三角恒等变换题型总结
三角恒等变换专题(蛮全的)

三角恒等变换专题复习一.要点精讲1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±; S αβ±()简记: βαβαβαsin sin cos cos )cos( =±; C αβ±()简记: tan tan tan()1tan tan αβαβαβ±±=。
()T αβ±简记:2.二倍角公式αααcos sin 22sin =; 2S α简记ααααα2222sin 211cos 2sin cos 2cos -=-=-=; 2C α简记22tan tan 21tan ααα=-。
(242k k πππααπ≠+≠+且)2T α简记二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的两倍,2α是4α的两倍, 3α是32α的两倍,3α是6α的两倍等,所有这些都可以应用二倍角公式。
因此,要理解“二倍角”的含义,即当=2αβ时,α就是β的二倍角。
凡是符合二倍角关系的就可以应用二倍角公式。
3.半角公式2cos 12sinαα-±=2c o s12c o s αα+±=αααc o s1c o s 12t a n +-±=【.2α±公式前的号,取决于所在的象限,注意讨论】(αααααsin cos 1cos 1sin 2tan-=+=)4. (1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos2αα+=。
(αα2cos 1sin22-= αα2c o s 1c o s 22+=)(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中(3)万能公式5.三角函数式的化简、求值、证明(1)三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
三角恒等变换专题总结复习

三角恒等变换【知识分析】1、本章网络结构2、要点概述(1)求值常用的方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等。
(2)要熟悉角的拆拼、变换的技巧,倍角与半角的相对性,如是的半角,是的倍角等。
(3)要掌握求值问题的解题规律和途径,寻求角间关系的特殊性,化非特殊角为特殊角,正确选用公式,灵活地掌握各个公式的正用、逆用、变形用等。
(4)求值的类型:①“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合和差化积、积化和差、升降幂公式转化为特殊角并且消降非特殊角的三角函数而得解。
②“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系。
③“给值求角”:实质上可转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角。
(5)灵活运用角和公式的变形,如:,等,另外重视角的范围对三角函数值的影响,因此要注意角的范围的讨论。
(6)合一变形(辅助角公式)把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的形式。
,其中.(7)化简三角函数式常有两种思路:一是角的变换(即将多种形式的角尽量统一),二是三角函数名称的变化(即当式子中所含三角函数种类较多时,一般是“切割化弦”),有时,两种变换并用,有时只用一种,视题而定。
(8)三角恒等变换方法观察(角、名、式)→三变(变角、变名、变式)① “变角”主要指把未知的角向已知的角转化,是变换的主线,如α=(α+β)-β=(α-β)+β, 2α=(α+β)+ (α-β), 2α=(β+α)-(β-α),α+β=2·,= (α-)-(-β)等.②“变名”指的是切化弦(正切余切化成正弦余弦),③“变式’指的是利用升幂公式和降幂公式升幂降幂,利用和角和差角公式、合一变形公式展开和合并等。
三角恒等变换常考题型及解析

。 ? 则 t n . t n 卢 的 值 为
因 为 A、 B是 锐 角三 角 形 的 内角, 所 以 一 <
A 2 ; B吉 ; c詈 ; D_ 詈 - 析由 c o 一 詈 一s ( a + — 1
( ) .
f c o s ( a - p ) 一 善,
c o s ( a +卢 ) 一 ,
c o s [ - ( A- -B) -A] 一2 s i n As i n ( A- -B) ,
故 c o s ( A- -B) C O S A—s i n As i n ( A—B) 一0 , 即
…
二 & 例4 已知函数 , ( z ) 一2 c o s 2 +s i n z 一4 c o s z .
求, ( z ) 的最 大值 和最 小值 .
,( z ) 一2 ( 2 c o s 一1 ) +( 1 一c o s 。 z ) 一4 c o s z一
所以 t a n a ・ t a n : = = 1
SI n A
一t a n B, 则有 (
) .
A s i n 2 A —C O S B 一 0:
三角恒 等 变换是 三 角 函数 部分 常 考 的 知识 点 , 是
求三 角 函数极值 与最 值 的一 个 过 渡步 骤. 有 时 求 三角 函数 周期 、 对称轴等, 需 要 将 三 角 函 数 式 化 成 一 个 角 的三 角 函数形 式 , 其 中化 简 的过 程 就用 到 三 角 恒等 变 换. 有关 三角 恒等变 换 的常考 题 型及解 析 总结如 下.
拉角
3 借 助切 、 弦 互化解 决 三角 函数求值 问题
三角恒等变换题型归纳

第五节 两角和与差的正弦、余弦和正切公式及二倍角公式❖ 基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z . 两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.❖ 常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例](1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例](1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. (2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3.[答案] (1)-12 (2) 3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形: sin αsin β+cos(α+β)=cos αcos β;(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b . 2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45.答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725. (2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦. [题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( )A .1B.12C.32 D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12. 2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( )A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79. 3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A. 3 B. 2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718. 6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2.(1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157. 