数据结构课程实验报告(回文篇)
数据结构回文实验报告

数据结构回文实验报告1. 实验目的本实验旨在通过使用数据结构中的栈和队列的知识,设计并实现一个回文判断程序,以检测给定的字符串是否为回文。
2. 实验原理回文是指正读和反读都相同的字符串。
在本实验中,我们将使用栈和队列来判断给定字符串是否为回文。
具体步骤如下:2.1 将字符串加入栈和队列将给定的字符串依次加入栈和队列中,保持顺序一致。
2.2 从栈和队列中弹出字符从栈和队列中分别弹出字符,并进行比较。
2.3 判断是否为回文如果所有字符都一一相等,那么该字符串就是回文。
否则,不是回文。
3. 实验步骤接下来,我们将按照上述原理,逐步进行回文判断的实验。
3.1 导入所需库由于本实验仅使用了基本的数据结构,无需导入额外的库或模块。
3.2 创建栈和队列首先,我们需要创建栈和队列的数据结构。
栈可以通过使用列表来实现,而队列则可以通过使用双端队列来实现。
# 创建栈stack = []# 创建队列from collections import dequequeue = deque()3.3 输入字符串接下来,我们需要从用户获取一个待判断的字符串。
# 获取待判断的字符串string = input("请输入待判断的字符串:")3.4 将字符串加入栈和队列将输入的字符串依次加入栈和队列中。
# 将字符串加入栈和队列for char in string:stack.append(char)queue.append(char)3.5 从栈和队列中弹出字符并比较从栈和队列中分别弹出字符,并进行比较,直到栈或队列为空。
is_palindrome =Truewhile len(stack) >0and len(queue) >0:stack_char = stack.pop()queue_char = queue.popleft()if stack_char != queue_char:is_palindrome =Falsebreak3.6 输出判断结果根据比较结果,输出判断字符串是否为回文。
《数据结构》实验报告模板(附实例)--实验一线性表的基本操作实现

《数据结构》实验报告模板(附实例)---实验一线性表的基本操作实现实验一线性表的基本操作实现及其应用一、实验目的1、熟练掌握线性表的基本操作在两种存储结构上的实现,其中以熟悉各种链表的操作为重点。
2、巩固高级语言程序设计方法与技术,会用线性链表解决简单的实际问题。
二、实验内容√ 1、单链表的表示与操作实现 ( * )2、约瑟夫环问题3、Dr.Kong的艺术品三、实验要求1、按照数据结构实验任务书,提前做好实验预习与准备工作。
2、加“*”题目必做,其他题目任选;多选者并且保质保量完成适当加分。
3、严格按照数据结构实验报告模板和规范,及时完成实验报告。
四、实验步骤(说明:依据实验内容分别说明实验程序中用到的数据类型的定义、主程序的流程以及每个操作(成员函数)的伪码算法、函数实现、程序编码、调试与分析、总结、附流程图与主要代码)㈠、数据结构与核心算法的设计描述(程序中每个模块或函数应加注释,说明函数功能、入口及出口参数)1、单链表的结点类型定义/* 定义DataType为int类型 */typedef int DataType;/* 单链表的结点类型 */typedef struct LNode{ DataType data;struct LNode *next;}LNode,*LinkedList;2、初始化单链表LinkedList LinkedListInit( ){ // 每个模块或函数应加注释,说明函数功能、入口及出口参数 }3、清空单链表void LinkedListClear(LinkedList L){// 每个模块或函数应加注释,说明函数功能、入口及出口参数}4、检查单链表是否为空int LinkedListEmpty(LinkedList L){ …. }5、遍历单链表void LinkedListTraverse(LinkedList L){….}6、求单链表的长度int LinkedListLength(LinkedList L){ …. }7、从单链表表中查找元素LinkedList LinkedListGet(LinkedList L,int i){ //L是带头结点的链表的头指针,返回第 i 个元素 }8、从单链表表中查找与给定元素值相同的元素在链表中的位置LinkedList LinkedListLocate(LinkedList L, DataType x){ …… }9、向单链表中插入元素void LinkedListInsert(LinkedList L,int i,DataType x) { // L 为带头结点的单链表的头指针,本算法// 在链表中第i 个结点之前插入新的元素 x}10、从单链表中删除元素void LinkedListDel(LinkedList L,DataType x){ // 删除以 L 为头指针的单链表中第 i 个结点 }11、用尾插法建立单链表LinkedList LinkedListCreat( ){ …… }㈡、函数调用及主函数设计(可用函数的调用关系图说明)㈢程序调试及运行结果分析㈣实验总结五、主要算法流程图及程序清单1、主要算法流程图:2、程序清单(程序过长,可附主要部分)说明:以后每次实验报告均按此格式书写。
回文串实验报告

回文串实验报告课程名称:数据结构实验名称:单链表学生姓名:杜克强学生学号: 201207092427实验一回文串的基本操作及其应用一、实验目的1、掌握栈和队列的顺序存储结构和链式存储结构,以便在实际中灵活应用。
2、掌握栈和队列的特点,即后进先出和先进先出的原则。
3、掌握栈和队列的基本运算,如:入栈与出栈,入队与出队等运算在顺序存储结构和链式存储结构上的实现。
