«诗别» 有时间的时候用十分钟重复制作森林图的过程
数据录入格式
编号、例数、均值、标准差,一篇文献,低中高剂量
Wmd 单位统一 ,加权均值,如血糖的单位都是 mmol/l
Msd 标准化均值
wmd
森林图操作步骤
数据
计量资料
亚组分析---design
亚组分析---location
随机效应模型,异质性太大
漏斗图
ES:效应量(例如血糖下降变 seES:效应量的标准误
meta分析概念与stata实现
为什么做meta分析
当我们准备进行一个课题的研究时,还没有收 集好的数据,当我们查阅大量的文献后,发现 一些有意义、有争议的结论时;
可以定量地将现有的研究成果进行总结归纳, 较为精确地得出合并效应;
怎样做Meta分析
计量资料的meta分析; 计数资料的meta分析; 率的meta分析; 诊断试验的meta分析; 其他类别的meta分析;
(一)计量资料的meta分析
想比较单纯运动干预和运动饮食干预的降低空腹血 糖的效果;
空腹血糖(mmol/L)显然是一个计量资料; 没有自己的研究数据时,我们可以考虑将现有已经
发表的文献中符合要求的数据进行合并,计算出其 合并效应。
举例说明
1、计量资料的meta分析
运动、饮食与降空腹血糖 检索文献、检索词筛选出80-90篇 读摘要筛选30-40篇,精读剩下12篇 State软件做分析,得出合并效应森林图
丁香园原图对比
(引用丁香园数据:)
谢谢大家
前瞻性RR 回顾性OR
表2.1 Aspirin预防心梗死亡的临床试验结果基线情况
study year
Aspirin group
Placebo group
total
death
total
death
MRC-1 1974
615
49
624
67
CDP 1976
758
44
771
64
MRC-2 1979
832
检索文献流程图
合并效应森林图
几个关键的步骤
文献的纳入与排除(检索策略与纳入标准); 纳入文献的质量评估(几种评估量表); 森林图的生成与亚组分析(合并效应WMD,SMD); 漏斗图的制作及其意义;
Stata软件实现步骤
基线数据的录入与导入; 菜单操作或者编写程序; 生成森林图以及所需要的图形; 数据以及生成结果的整理与保存。
102
850
126
GASP 1979
317
32
309
38
PARIS 1980
810
85
406
52
AMIS 1980
2267
246
2257
219
ISIS-2 1988
8587
1570
8600
1720
数据录入格式
操作步骤
图2.1 森林图制作结果
步骤
看I方,I方>50%,随机模型;I方 <50%,固定效应模型。默认为随
直接复制,可得白色的图
WMD
Begg's funnel plot with pseudo 95% confidence limits .5
0
-.5
-1
-1.5
0
.1
.2
.3
s.e. of: WMD
为了白色的图、竖起来,方法二
0.865>0.0.5没有发表偏移
(二)计数资料的meta分析
举例说明:为了探讨阿斯匹林预防心梗后死亡的发 生,研究团队在1976年至1988年间进行了7个相关 的临床试验,相关的实验结果总结在下表中。其中, 6个研究的结果提示阿斯匹林用药组与安慰剂的心 梗后死亡率的差别无统计学意义,另外一项结果提 示两组差别存在统计学意义,请根据表格中所提供 的资料做meta分析。