答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________.解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.第六节 简单的三角恒等变换考点一 三角函数式的化简[典例](1)sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( )A .-sin αB .-cos αC .sin αD .cos α(2)化简:sin (2α+β)sin α-2cos(α+β).[解] (1)选D 原式=-sin 2α·cos 2α2cos 2α(-sin α)=-2sin αcos α·cos 2α2cos 2α(-sin α)=cos α.(2)原式=sin (2α+β)-2sin αcos (α+β)sin α=sin[α+(α+β)]-2sin αcos (α+β)sin α=sin αcos (α+β)+cos αsin (α+β)-2sin αcos (α+β)sin α=cos αsin (α+β)-sin αcos (α+β)sin α=sin[(α+β)-α]sin α=sin βsin α.[题组训练]1.化简:sin 2α-2cos 2αsin ⎝⎛⎭⎫α-π4=________.解析:原式=2sin αcos α-2cos 2α22(sin α-cos α)=22cos α.答案:22cos α2.化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π4-α.解:原式=cos 2α2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=cos 2αsin ⎝⎛⎭⎫π2-2α=cos 2αcos 2α=1.考点二 三角函数式的求值考法(一) 给角求值 [典例]cos 10°(1+3tan 10°)cos 50°的值是________.[解析] 原式=cos 10°+3sin 10°cos 50°=2sin (10°+30°)cos 50°=2sin 40°sin 40°=2.[答案] 2[解题技法] 三角函数给角求值问题的解题策略一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换转化为求特殊角的三角函数值问题,另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.考法(二) 给值求值[典例] 已知sin ⎝⎛⎭⎫α+π4=210,α∈⎝⎛⎭⎫π2,π.求:(1)cos α的值;(2)sin ⎝⎛⎭⎫2α-π4的值. [解] (1)由sin ⎝⎛⎭⎫α+π4=210, 得sin αcos π4+cos αsin π4=210,化简得sin α+cos α=15,①又sin 2α+cos 2α=1,且α∈⎝⎛⎭⎫π2,π② 由①②解得cos α=-35.(2)∵α∈⎝⎛⎭⎫π2,π,cos α=-35,∴sin α=45, ∴cos 2α=1-2sin 2α=-725,sin 2α=2sin αcos α=-2425,∴sin ⎝⎛⎭⎫2α-π4=sin 2αcos π4-cos 2αsin π4=-17250.[解题技法] 三角函数给值求值问题的基本步骤(1)先化简所求式子或已知条件;(2)观察已知条件与所求式子之间的联系(从三角函数的名及角入手); (3)将已知条件代入所求式子,化简求值. 考法(三) 给值求角 [典例] 若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4C.5π4或7π4D.5π4或9π4[解析] ∵α∈⎣⎡⎦⎤π4,π,∴2α∈⎣⎡⎦⎤π2,2π, ∵sin 2α=55,∴2α∈⎣⎡⎦⎤π2,π. ∴α∈⎣⎡⎦⎤π4,π2且cos 2α=-255. 又∵sin(β-α)=1010,β∈⎣⎡⎦⎤π,3π2, ∴β-α∈⎣⎡⎦⎤π2,5π4,cos(β-α)=-31010, ∴cos(α+β)=cos [(β-α)+2α] =cos(β-α)cos 2α-sin(β-α)sin 2α =⎝⎛⎭⎫-31010×⎝⎛⎭⎫-255-1010×55=22,又∵α+β∈⎣⎡⎦⎤5π4,2π,∴α+β=7π4. [答案] A[解题技法] 三角函数给值求角问题的解题策略(1)根据已知条件,选取合适的三角函数求值.[题组训练]1.求值:cos 20°cos 35°1-sin 20°=( )A .1B .2 C. 2D. 3解析:选C 原式=cos 20°cos 35°|sin 10°-cos 10°|=cos 210°-sin 210°cos 35°(cos 10°-sin 10°)=cos 10°+sin 10°cos 35°=2⎝⎛⎭⎫22cos 10°+22sin 10°cos 35°=2cos (45°-10°)cos 35°=2cos 35°cos 35°= 2.2.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 法一:因为sin α+cos α=33,所以(sin α+cos α)2=13,即2sin αcos α=-23,即sin 2α=-23. 又因为α为第二象限角且sin α+cos α=33>0, 所以sin α>0,cos α<0,cos α-sin α<0,cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α- sin α)<0. 所以cos 2α=-1-sin 22α=-1-⎝⎛⎭⎫-232=-53. 法二:由cos 2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α),且α为第二象限角,得cos α-sin α<0, 因为sin α+cos α=33, 所以(sin α+cos α)2=13=1+2sin αcos α,得2sin αcos α=-23,从而(cos α-sin α)2=1-2sin αcos α=53,则cos α-sin α=-153,所以cos 2α=33×⎝⎛⎭⎫-153=-53. 3.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A.3π4 B.π4或3π4C.π4D .2k π+π4(k ∈Z)解析:选C 由sin α=55,cos β=31010,且α,β为锐角, 可知cos α=255,sin β=1010,故cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.考点三 三角恒等变换的综合应用[典例] (2018·北京高考)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32,求m 的最小值. [解] (1)因为f (x )=sin 2x +3sin x cos x=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎫2x -π6+12. 由题意知-π3≤x ≤m ,所以-5π6≤2x -π6≤2m -π6.要使f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32, 即sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤-π3,m 上的最大值为1, 所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3.[解题技法]三角恒等变换综合应用的解题思路(1)将f (x )化为a sin x +b cos x 的形式;(5)反思回顾,查看关键点、易错点和答题规范. [题组训练]1.已知ω>0,函数f (x )=sin ωx cos ωx +3cos 2ωx -32的最小正周期为π,则下列结论正确的是( ) A .函数f (x )的图象关于直线x =π3对称B .函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递增C .将函数f (x )的图象向右平移π6个单位长度可得函数g (x )=cos 2x 的图象D .