二、实验内容和要求[问题描述]对于一个从键盘输入的字符串,判断其是否为回文。
回文即正反序相同。
如“abba”是回文,而“abab”不是回文。
[基本要求](1)数据从键盘读入;(2)输出要判断的字符串;(3)利用栈的基本操作对给定的字符串判断其是否是回文,若是则输出“Yes”,否则输出“No”。
[测试数据]由学生任意指定。
三、实验步骤1.需求分析本演示程序用C语言编写,完成对一个字符串是否是回文字符串的判断①输入一个任意的字符串;②对输入的字符串进行判断是否为回文串;③输出判断结果;④测试数据:A.依次输入“abccba”,“asddas”等数据;B.输出判断结果“Yes”,“No”等四、算法设计1、算法思想:把字符串中的字符逐个分别存储到队列和堆栈中,然后逐个出队和出栈并比较出队列的数据元素和退栈的数据元素是否相等,若相等则是会文,否则不是。
2、模块设计(1)int Palindrome_Test()判断字符序列是否为回文串;(2)Status main()主函数;(3)Status CreatStack(SqStack &S)创建一个栈;(4)Status Push(SqStack &S,SElemType e)入栈;(5)Status Pop(SqStack &S ,SElemType &e)出栈;(6)Status CreatQueue(LinkQueue &Q)创建一个队列;(7)Status EnQueue(LinkQueue &Q,QElemType e)入队;(8)Status DeQueue(LinkQueue &Q,QElemType &e)出队;3、模块之间关系及其相互调用的图示4、数据存储结构图五、调试分析一、实验结果图2 实验结果二、总结通过做回文串实验让我同时用到了栈和队列两种结构,让我对这两种结构有了一个比较深入的了解和应用,对我以后的编程产生了比较深远的影响。
数据结构实验三实验报告

数据结构实验三实验报告数据结构实验三实验报告一、实验目的本次实验的目的是通过实践掌握树的基本操作和应用。
具体来说,我们需要实现一个树的数据结构,并对其进行插入、删除、查找等操作,同时还需要实现树的遍历算法,包括先序、中序和后序遍历。
二、实验原理树是一种非线性的数据结构,由结点和边组成。
树的每个结点都可以有多个子结点,但是每个结点只有一个父结点,除了根结点外。
树的基本操作包括插入、删除和查找。
在本次实验中,我们采用二叉树作为实现树的数据结构。
二叉树是一种特殊的树,每个结点最多只有两个子结点。
根据二叉树的特点,我们可以使用递归的方式实现树的插入、删除和查找操作。
三、实验过程1. 实现树的数据结构首先,我们需要定义树的结点类,包括结点值、左子结点和右子结点。
然后,我们可以定义树的类,包括根结点和相应的操作方法,如插入、删除和查找。
2. 实现插入操作插入操作是将一个新的结点添加到树中的过程。
我们可以通过递归的方式实现插入操作。
具体来说,如果要插入的值小于当前结点的值,则将其插入到左子树中;如果要插入的值大于当前结点的值,则将其插入到右子树中。
如果当前结点为空,则将新的结点作为当前结点。
3. 实现删除操作删除操作是将指定的结点从树中移除的过程。
我们同样可以通过递归的方式实现删除操作。
具体来说,如果要删除的值小于当前结点的值,则在左子树中继续查找;如果要删除的值大于当前结点的值,则在右子树中继续查找。
如果要删除的值等于当前结点的值,则有三种情况:- 当前结点没有子结点:直接将当前结点置为空。
- 当前结点只有一个子结点:将当前结点的子结点替代当前结点。
- 当前结点有两个子结点:找到当前结点右子树中的最小值,将其替代当前结点,并在右子树中删除该最小值。
4. 实现查找操作查找操作是在树中寻找指定值的过程。
同样可以通过递归的方式实现查找操作。
具体来说,如果要查找的值小于当前结点的值,则在左子树中继续查找;如果要查找的值大于当前结点的值,则在右子树中继续查找。
《数据结构》实验报告

《数据结构》实验报告实验一一、实验目的及要求理解线性表的顺序存储结构;熟练掌握顺序表结构及其有关算法的设计;理解线性表的链式存储结构;熟练掌握动态链表结构及其有关算法的设计;根据具体问题的需要,设计出合理的表示数据的链表结构,并设计相关算法;深入了解栈和队列的特性,以便在实际问题背景下灵活运用他们;同时巩固对这两种结构的构造方法的理解。
二、实验环境硬件:计算机软件:Microsoft Visual C++三、实验内容1.以顺序表作存储结构,实现线性表的插入、删除;2.以单链表作存储结构,实现有序表的合并;3.利用栈(以顺序栈作存储结构)实现进制转换,并用队列(以链队列作存储结构)计算并打印杨辉三角。
四、源程序清单五、实验结果六、总结实验二一、实验目的及要求掌握二叉树的动态存储结构--二叉链表,掌握二叉树的三种遍历方法,会运用三种遍历的方法求解有关问题。
二、实验环境硬件:计算机软件:Microsoft Visual C++三、实验内容1.以二叉链表作存储结构,建立一棵二叉树;2.输出其先序、中序、后序遍历序列;3.求出它的深度;4.统计其叶子结点数四、源程序清单五、实验结果六、总结实验三一、实验目的及要求掌握图的存储结构及其建立算法,熟练掌握图的两种遍历算法及其应用。
二、实验环境硬件:计算机软件:Microsoft Visual C++三、实验内容1.以邻接矩阵法作存储结构,建立一个无向图;2.输出该图的深度优先搜索序列;3.输出该图的广度优先搜索序列;4. 设计算法求出该图的连通分量个数及边的数目。
四、源程序清单五、实验结果六、总结实验四一、实验目的及要求掌握顺序表的查找方法,尤其是折半查找方法。
掌握二叉排序树的查找算法。
二、实验环境硬件:计算机软件:Microsoft Visual C++三、实验内容1.建立一个顺序表,用顺序查找的方法对其实施查找;2.建立一个有序表,用折半查找的方法对其实施查找;3.建立一个二叉排序树,根据给定值对其实施查找;4.对同一组数据,试用三种方法查找某一相同数据,并尝试进行性能分析。