当x ∈⎣⎡⎦⎤0,π2时,函数f (x )的最大值为1,最小值为-32 解析:选D 因为f (x )=sin ωx cos ωx +3cos 2ωx -32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎫2ωx +π3,所以T =2π2ω=π,所以ω=1,所以f (x )=sin ⎝⎛⎭⎫2x +π3.对于A ,因为f ⎝⎛⎭⎫π3=0,所以不正确;对于B ,当x ∈⎣⎡⎦⎤π12,7π12时,2x +π3∈⎣⎡⎦⎤π2,3π2,所以函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递减,故不正确;对于C ,将函数f (x )的图象向右平移π6个单位长度所得图象对应的函数y =f ⎝⎛⎭⎫x -π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=sin 2x ,所以不正确;对于D ,当x ∈⎣⎡⎦⎤0,π2时,2x +π3∈⎣⎡⎦⎤π3,4π3,所以f (x )∈⎣⎡⎦⎤-32,1,故正确.故选D. 2.已知函数f (x )=4sin x cos ⎝⎛⎭⎫x -π3- 3. (1)求函数f (x )的单调区间;(2)求函数f (x )图象的对称轴和对称中心. 解:(1)f (x )=4sin x cos ⎝⎛⎭⎫x -π3- 3 =4sin x ⎝⎛⎭⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3.令2k π-π2≤2x -π3≤2k π+π2(k ∈Z),得k π-π12≤x ≤k π+5π12(k ∈Z),所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z). 令2k π+π2≤2x -π3≤2k π+3π2(k ∈Z),得k π+5π12≤x ≤k π+11π12(k ∈Z),所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z). (2)令2x -π3=k π+π2(k ∈Z),得x =k π2+5π12(k ∈Z),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z).令2x -π3=k π(k ∈Z),得x =k π2+π6(k ∈Z),所以函数f (x )的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z).[课时跟踪检测]A 级1.已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则tan α=( ) A .1 B .-1 C.12D .0解析:选B ∵sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, ∴12cos α-32sin α=32cos α-12sin α, 即⎝⎛⎭⎫32-12sin α=⎝⎛⎭⎫12-32cos α,∴tan α=sin αcos α=-1.2.化简:cos 40°cos 25°1-sin 40°=( )A .1 B. 3 C. 2D .2解析:选C 原式=cos 220°-sin 220°cos 25°(cos 20°-sin 20°)=cos 20°+sin 20°cos 25°=2cos 25°cos 25°= 2.3.(2018·唐山五校联考)已知α是第三象限的角,且tan α=2,则sin ⎝⎛⎭⎫α+π4=( ) A .-1010B.1010C .-31010D.31010解析:选C 因为α是第三象限的角,tan α=2,所以⎩⎨⎧sin αcos α=2,sin 2α+cos 2α=1,所以cos α=-55,sin α=-255,则sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-255×22-55×22=-31010. 4.(2019·咸宁模拟)已知tan(α+β)=2,tan β=3,则sin 2α=( )A.725B.1425C .-725D .-1425解析:选C 由题意知tan α=tan [(α+β)-β]=tan (α+β)-tan β1+tan (α+β)tan β=-17,所以sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=-725.5.已知cos ⎝⎛⎭⎫2π3-2θ=-79,则sin ⎝⎛⎭⎫π6+θ的值为( ) A.13 B .±13C .-19D.19解析:选B ∵cos ⎝⎛⎭⎫2π3-2θ=-79, ∴cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+2θ=-cos ⎝⎛⎭⎫π3+2θ =-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6+θ=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π6+θ=-79, 解得sin 2⎝⎛⎭⎫π6+θ=19,∴sin ⎝⎛⎭⎫π6+θ=±13. 6.若sin(α-β)sin β-cos(α-β)cos β=45,且α为第二象限角,则tan ⎝⎛⎭⎫α+π4=( ) A .7 B.17C .-7D .-17解析:选B ∵sin(α-β)sin β-cos(α-β)cos β=45,即-cos(α-β+β)=-cos α=45,∴cos α=-45.又∵α为第二象限角,∴tan α=-34,∴tan ⎝⎛⎭⎫α+π4=1+tan α1-tan α=17. 7.化简:2sin (π-α)+sin 2αcos2α2=________.解析:2sin (π-α)+sin 2αcos 2α2=2sin α+2sin αcos α12(1+cos α)=4sin α(1+cos α)1+cos α=4sin α.答案:4sin α8.(2018·洛阳第一次统考)已知sin α+cos α=52,则cos 4α=________. 解析:由sin α+cos α=52,得sin 2α+cos 2α+2sin αcos α=1+sin 2α=54,所以sin 2α=14,从而cos 4α=1-2sin 22α=1-2×⎝⎛⎭⎫142=78. 答案:789.若锐角α,β满足tan α+tan β=3-3tan αtan β,则α+β=________. 解析:由已知可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又因为α+β∈(0,π),所以α+β=π3.答案:π310.函数y =sin x cos ⎝⎛⎭⎫x +π3的最小正周期是________. 解析:y =sin x cos ⎝⎛⎭⎫x +π3=12sin x cos x -32sin 2x =14sin 2x -32·1-cos 2x 2=12sin ⎝⎛⎭⎫2x +π3-34,故函数f (x )的最小正周期T =2π2=π.答案:π11.化简:(1)3tan 12°-3sin 12°(4cos 212°-2); (2)cos 2α1tan α2-tan α2.解:(1)原式=3sin 12°cos 12°-32(2cos 212°-1)sin 12°=3sin 12°-3cos 12°2sin 12°cos 12°cos 24° =23(sin 12°cos 60°-cos 12°sin 60°)sin 24°cos 24° =43sin (12°-60°)sin 48°=-4 3. (2)法一:原式=cos 2αcos α2sin α2-sin α2cos α2=cos 2 αcos 2 α2-sin 2 α2sin α2cos α2=cos 2αsin α2cos α2cos 2 α2-sin 2 α2=cos 2αsin α2cos α2cos α =sin α2cos α2cos α=12sin αcos α=14sin 2α. 法二:原式=cos 2αtan α21-tan 2 α2=12cos 2α·2tan α21-tan 2 α2 =12cos 2α·tan α=12cos αsin α=14sin 2α. 12.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解:(1)因为f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x =sin ⎝⎛⎭⎫2x -π3+32, 所以函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z , 解得-π12+k π≤x ≤5π12+k π,k ∈Z , 所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z. (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1,f (x )∈⎣⎡⎦⎤0,1+32.故f (x )的值域为⎣⎡⎦⎤0,1+32. B 级1.(2018·大庆中学期末)已知tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,且3π<α<7π2,则cos α+sin α=( )A. 3B. 2 C .- 2 D .- 3解析:选C ∵tan α,1tan α是关于x 的方程x 2-kx +k 2-3=0的两个实根,∴tan α+1tan α=k ,tan α·1tan α=k 2-3.∵3π<α<7π2,∴k >0,∴k =2, ∴tan α=1,∴α=3π+π4, 则cos α=-22,sin α=-22,∴cos α+sin α=- 2. 2.在△ABC 中,sin(C -A )=1,sin B =13,则sin A =________. 解析:∵sin(C -A )=1,∴C -A =90°,即C =90°+A ,∵sin B =13, ∴sin B =sin(A +C )=sin(90°+2A )=cos 2A =13, 即1-2sin 2A =13,∴sin A =33. 答案:333.已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边经过点P (-3,3).(1)求sin 2α-tan α的值;(2)若函数f (x )=cos(x -α)cos α-sin(x -α)sin α,求函数g (x )=3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,2π3上的值域.解:(1)∵角α的终边经过点P (-3,3),∴sin α=12,cos α=-32,tan α=-33. ∴sin 2α-tan α=2sin αcos α-tan α=-32+33=-36. (2)∵f (x )=cos(x -α)cos α-sin(x -α)sin α=cos x ,∴g (x )=3cos ⎝⎛⎭⎫π2-2x -2cos 2x =3sin 2x -1-cos 2x =2sin ⎝⎛⎭⎫2x -π6-1. ∵0≤x ≤2π3, ∴-π6≤2x -π6≤7π6. ∴-12≤sin ⎝⎛⎭⎫2x -π6≤1, ∴-2≤2sin ⎝⎛⎭⎫2x -π6-1≤1, 故函数g (x )=3f ⎝⎛⎭⎫π2-2x -2f 2(x )在区间⎣⎡⎦⎤0,2π3上的值域是[-2,1].。
专题18 三角恒等变换 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】高中数学53个题型归纳与方法技巧总结篇专题18三角恒等变换知识点一.两角和与差的正余弦与正切①sin()sin cos cos sin αβαβαβ±=±;②cos()cos cos sin sin αβαβαβ±= ;③tan tan tan()1tan tan αβαβαβ±±=;知识点二.二倍角公式①sin 22sin cos ααα=;②2222cos 2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-;知识点三:降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===知识点四:半角公式sin22αα==sin 1cos tan.21cos sin aαααα-==+知识点五.辅助角公式)sin(cos sin 22ϕααα++=+b a b a (其中abb a a b a b =+=+=ϕϕϕtan cos sin 2222,,).【方法技巧与总结】1.两角和与差正切公式变形)tan tan 1)(tan(tan tan βαβαβα ±=±;1)tan(tan tan )tan(tan tan 1tan tan ---=++-=⋅βαβαβαβαβα.2.降幂公式与升幂公式ααααααα2sin 21cos sin 22cos 1cos 22cos 1sin 22=+=-=;;;2222)cos (sin 2sin 1)cos (sin 2sin 1sin 22cos 1cos 22cos 1αααααααααα-=-+=+=-=+;;;.3.其他常用变式αααααααααααααααααααsin cos 1cos 1sin 2tan tan 1tan 1cos sin sin cos 2cos tan 1tan 2cos sin cos sin 22sin 222222222-=+=+-=+-=+=+=;;.3.拆分角问题:①=22αα⋅;=(+)ααββ-;②()αββα=--;③1[()()]2ααβαβ=++-;④1[()()]2βαβαβ=+--;⑤()424πππαα+=--.注意特殊的角也看成已知角,如()44ππαα=--.【题型归纳目录】题型一:两角和与差公式的证明题型二:给式求值题型三:给值求值题型四:给值求角题型五:正切恒等式及求非特殊角【典例例题】题型一:两角和与差公式的证明例1.(2022·山西省长治市第二中学校高一期末)(1)试证明差角的余弦公式()C αβ-:cos()cos cos sin sin αβαβαβ-=+;(2)利用公式()C αβ-推导:①和角的余弦公式()C αβ+,正弦公式()S αβ+,正切公式()T αβ+;②倍角公式(2)S α,(2)C α,(2)T α.例2.(2022·云南·昭通市第一中学高三开学考试(文))已知以下四个式子的值都等于同一个常数22sin 26cos 3426cos34+ ;22sin 39cos 2139cos 21+ ;()()22sin 52cos 11252cos112-+- ;22sin 30cos 3030cos30+ .(1)试从上述四个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,推广为三角恒等式,并证明你的结论.例3.(2022·陕西省商丹高新学校模拟预测(理))如图带有坐标系的单位圆O 中,设AOx α∠=,BOx β∠=,AOB αβ∠=-,(1)利用单位圆、向量知识证明:cos()cos cos sin sin αβαβαβ-=+(2)若π,π2α⎛⎫∈ ⎪⎝⎭,π0,2β⎛⎫∈ ⎪⎝⎭,4cos()5αβ-=-,5tan 12α=-,求cos β的值例4.(2022·全国·高三专题练习)如图,考虑点(1,0)A ,1(cos ,sin )P αα,2(cos ,sin )P ββ-,(cos(),sin())P αβαβ++,从这个图出发.(1)推导公式:cos()cos cos sin sin αβαβαβ+=-;(2)利用(1)的结果证明:1cos cos [cos()cos()]2αβαβαβ=++-,并计算sin 37.5cos37.5︒︒⋅的值.【方法技巧与总结】推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路.题型二:给式求值例5.(2022·全国·高三专题练习)已知sin α=()cos αβ-=且304πα<<,304πβ<<,则sin β=()ABCD例6.(2020·四川·乐山外国语学校高三期中(文))已知sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,则()sin 60α︒+的值为()A .13B .13-C .23D .23-例7.(2020·全国·高三专题练习)若7cos(2)38x π-=-,则sin()3x π+的值为().A .14B .78C .14±D .78±(多选题)例8.