串-数据结构实验报告

串-数据结构实验报告串数据结构实验报告一、实验目的本次实验的主要目的是深入理解和掌握串这种数据结构的基本概念、存储方式以及相关的操作算法。
通过实际编程实现串的基本操作,提高对数据结构的理解和编程能力,培养解决实际问题的思维和方法。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、实验原理(一)串的定义串是由零个或多个字符组成的有限序列。
在本次实验中,我们主要关注的是字符串。
(二)串的存储方式1、顺序存储定长顺序存储:使用固定长度的数组来存储字符串,长度不足时用特定字符填充。
堆分配存储:根据字符串的实际长度动态分配存储空间。
2、链式存储每个节点存储一个字符,并通过指针链接起来。
(三)串的基本操作1、串的创建和初始化2、串的赋值3、串的连接4、串的比较5、求子串6、串的插入和删除四、实验内容及步骤(一)顺序存储方式下串的实现1、定义一个结构体来表示顺序存储的字符串,包含字符数组和字符串的实际长度。
```cppstruct SeqString {char str;int length;};```2、实现串的创建和初始化函数```cppSeqString createSeqString(const char initStr) {int len = strlen(initStr);SeqString s;sstr = new charlen + 1;strcpy(sstr, initStr);slength = len;return s;}```3、串的赋值函数```cppvoid assignSeqString(SeqString& s, const char newStr) {delete sstr;int len = strlen(newStr);sstr = new charlen + 1;strcpy(sstr, newStr);slength = len;}```4、串的连接函数```cppSeqString concatSeqString(const SeqString& s1, const SeqString& s2) {SeqString result;resultlength = s1length + s2length;resultstr = new charresultlength + 1;strcpy(resultstr, s1str);strcat(resultstr, s2str);return result;}```5、串的比较函数```cppint compareSeqString(const SeqString& s1, const SeqString& s2) {return strcmp(s1str, s2str);}```6、求子串函数```cppSeqString subSeqString(const SeqString& s, int start, int len) {SeqString sub;sublength = len;substr = new charlen + 1;strncpy(substr, sstr + start, len);substrlen ='\0';return sub;}```7、串的插入函数```cppvoid insertSeqString(SeqString& s, int pos, const SeqString& insertStr) {int newLength = slength + insertStrlength;char newStr = new charnewLength + 1;strncpy(newStr, sstr, pos);strcpy(newStr + pos, insertStrstr);strcpy(newStr + pos + insertStrlength, sstr + pos);delete sstr;sstr = newStr;slength = newLength;}```8、串的删除函数```cppvoid deleteSeqString(SeqString& s, int start, int len) {int newLength = slength len;char newStr = new charnewLength + 1;strncpy(newStr, sstr, start);strcpy(newStr + start, sstr + start + len);delete sstr;sstr = newStr;slength = newLength;}```(二)链式存储方式下串的实现1、定义一个节点结构体```cppstruct LinkNode {char data;LinkNode next;LinkNode(char c) : data(c), next(NULL) {}};```2、定义一个链式存储的字符串类```cppclass LinkString {private:LinkNode head;int length;public:LinkString(const char initStr);~LinkString();void assign(const char newStr);LinkString concat(const LinkString& other);int compare(const LinkString& other);LinkString subString(int start, int len);void insert(int pos, const LinkString& insertStr);void