(2022·全国·高三专题练习)设sin()sin 6πββ++=sin()3πβ-=()AB .12C .12-D.例9.(2022·全国·模拟预测(文))已知,0,2παβ⎛⎫∈ ⎪⎝⎭,3cos 25β=,()4cos 5αβ+=,则cos α=___________.例10.(2022·上海静安·模拟预测)已知sin 4πα⎛⎫+= ⎪⎝⎭sin 2α的值为_____________.例11.(2022·江苏泰州·模拟预测)若0θθ=时,()2sin 2cos f θθθ=-取得最大值,则0sin 24πθ⎛⎫+= ⎪⎝⎭______.【方法技巧与总结】给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.题型三:给值求值例12.(2022·福建省福州第一中学三模)若3sin 5α=-,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα-=+()A .12B .12-C .2D .-2例13.(2022·湖北武汉·模拟预测)已知1sin 64x π⎛⎫-= ⎪⎝⎭,则cos 23x π⎛⎫-= ⎪⎝⎭()A .78-B .78C .D 例14.(2022·湖北·模拟预测)已知,22ππα⎛⎫∈- ⎪⎝⎭,且1cos 42πα⎛⎫-= ⎪⎝⎭,则cos2α=()A .B .C .12D 例15.(2022·全国·模拟预测)已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭()A .2325B .2325-C D .例16.(2022·黑龙江·哈师大附中三模(文))已知()3sin 455α︒+=,45135α︒<<︒,则cos 2=α()A .2425B .2425-C .725D .725-例17.(2022·广东茂名·模拟预测)已知1sin 62πθ⎛⎫-= ⎪⎝⎭,则cos 3πθ⎛⎫+= ⎪⎝⎭()A .B .12-C .12D(多选题)例18.(2022·江苏·高三专题练习)已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()αβ+=则()A .cos α=B .sin cos αα-=C .34πβα-=D .cos cos αβ=【方法技巧与总结】给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.题型四:给值求角例19.(2022·全国·模拟预测)已知263ππα<<,sin 4sin cos tan 15315315πππππαα⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭则α=______.例20.(2022·河南·南阳中学高三阶段练习(文))已知3sin 44ππαβ⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭3,,0,444πππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,求αβ-的值为_____.例21.(2022·河北石家庄·一模)已知角π0,2α⎛⎫∈ ⎪⎝⎭,πsin sinπ12tan π12cos cos 12αα-=+,则α=______.例22.(2022·上海市大同中学高三开学考试)若()0,απ∈,且cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则α的值为___________.例23.(2022·全国·高三专题练习)若sin 2α=()sin βα-=且ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是______.例24.(2022·吉林·延边州教育学院一模(理))若sin 2α=,()sin βα-=且π,π4α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+=()A .7π4B .π4C .4π3D .5π3例25.(2022·上海交大附中高三开学考试)已知α、β都是锐角,且223sin 2sin 1αβ+=,3sin 22sin 20αβ-=,那么α、β之间的关系是()A .4παβ+=B .4αβ-=πC .24παβ+=D .22παβ+=例26.(2022·江苏省江阴高级中学高三开学考试)已知11tan ,tan ,37αβ==-且,(0,)αβπ∈,则2αβ-=()A .4πB .4π-C .34π-D .34π-或4π【方法技巧与总结】给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角.题型五:正切恒等式及求非特殊角例27.(2022·湖北·襄阳四中模拟预测)若角α的终边经过点()sin 70,cos70P ︒︒,且tan tan 2tan tan 2m αααα++⋅=,则实数m 的值为()A.B.CD例28.(2021·重庆八中高三阶段练习)sin10︒︒=()A .14B C .12D例29.(2020·=()A .1BC D .例30.(2022·全国·高三专题练习)()tan 30tan 70sin10︒+︒︒=___________.例31.(2022·江苏南通·高三期末)若11sin α=,则α的一个可能角度值为__________.例32.(2022·江苏扬州·模拟预测)1tan 751tan 75-︒=+︒___________.例33.(2022·贵州黔东南·一模(文))若()1tan 3αβ+=,()1tan 6a β-=,则tan 2α=___________.例34.(2022·山东·青岛二中高三开学考试)tan10tan 35tan10tan 35︒+︒+︒︒=______.【方法技巧与总结】正切恒等式:当A B C k π++=时,tan tan tan tan tan tan A B C A B C ++=⋅⋅.证明:因为tan tan tan()1tan tan A BA B A B++=-,tan tan ()C A B =-+,所以tan tan tan (1tan tan )A B C A B +=--故C B A C B A tan tan tan tan tan tan ⋅⋅=++.【过关测试】一、单选题1.(2022·四川省泸县第二中学模拟预测(文))已知角α与角β的顶点均与原点O 重合,始边均与x 轴的非负半轴重合,它们的终边关于x 轴对称.若3cos 5α=,则()()cos cos αβαβ+-=()A .725-B .15C .15-D .7252.(2022·全国·模拟预测(理))已知sin cos 1αβ+=,cos sin αβ+=,则cos()αβ-=()A .0B .12C D .13.(2022·青海·大通回族土族自治县教学研究室三模(文))已知πtan 34α⎛⎫+= ⎪⎝⎭,()1tan 3αβ+=,则tan β=()A .17-B .17C .1D .2或64.(2022·湖北·黄冈中学模拟预测)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为2sin18m =︒,若24m n +=,=()A .-4B .-2C .2D .45.(2022·山东烟台·三模)若21π2cos cos 23αα⎛⎫-=+ ⎪⎝⎭,则tan 2α的值为()A .BC .D 6.(2022·全国·模拟预测(文))设角α,β的终边均不在坐标轴上,且()tan tan tan αββα-+=,则下列结论正确的是()A .()sin 0αβ+=B .()cos 1αβ-=C .22sin sin 1αβ+=D .22sin cos 1αβ+=7.(2022·河南·通许县第一高级中学模拟预测(文))已知15αβ+= ,则1tan tan tan tan 1tan tan tan tan αβαβαβαβ++-=---()A .BC .1D8.(2022·全国·高三专题练习)若10,0,cos ,cos 224342ππππβαβα⎛⎫⎛⎫<<-<<+=-= ⎪ ⎪⎝⎭⎝⎭cos 2βα⎛⎫+=⎪⎝⎭()A B .C D .二、多选题9.(2022·海南海口·二模)已知(),2αππ∈,tan sin tan 22αβα==,则()A .tan α=B .1cos 2α=C .tan β=D .1cos 7β=10.(2022·河北邯郸·二模)下列各式的值为12的是().A .sin17π6B .sinπ12cos π12C .22cossin 121π2-πD .2πtan 8π1tan 8-11.(2022·重庆·西南大学附中模拟预测)已知α,β,0,2πγ⎛⎫∈ ⎪⎝⎭,且2παβγ++=,则()A.若sin cos αα+=,则tan 1α=B .若tan 2α=,则sin()βγ+=C .tan α,tan β可能是方程2670x x -+=的两根D .tan tan tan tan tan tan 1αββγβα++=12.(2022·重庆巴蜀中学高三阶段练习)已知()4cos cos 25αβα+==-,其中,αβ为锐角,则以下命题正确的是()A .3sin 25α=B .()cos αβ-=C.cos cos αβ=D .1tan tan 3αβ=三、填空题13.(2022·浙江·高考真题)若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.14.(2022·山东师范大学附中模拟预测)已知ππ0sin 24αα⎛⎫<<-= ⎪⎝⎭sin 1tan αα=+________.15.(2022·3cos()cos()12παπα-++=-,则cos(23α2π-=_____________.16.(2022·陕西·宝鸡中学模拟预测)()()()sin 75cos 4515θθθ++++=__________.四、解答题17.(2022·江苏南京·模拟预测)已知02πα<<,1cos 43πα⎛⎫+= ⎪⎝⎭.(1)求sin α的值;(2)若02πβ-<<,cos 24βπ⎛⎫-= ⎪⎝⎭αβ-的值.18.(2022·江西·高一期中)已知角α为锐角,2πβαπ<-<,且满足1tan23=α,()sin βα-=(1)证明:04πα<<;(2)求β.19.(2022·河南·唐河县第一高级中学高一阶段练习)(1)已知tan 2θ=-,求sin (1sin 2)sin cos θθθθ++的值;(2)已知1tan()2αβ-=,1tan 7β=-,且α,(0,)βπ∈,求2αβ-.20.(2022·江西·高一阶段练习)在①4tan 23α=,②sin α补充到下面的问题中,并解答.已知角α是第一象限角,且.(1)求tan α的值;(2)求()π3πsin 2cos πcos 22ααα⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭的值.注:如果选择两个条件分别解答,按第一个解答计分.21.(2022·北京市第九中学高一期中)已知1tan 2α=,π0,2α⎛⎫∈ ⎪⎝⎭,π,π2β⎛⎫∈ ⎪⎝⎭,求(1)求sin α的值;(2)求()()()2212sin πcos 2π5πsin sin 2αααα+---⎛⎫--- ⎪⎝⎭的值;(3)若()sin αβ+cos β的值.22.(2019·黑龙江·哈尔滨三中高三阶段练习(文))()1的值;()2已知30,,,242ππαβπ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,()1tan 2αβ-=,17tan β=-,求2αβ-的值.23.(2020·全国·高三专题练习)在ABC ∆中,满足222sin cos sin cos A B A B C -=-.(1)求C ;(2)设()()2cos cos cos cos cos A B A B ααα++=,tan α的值.。
(完整版)三角恒等变换知识总结及基础训练

第四讲 三角恒等变形一、三角恒等变形知识点总结1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos(μ=±;tan tan tan()1tan tan αβαβαβ±±=m 。
2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。
3.三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos 2αα+=。
(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
题型10 6类三角恒等变换解题技巧(解析版)

题型10 6类三角恒等变换解题技巧(拼凑思想、升(降)幂、三倍角、半角、万能、正余弦平方差公式)技法01拼凑思想的应用及解题技巧知识迁移12()[()()]221[()()]2424a a αββαααβαβπππβαβαβαα=⋅=--=++-⎛⎫=+--+=-- ⎪⎝⎭例1-1.(全国·高考真题)tan255°=【高考数学】答题技巧与模板构建【详解】000000tan 255tan(18075)tan 75tan(4530)=+==+=000tan 45tan 3021tan 45tan 30+==-【详解】由πππππ2sin 2sin 2cos sin 32666αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=-=- ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以πtan 26α⎛⎫-= ⎪⎝⎭,则ππtan tan πππ66tan tan 8ππ3661tan tan 66αααα⎛⎫-- ⎪⎡⎤⎛⎫⎛⎫⎝⎭-=--===== ⎪ ⎪⎢⎥⎛⎫⎝⎭⎝⎭⎣⎦+-⨯ ⎪⎝⎭1.(2022·云南·云南民族大学附属中学校考模拟预测)已知【答案】A【解析】易知()()sin sinβααβ=--,利用角的范围和同角三角函数关系可求得cos α和()sinαβ-,分别在()sin αβ-=利用两角和差正弦公式求得sin β,结合β的范围可确定最终结果.【详解】sin α=<且304πα<<,04πα∴<<,5cos 7α∴==.又304πβ<<,344ππαβ∴-<-<,()sin αβ∴-==当()sin αβ-=()()()()sin sin sin cos cos sin βααβααβααβ=--=---57=-=,304πβ<< ,sin 0β∴>,sin β∴=当()sin αβ-=sin β=.综上所述:sin β=故选:A .【点睛】易错点睛:本题中求解cos α时,易忽略sin α的值所确定的α的更小的范围,从而误认为cos α的取值也有两种不同的可能性,造成求解错误.【答案】A【分析】由二倍角正切公式,同角关系化简cos tan22sin AA A=-,求sin A ,再求tan A ,再由两角差的正切公式求tan B .【详解】因为cos tan22sin A A A=-,所以sin2cos cos 22sin A AA A =-,所以22sin cos cos 12sin 2sin A A AA A=--,又A 为锐角,cos 0A >,所以()22sin 2sin 12sin A A A -=-,解得1sin4A =,因为A 为锐角,所以cos A =,tan A =又tan A B -=()所以()()()tan tan tan tan 1tan tan A A B B A A B A A B --⎡⎤=--===⎣⎦+-故选:A.【答案】D【分析】直接利用三角函数恒等变换进行凑角化简,再根据α,β的范围即可求出结果.【详解】由已知可将()()2ααβαβ=++-,2()()βαβαβ=+--,则cos[()()]cos[()()]12cos()cos()αβαβαβαβαβαβ++-++--+=-++,2cos()cos()2cos()cos()10αβαβαβαβ+----++=,[cos()1][2cos()1]0αβαβ+---=,即cos()1αβ+=或1cos()2αβ-=.又π02αβ<<<,所以π0π,02αβαβ<+<-<-<,所以cos()1αβ+≠,所以选项A ,B 错误,即1cos()2αβ-=,则π3αβ-=-,所以π3βα-=.