deleteSub(int start, int len);};```3、实现各个函数```cppLinkString::LinkString(const char initStr) {length = strlen(initStr);head = NULL;LinkNode p = NULL;for (int i = 0; i < length; i++){LinkNode newNode = new LinkNode(initStri);if (head == NULL) {head = newNode;p = head;} else {p>next = newNode;p = p>next;}}}LinkString::~LinkString(){LinkNode p = head;while (p) {LinkNode temp = p;p = p>next;delete temp;}}void LinkString::assign(const char newStr) {//先释放原有的链表LinkNode p = head;while (p) {LinkNode temp = p;p = p>next;delete temp;}length = strlen(newStr);head = NULL;p = NULL;for (int i = 0; i < length; i++){LinkNode newNode = new LinkNode(newStri);if (head == NULL) {head = newNode;p = head;} else {p>next = newNode;p = p>next;}}}LinkString LinkString::concat(const LinkString& other) {LinkString result;LinkNode p1 = head;LinkNode p2 = otherhead;LinkNode p = NULL;while (p1) {LinkNode newNode = new LinkNode(p1->data);if (resulthead == NULL) {resulthead = newNode;p = resulthead;} else {p>next = newNode;p = p>next;}p1 = p1->next;}while (p2) {LinkNode newNode = new LinkNode(p2->data);if (resulthead == NULL) {resulthead = newNode;p = resulthead;} else {p>next = newNode;p = p>next;}p2 = p2->next;}resultlength = length + otherlength;return result;}int LinkString::compare(const LinkString& other) {LinkNode p1 = head;LinkNode p2 = otherhead;while (p1 && p2 && p1->data == p2->data) {p1 = p1->next;p2 = p2->next;}if (p1 == NULL && p2 == NULL) {return 0;} else if (p1 == NULL) {return -1;} else if (p2 == NULL) {return 1;} else {return p1->data p2->data;}}LinkString LinkString::subString(int start, int len) {LinkString sub;LinkNode p = head;for (int i = 0; i < start; i++){p = p>next;}for (int i = 0; i < len; i++){LinkNode newNode = new LinkNode(p>data);if (subhead == NULL) {subhead = newNode;} else {LinkNode temp = subhead;while (temp>next) {temp = temp>next;}temp>next = newNode;}p = p>next;}sublength = len;return sub;}void LinkString::insert(int pos, const LinkString& insertStr) {LinkNode p = head;for (int i = 0; i < pos 1; i++){p = p>next;}LinkNode insertHead = insertStrhead;while (insertHead) {LinkNode newNode = new LinkNode(insertHead>data);newNode>next = p>next;p>next = newNode;p = p>next;insertHead = insertHead>next;}length += insertStrlength;}void LinkString::deleteSub(int start, int len) {LinkNode p = head;for (int i = 0; i < start 1; i++){p = p>next;}LinkNode temp = p>next;for (int i = 0; i < len; i++){LinkNode delNode = temp;temp = temp>next;delete delNode;}p>next = temp;length = len;}```(三)测试用例1、顺序存储方式的测试```cppint main(){SeqString s1 = createSeqString("Hello");SeqString s2 = createSeqString("World");SeqString s3 = concatSeqString(s1, s2);std::cout <<"连接后的字符串: "<< s3str << std::endl; int cmpResult = compareSeqString(s1, s2);if (cmpResult < 0) {std::cout <<"s1 小于 s2" << std::endl;} else if (cmpResult == 0) {std::cout <<"s1 等于 s2" << std::endl;} else {std::cout <<"s1 大于 s2" << std::endl;}SeqString sub = subSeqString(s1, 1, 3);std::cout <<"子串: "<< substr << std::endl; insertSeqString(s1, 2, s2);std::cout <<"插入后的字符串: "<< s1str << std::endl; deleteSeqString(s1, 3, 2);std::cout <<"删除后的字符串: "<< s1str << std::endl; return 0;}```2、链式存储方式的测试```cppint main(){LinkString ls1("Hello");LinkString ls2("World");LinkString ls3 = ls1concat(ls2);std::cout <<"连接后的字符串: ";LinkNode p = ls3head;while (p) {std::cout << p>data;p = p>next;}std::cout << std::endl;int cmpResult = ls1compare(ls2);if (cmpResult < 0) {std::cout <<"ls1 小于 ls2" << std::endl;} else if (cmpResult == 0) {std::cout <<"ls1 等于 ls2" << std::endl;} else {std::cout <<"ls1 大于 ls2" << std::endl;}LinkString sub = ls1subString(1, 3);std::cout <<"子串: ";p = subhead;while (p) {std::cout << p>data;p = p>next;}std::cout << std::endl;ls1insert(2, ls2);std::cout <<"插入后的字符串: ";p = ls1head;while (p) {std::cout << p>data;p = p>next;}std::cout << std::endl;ls1deleteSub(3, 2);std::cout <<"删除后的字符串: ";p = ls1head;while (p) {std::cout << p>data;p = p>next;}std::cout << std::endl;return 0;}```五、实验结果及分析(一)顺序存储方式1、连接操作成功实现,输出了正确连接后的字符串。
数据结构 实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中非常重要的一门课程,通过本次实验,旨在加深对常见数据结构(如链表、栈、队列、树、图等)的理解和应用,提高编程能力和解决实际问题的能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
操作系统为 Windows 10。
三、实验内容1、链表的实现与操作创建一个单向链表,并实现插入、删除和遍历节点的功能。
对链表进行排序,如冒泡排序或插入排序。
2、栈和队列的应用用栈实现表达式求值,能够处理加、减、乘、除和括号。
利用队列实现银行排队系统的模拟,包括顾客的到达、服务和离开。
3、二叉树的遍历与操作构建一棵二叉树,并实现前序、中序和后序遍历。
进行二叉树的插入、删除节点操作。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先遍历和广度优先遍历。
四、实验步骤及结果1、链表的实现与操作首先,定义了链表节点的结构体:```cppstruct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};```插入节点的函数:```cppvoid insertNode(ListNode& head, int val) {ListNode newNode = new ListNode(val);head = newNode;} else {ListNode curr = head;while (curr>next!= NULL) {curr = curr>next;}curr>next = newNode;}}```删除节点的函数:```cppvoid deleteNode(ListNode& head, int val) {if (head == NULL) {return;}ListNode temp = head;head = head>next;delete temp;return;}ListNode curr = head;while (curr>next!= NULL && curr>next>data!= val) {curr = curr>next;}if (curr>next!