则C 错,D 对,故选:D技法02 升(降)幂公式的应用及解题技巧知识迁移升幂公式:αα2sin 212cos -=,1cos 22cos 2-=αα降幂公式:22cos 1sin2αα-=,22cos 1cos 2αα+=【详解】因为π2sin 63x ⎛⎫+= ⎪⎝⎭,所以ππ2cos sin 363αα⎛⎫⎛⎫-=+=⎪ ⎪⎝⎭⎝⎭22ππcos 22cos 133x α⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭412199=⨯-=-.【详解】因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=,则2sin()sin cos cos sin 3αβαβαβ+=+=,所以2221cos(22)cos 2()12sin ()12(39αβαβαβ+=+=-+=-⨯=.1.(2023·全国·模拟预测)已知cos(α+【答案】A【分析】根据题意,求得4cos cos 5αβ=,再求得cos()1αβ-=,结合倍角公式,即可求解.【详解】因为3cos()cos cos sin sin 5αβαβαβ+=-=,且1sin sin 5αβ=,所以4cos cos 5αβ=,可得cos()cos cos sin sin 1αβαβαβ-=+=,所以2cos(22)cos 2()2cos ()11αβαβαβ-=-=--=.故选:A .【答案】C【分析】根据给定的条件,利用辅助角公式求出πsin()6α+,再利用二倍角的余弦公式计算即得.【详解】由cos αα=πsin(6α+所以22πππ1cos(2cos 2(12sin ()123663ααα+=+=-+=-⨯=-.故选:C【答案】A【分析】利用辅助角公式及两角和差的正弦公式化简,再根据()2sin 222sin 14παβαβ⎛⎫-=-+- ⎪⎝⎭计算可得.【详解】由已知得()()2sin cos 3αβαβ+++=,()1sin cos sin 3ααβ-=,所以()()2sin cos cos sin 4443πππαβαβαβαβαβ⎛⎫⎛⎫⎛⎫+++=++=++⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1sin cos sin sin 43παβααβ⎛⎫+=-=- ⎪⎝⎭,所以sin cos 4παβ⎛⎫+= ⎪⎝⎭cos sin 4παβ⎛⎫+= ⎪⎝⎭则sin sin cos cos sin 444πππαβαβαβ⎛⎫⎛⎫⎛⎫-+=+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()227sin 222sin 12149παβαβ⎛⎫-=-+-=⨯-= ⎪⎝⎭.故选:A .【答案】D【分析】先对两式进行平方,进而可求出()cos αβ-的值,根据二倍角公式求出结论.【详解】解:因为2sin sin αβ-=2cos cos 1αβ-=,所以平方得,()22sin sin 3αβ-=,()22cos cos 1αβ-=,即224sin 4sin sin sin 3ααββ-+=,224cos 4cos cos cos 1ααββ-+=,两式相加可得44sin sin 4cos cos 14αβαβ--+=,即1cos cos sin sin 4αβαβ+=,故()1cos 4αβ-=,()()217cos 222cos 121168αβαβ-=--=⨯-=-.故选:D.技法03 三倍角公式的应用及解题技巧知识迁移sin3α=3sin α―4sin 3αcos3α=―3cos α+4cos 3α tan3α=3tan α―tan 3α1―3tan 2α=tan αα+α例3.已知在 △ABC 中, 角 A 、B 、C 的对边依次为 a 、b 、c ,a =6,4sin B =5sin C , A =2C , 求 b 、c边长。
三角恒等变换题型总结(超给力)

三角恒等变换一、两角和、差的三角函数公式βα-C cos (α-β)=cos αcos β+sin αsin ββα+C cos (α+β)=cos αcos β-sin αsin β.βα+S sin (α+β)=sin αcos β+cos αsin ββα-S sin (α-β)=sin αcos β-cos αsin ββα+T tan (α+β)=tan tan 1tan tan αβαβ+-βα-T tan (α-β)=tan tan 1tan tan αβαβ-+二、二倍角公式cos 2α=cos 2α-sin 2αsin 2α=2sin αcos αtan 2α=22tan 1tan αα-变形公式:cos 2α=1-2sin 2α=2cos 2α-1cos 2α=1-2sin 2α2sin 2α=1-cos 2αsin 2α=1cos 22α-.降幂公式cos 2α=2cos 2α-12cos 2α=cos 2α+1cos 2α=cos 212α+.降幂公式sin 2α半角公式cos 2α半角公式ααααcos 1cos 12cos 2sin 2tan +-±==αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=三、辅助角公式a sin x ±b cos x (x ±ϕ),其中tan ϕ=ba 四、万能公式ααα2tan 1tan 22sin +=ααα22tan 1tan 12cos +-=ααα2tan 1tan 22tan -=五、同角的三大关系①倒数关系tan α•cot α=1②商数关系sin cos αα=tan α;cos sin αα=cot α③平方关系22sin cos 1αα+=六、积化和差与和差化积积化和差)]sin()[sin(cos sin βαβαβα-++=;)]sin()[sin(sin cos βαβαβα--+=;)]cos()[cos(cos cos βαβαβα-++=;)]cos()[cos(sin sin βαβαβα--+=.和差化积2cos 2sin 2sin sin ϕθϕθϕθ-+=+2sin 2cos 2sin sin ϕθϕθϕθ-+=-2cos 2cos 2cos cos ϕθϕθϕθ-+=+2sin 2sin 2cos cos ϕθϕθϕθ-+=-七、方法总结1、三角恒等变换方法、三变(变角、变名、变式)(1)“变角”主要指把未知的角向已知的角转化,是变换的主线,.(2)“变名”指的是切化弦(正切余切化成正弦余弦sin cos tan ,cot cos sin αααααα==),(3)“变式’形公式展开和合并等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos( =±;tan tan tan()1tan tan αβαβαβ±±= 。
2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。
3.三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos 2αα+=。
(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
分析:由韦达定理可得到tan tan tan tan αβαβ+⋅及的值,进而可以求出()tan αβ+的值,再将所求值的三角函数式用tan ()βα+表示便可知其值。
解法一:由韦达定理得tan 6tan tan 5tan =⋅=+βαβα,, 所以tan ().1615tan tan 1tan tan -=-=⋅-+=+βαβαβα 题型1:两角和与差的三角函数例1.已知0cos cos 1sin sin =+=+βαβα,,求cos)的值(βα+。
分析:因为)(βα+既可看成是的和,也可以与βα看作是2βα+的倍角,因而可得到下面的两种解法。
解法一:由已知sin α+sin β=1…………①,cos α+cos β=0…………②,①2+②2得 2+2cos 1=-)(βα; ∴ cos 21-=-)(βα。
①2-②2得 cos2α+cos2β+2cos (βα+)=-1,即2cos (βα+)〔1cos +-)(βα〕=-1。
∴()1cos -=+βα。
解法二:由①得12cos 2sin2=-+βαβα…………③ 由②得02cos 2cos 2=-+βαβα…………④ ④÷③得,02cot =+βα ()112cot 12cot 2tan 12tan 1cos 2222-=++-+=+++-=+∴βαβαβαβαβα 点评:此题是给出单角的三角函数方程,求复角的余弦值,易犯错误是利用方程组解sin α、cos α 、 sin β 、 cos β,但未知数有四个,显然前景并不乐观,其错误的原因在于没有注意到所求式与已知式的关系本题关键在于化和为积促转化,“整体对应”巧应用。
例2.已知2tan tan 560x x αβ-+=,是方程的两个实根根,求()()()()222sin 3sin cos cos αβαβαβαβ+-++++的值。
()()()()()()22222sin 3sin cos cos sin cos αβαβαβαβαβαβ+-++++=+++原式 ()()()()222tan 3tan 1213113tan 111αβαβαβ+-++⨯-⨯-+===+++ 解法二:由韦达定理得tan 6tan tan 5tan =⋅=+βαβα,,所以tan ().1615tan tan 1tan tan -=-=⋅-+=+βαβαβα ()34k k Z αβππ+=+∈于是有, 223333312sin sin 2cos 13422422k k k ππππππ⎛⎫⎛⎫⎛⎫=+-+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭原式。
点评:(1)本例解法二比解法一要简捷,好的解法来源于熟练地掌握知识的系统结构,从而寻找解答本题的知识“最近发展区”。
(2)运用两角和与差角三角函数公式的关键是熟记公式,我们不仅要记住公式,更重要的是抓住公式的特征,如角的关系,次数关系,三角函数名等抓住公式的结构特征对提高记忆公式的效率起到至关重要的作用,而且抓住了公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点。
(3)对公式的逆用公式,变形式也要熟悉,如()()()()()()()()。
,,,βαβαβαβαβαβαβαβαβαβαβααββαββα+=+++--+=++=-+=+++tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan tan 1tan cos sin sin cos cos 题型2:二倍角公式例3.化简下列各式:(1)⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∈+-ππαα2232cos 21212121,, (2)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-απαπαα4cos 4cot 2sin cos 222。
分析:(1)若注意到化简式是开平方根和2的二倍,是的二倍,是2αααα以及其范围不难找到解题的突破口;(2)由于分子是一个平方差,分母中的角244παπαπ=-++,若注意到这两大特征,,不难得到解题的切入点。
解析:(1)因为αααπαπcos cos 2cos 2121223==+<<,所以, 又因2sin 2sin cos 2121243αααπαπ==-<<,所以, 所以,原式=2sin α。
(2)原式=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-απαπααπαπα4cos 4sin 22cos 4cos 4tan 22cos 2 =12cos 2cos 22sin 2cos ==⎪⎭⎫ ⎝⎛-αααπα。
点评:(1)在二倍角公式中,两个角的倍数关系,不仅限于2α是α的二倍,要熟悉多种形式的两个角的倍数关系,同时还要注意απαπα-+442,,三个角的内在联系的作用,⎪⎭⎫ ⎝⎛±⎪⎭⎫ ⎝⎛±=⎪⎭⎫ ⎝⎛±=απαπαπα4cos 4sin 222sin 2cos 是常用的三角变换。
(2)化简题一定要找准解题的突破口或切入点,其中的降次,消元,切割化弦,异名化同名,异角化同角是常用的化简技巧。
(3)公式变形,αααsin 22sin cos =22cos 1cos 2αα+=,22cos 1sin 2αα-=。
例4.若的值求,x x x x x tan 1cos 22sin ,471217534cos 2-+<<=⎪⎭⎫ ⎝⎛+πππ。
分析:注意224442x x x x ππππ⎛⎫⎛⎫=+-=+-⎪ ⎪⎝⎭⎝⎭,及的两变换,就有以下的两种解法。
解法一:由πππππ2435471217<+<<<x x ,得, 34cos sin .4545x x ππ⎛⎫⎛⎫+=+=- ⎪ ⎪⎝⎭⎝⎭又因,cos cos cos cos sin sin 44444410x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦sin tan 7.10x x =-=从而22222sin cos 2sin 28.1tan 1775x x x x ⎛⎛⎛⋅+ +⎝⎭⎝⎭⎝⎭===---原式 解法二:()2sin cos 1tan sin 2tan 1tan 4x x x x x x π+⎛⎫==-+ ⎪-⎝⎭原式, 27sin 2sin 2cos22cos 1424425x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+-=-+=-+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦而 sin 44tan 43cos '4x x x πππ⎛⎫+ ⎪⎛⎫⎝⎭+==- ⎪⎛⎫⎝⎭+ ⎪⎝⎭,7428.25375⎛⎫=⋅-=- ⎪⎝⎭所以,原式 点评:此题若将3cos 45x π⎛⎫+= ⎪⎝⎭的左边展开成3cos cos sin sin 445x x ππ⋅-=再求cosx ,sinx 的值,就很繁琐,把作为整体x +4π,并注意角的变换2·,x x 224+=⎪⎭⎫ ⎝⎛+ππ运用二倍角公式,问题就公难为易,化繁为简答有条件限制的求值问题时,要善于发现所求的三角函数的角与已知条件的角的联系,一般方法是拼角与拆角,如()++=βαα2()βα-,()()()=--+=+--+=βαββαβαβαβαβ2222,,()ββα+-2,()()()()αβαβαβαβββααββαα+--=-+=+-=-+=,,,等。
题型3:辅助角公式例5.已知正实数a,b 满足的值,求a b b a b a 158tan 5sin 5cos 5cos 5sinπππ=-+。
分析:从方程 的观点考虑,如果给等式左边的分子、分母同时除以a ,则已知等式可化为关于的方a b程,从而可求出由ab ,若注意到等式左边的分子、分母都具有θθcos sin b a +的结构,可考虑引入辅助角求解。
解法一:由题设得⇒=-+ππππππ158cos 158sin 5sin 5cos 5cos 5sin a b a b .33t a n 5158cos 5158sin 5sin 158sin 5cos 158cos 5sin 158cos 5cos 158sin ==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⋅+⋅⋅-⋅=πππππππππππππa b解法二:sin cos 555a b πππϕ⎛⎫+=+ ⎪⎝⎭因为,cos sin tan 5558tan tan .51585153tan tan tan 33b a b a k k b k a πππϕϕππϕππϕππϕπππϕπ⎛⎫-=+= ⎪⎝⎭⎛⎫+= ⎪⎝⎭+=+=+⎛⎫==+== ⎪⎝⎭,其中,由题设得所以,即,故解法三:tan 85tan 151tan 5b a a πππ+=-原式可变形为:, ()()tantan 85tan tan tan 5151tan tan 58,5153tan tan tan 33b a k k Z k k Z b k a παπααππαππαππαπππαπ+⎛⎫==+= ⎪⎝⎭-⋅+=+∈=+∈⎛⎫=+=== ⎪⎝⎭令,则有,由此可所以,故 点评:以上解法中,方法一用了集中变量的思想,是一种基本解法;解法二通过模式联想,引入辅助角,技巧性较强,但辅助角公式()ϕααα++=+sin cos sin 22b a b a ,tan b a ϕ⎛⎫= ⎪⎝⎭其中,或sin cos a b αα+()tan a b αϕϕ⎛⎫=-= ⎪⎝⎭,其中在历年高考中使用频率是相当高的,应加以关注;解法三利用了换元法,但实质上是综合了解法一和解法二的解法优点,所以解法三最佳。