= NULL) {ListNode temp = curr>next;curr>next = curr>next>next;delete temp;}}```遍历链表的函数:```cppvoid traverseList(ListNode head) {ListNode curr = head;while (curr!= NULL) {std::cout << curr>data <<"";curr = curr>next;}std::cout << std::endl;}```对链表进行冒泡排序的函数:```cppvoid bubbleSortList(ListNode& head) {if (head == NULL || head>next == NULL) {return;}bool swapped;ListNode ptr1;ListNode lptr = NULL;do {swapped = false;ptr1 = head;while (ptr1->next!= lptr) {if (ptr1->data > ptr1->next>data) {int temp = ptr1->data;ptr1->data = ptr1->next>data;ptr1->next>data = temp;swapped = true;}ptr1 = ptr1->next;}lptr = ptr1;} while (swapped);}```测试结果:创建了一个包含 5、3、8、1、4 的链表,经过排序后,输出为 1 3 4 5 8 。
数据结构回文判断

数据结构回文判断实验类型:验证型【问题描述】试写一个算法,判断依次读入的一个以@为结束符的字母序列,是否为形如‘序列1&序列2’模式的字符序列。
其中序列1和序列2中都不含字符‘&’,且序列2是序列1的逆序列。
例如,‘a+b&b+a’是属该模式的字符序列,而‘1+3 &3 -1’则不是。
思路:首先建立一个字符数组,长度为100,然后向数组中写入索要判断的字符串。
定义两个指针,一个指向队头,一个指向队尾,队头的指针不断递增,队尾的指针不断递减,在P1<P2的前提下,两个地址上的数据进行比较,如相等则两地址分别向中间靠拢,如对比的结果不同则跳出,但此时P1指针小于P2指针,所以判断字符串不是回文;如两者一直相等直到他们的地址P1=P2或P1>P2(字符串为奇数个)时,跳出并判断为回文;在这其中P1指针的值与P2指针的值有不等的情况就直接判定不是回文。
代码源:// huiwen.cpp : Defines the entry point for the console application. //#include <stdio.h>#include <string.h>int main( void ){char str[100];printf("请输入字符串:");gets( str ); //输入字符char *p1 = str, *p2 = str + strlen(str) - 1;//指针定义for( ; p1 < p2 && *p1 == *p2; ++p1, --p2 );//FOR循环体为空puts( p1 < p2 ? "所输字符串不是回文" : "所输字符串是回文" );return 0;}运行结果:实验结论:通过本次的课程设计,这里的回文就是把回文是指正读和反读均相同的字符序列,所以可以用程序将字符串颠倒后与原字符串相比较,所用到的数据结构有单链表和栈,单链表用于存储字符串,栈用于对单链表中字符串的判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构课程实验报告要求实验题目:回文判断算法班级通信143姓名刘海波学号2014101114日期2015.6.17一、需求分析1.程序的功能;利用栈和队列的操作来实现对字符序列是否是一个回文序列的判断。
设计和验证入栈、出栈及入队、出队的算法。
2.输入输出的要求;从键盘读入一组字符序列,按输入顺序入队列到链式队列A中。
并将创建好的A队列中元素依次遍历,打印在屏幕上。
将字符序列从A队列出队列,压入到一个顺序栈中。
再将字符序列从顺序栈中出栈,入队到另一个链式队列B中。
将创建好的B队列中元素依次遍历,打印在屏幕上。
将A,B队列中的元素出队逐一比较,判断是否一致。
若一致则是回文,并将判定结果打印到屏幕上。
3.测试数据:输入一组字符串进行判断。
二、概要设计1.本程序所用的抽象数据类型的定义;typedef struct{char item[STACKSIZE];int top;}SqStack;typedef struct QNode{char data;struct QNode *next;}LQNode, *PQNode;typedef struct{PQNode front,rear;} LinkQueue;2.主程序的流程及各程序模块之间的层次关系。
从键盘上读取一个字符,同时存储在顺序栈与链队列之中,直到字符序列的最后一个字符为*停止插入。
在程序中设置了一个标志位flag,将输入的序列分别做入栈、出栈、入队、出队操作,若出栈与出队的数据完全一致,则将flag标志为1,否则为零。
Flag 为1,则表示该序列是回文序列,否则,为非回文序列。
三、详细设计1.采用c语言定义相关的数据类型;typedef struct{char item[STACKSIZE];int top;}SqStack;typedef struct QNode{char data;struct QNode *next;}LQNode, *PQNode;typedef struct{PQNode front,rear;} LinkQueue;2.写出各模块的伪码算法;int InitStack(SqStack *S)int StackEmpty(SqStack S)int Push(SqStack *s, char data)int Pop(SqStack *s, char *data)int InitQueue(LinkQueue *q)int QueueEmpty(LinkQueue q)int EnQueue(LinkQueue *q, char item)int DeQueue(LinkQueue *q, char *item)int PutOutQueue(LinkQueue q)四、调试分析1.调试中遇到的问题及对问题的解决方法;对于语句中的一般回文单词能正常输出,句末跟标点符号连在一起的回文单词也能通过程序把字符串末尾的标点给去掉并正常输出,而字符串中的连接符可以作为回文单词的组成部分一起输出。
2.算法的时间复杂度和空间复杂度。
时间复杂度为O(n);空间复杂度为O(n)。
五、使用说明及测试结果程序执行后显示以下内容:请输入一字符串;对该字符串进行判断;输出原字符串与逆字符串;判断是否为回文;输出结果。
六、源程序(带注释)#include <stdio.h>#include <stdlib.h>#include <string.h>#define STACKSIZE 100typedef struct{char item[STACKSIZE];int top;}SqStack;typedef struct QNode{char data;struct QNode *next;}LQNode, *PQNode;typedef struct{PQNode front,rear;} LinkQueue;int InitStack(SqStack *S){S->top = -1;return 1;}int StackEmpty(SqStack S){if(S.top == -1) return 1;else return 0;}int Push(SqStack *s, char data){if(s->top == STACKSIZE - 1){printf("\n栈已满,不能完成入栈操作");return 0;}s->top++;s->item[s->top] = data;return 1;}int Pop(SqStack *s, char *data){if (s->top == -1){printf("\n堆栈已空,不能完成出栈操作");return 0;}*data = s->item[s->top];s->top--;return 1;}{q->front = q->rear = (PQNode)malloc(sizeof(LQNode));if(!q->front){printf("\n初始化队列失败");return 0;}q->front->next = NULL;return 1;}int QueueEmpty(LinkQueue q){if (q.front == q.rear) {printf("\n队列为空"); return 1;}else return 0;}int EnQueue(LinkQueue *q, char item){PQNode p;p = (PQNode)malloc(sizeof(LQNode));if(!p){printf("\n内存分配失败");return 0;}p->data = item;p->next = NULL;q->rear->next = p;q->rear = p;return 1;}int DeQueue(LinkQueue *q, char *item){PQNode p;if(q->front == q->rear){printf("\n队列已空,不能出队");return 0;}p = q->front->next;*item = p->data;q->front->next = p->next;free(p);if(q->rear == p) /*若删除的为最后一个结点,移动队尾指针*/ q->front = q->rear;return 1;}{PQNode pos;if(q.front == q.rear){printf("\n队列为空");return 0;}pos = q.front->next;printf("\nHere is the string:");while(pos != NULL){printf("%c", pos->data);pos = pos->next;}printf("\n");return 1;}int main(void){int i,len,count1 = 0;char str1[100],ch,ch1;LinkQueue lq1,lq2;SqStack sq;printf("Please input string:");scanf("%s", &str1);len = strlen(str1);InitQueue(&lq1);InitQueue(&lq2);InitStack(&sq);for(i=0;i<len;i++){EnQueue(&lq1,str1[i]);}PutOutQueue(lq1);for(i=0;i<len;i++){DeQueue(&lq1,&ch);Push(&sq,ch);EnQueue(&lq1,ch);}for(i=0;i<len;i++){Pop(&sq,&ch);EnQueue(&lq2,ch);}PutOutQueue(lq2);for(i=0;i<len;i++){DeQueue(&lq1,&ch);DeQueue(&lq2,&ch1);if(ch1 != ch){count1++;}}if(count1 == 0){printf("\n该字符串为回文");}else{printf("\n该字符串不是回文");}return 0;}。