三角函数的图像与性质练习题

合集下载

三角函数的图象和性质练习题及答案

三角函数的图象和性质练习题及答案

1y三角函数图像与性质练习题(一)一.选择题 〔每题5分,共100分〕1.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是( ) A.sin()6y x π=+B.sin()6y x π=-C.sin(2)3y x π=+D.sin(2)3y x π=- 2. 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕3. 函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值等于( )A.23B.32C.2D.3 4.函数y =sin(2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( ) A.向左平移6πB.向右平移6πC.向左平移12π D.向右平移12π 5. 要得到函数y =sin (2x -)6π的图像,只需将函数y =cos 2x 的图像( )A.向右平移6π个单位 B.向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 6. 为了得到函数y =sin (2x-4π)+1的图象,只需将函数y =sin 2x 的图象〔〕平移得到A.按向量a=(-8π,1)B. 按向量a=(8π,1)C.按向量a=(-4π,1)D. 按向量a=(4π,1) 7.假设函数()sin ()f x x ωϕ=+的图象如图,那么ωϕ和的取值是( )A.1ω=,3πϕ= B.1ω=,3πϕ=-C.12ω=,6πϕ= D.12ω=,6πϕ=- 8. 函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )9. 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为( ) A.,1π B.,2π C.2,1π D. 2,2π 10. 函数()sin()(0)3f x x πϖϖ=+>的最小正周期为π,那么该函数的图象( )A.关于点(,0)3π对称 B.关于直线4x π=对称 C.关于点(,0)4π对称 D.关于直线3x π=对称11.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的局部图象如图,那么( ) A.4,2πϕπω==B.6,3πϕπω==C.4,4πϕπω== D.45,4πϕπω==12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) yx11-2π- 3π- O6ππyx11- 2π- 3π- O 6ππ yx1 1-2π-3πO 6π-πy xπ2π- 6π-1O 1-3π A.B. C. D.A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π6个单位 13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝⎛<<>20,0πφω.假设将()x f 的图象沿x 轴向右平移61个单位长度,得到的图象经过坐标原点;假设将()x f 的图象上所有的点的横坐标缩短到原来的21倍〔纵坐标不变〕, 得到的图象经过点⎪⎭⎫⎝⎛1,61. 那么( ) A.6,πφπω== B.3,2πφπω== C.8,43πφπω== D. 适合条件的φω,不存在 14. 设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,那么f (x )的图象的一条对称轴的方程是( ) A.9π=x B.6π=x C.3π=x D.2π=x三角函数图像与性质练习题答案三角函数的图象和性质练习题(二)一、选择题1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,那么ϕ的值是〔 〕A.0B.4πC.2πD.π2. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,那么ϕ等于A .12π-B .3π-C .3πD .12π 3.假设,24παπ<<那么〔 〕 (45<a<90)A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>1 2 3 4 5 6 7 8 9 10 C C B A B B C A A A 11 12 13 14 CAAA4.函数23cos()56y x π=-的最小正周期是〔 〕A .52πB .25π C .π2 D .π5 5.在函数x y sin =、x y sin =、2sin(2)3y x π=+、2cos(2)3y x π=+中, 最小正周期为π的函数的个数为〔〕. A .1个B .2个 C .3个 D .4个6.x x x f 32cos 32sin)(+=的图象中相邻的两条对称轴间距离为 〔 〕 A .3π B .π34 C .π23 D .π677. 函数)252sin(π+=x y 的一条对称轴方程〔 〕A .2π-=xB .4π-=xC .8π=xD .=x π458. 使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值,那么ω的最小值为〔 〕 A .π25B .π45C .πD .π23二、填空题1.关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数; ②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数.其中一个假命题的序号是,因为当α=时,该命题的结论不成立.2.函数xxy cos 2cos 2-+=的最大值为________.3.假设函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,那么自然数k 的值为______. 4.满足23sin =x 的x 的集合为_________________________________. 5.假设)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,那么ϖ=________.三、解答题1.比拟大小〔1〕00150sin ,110sin ;〔2〕00200tan ,220tan 2. (1) 求函数1sin 1log 2-=xy 的定义域. 〔2〕设()sin(cos ),(0)f x x x π=≤≤,求()f x 的最大值与最小值. 3.)33sin(32)(πω+=x x f 〔ω>0〕〔1〕假设f (x +θ)是周期为2π的偶函数,求ω及θ值; ω= 1/3 ,θ= . 〔2〕f (x )在〔0,3π〕上是增函数,求ω最大值 "三角函数的图象和性质练习题二"参考答案一、选择题 1.C [解析]:当2πϕ=时,sin(2)cos 22y x x π=+=,而cos 2y x =是偶函数2.C [解析]:函数x y 4sin =的图象向左平移12π个单位,得到)12(4sin π+=x y 的图象,故3πϕ=3.D [解析]:tan 1,cos sin 1,ααα><<αααcos sin tan >>4.D [解析]:2525T ππ== 5.C [解析]:由x y sin =的图象知,它是非周期函数6.C [解析]: ∵x x x f 32cos 32sin)(+==)432sin(2π+x∴图象的对称轴为πππk x +=+2432,即)(2383Z k k x ∈+=ππ故相邻的两条对称轴间距离为π237.A [解析]:当2π-=x 时 )252sin(π+=x y 取得最小值-1,应选A8.A [解析]:要使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值 只需要最小正周期⋅45ωπ2≤1,故πω25≥ 二、填空题1、①0[解析]:此时()cos f x x =为偶函数2、3[解析]:2cos 4cos 2412cos 2cos 2cos x x y x x x++-===----3、2,3或[解析]:,12,,2,32T k k N k kkππππ=<<<<∈⇒=而或4、|2,2,33x x k k k Z ππππ⎧⎫=++∈⎨⎬⎩⎭或 5、34[解析]:[0,],0,0,3333x x x ππωππω∈≤≤≤≤< 三、解答题1.解:〔1〕0sin110sin 70,sin150sin 30,sin 70sin 30,sin110sin150==>∴>而 〔2〕0tan 220tan 40,tan 200tan 20,tan 40tan 20,tan 220tan 200==>∴>而 2.解:〔1〕221111log 10,log 1,2,0sin sin sin sin 2x x x x -≥≥≥<≤ 22,6k x k πππ<≤+或522,6k x k k Z ππππ+≤<+∈5(2,2][2,2),()66k k k k k Z ππππππ++∈为所求.〔2〕0,1cos 1x x π≤≤-≤≤当时,而[11]-,是()sin f t t =的递增区间 当cos 1x =-时,min ()sin(1)sin1f x =-=-; 当cos 1x =时,max ()sin1f x =. 4.解:(1) 因为f (x +θ)=)333sin(32πθω++x又f (x +θ)是周期为2π的偶函数, 故∈+==k k 6,31ππθω Z(2) 因为f (x )在〔0,3π〕上是增函数,故ω最大值为61三角函数的图象专项练习一.选择题1.为了得到函数)62sin(π-=x y 的图象,可以将函数y=cos2x 的图象 ( )A .向右平移6π个单位长度B. 向右平移3π个单位长度 C. 向左平移6π个单位长度 D. 向左平移3π个单位长度2.以下函数中振幅为2,周期为π,初相为6π的函数为 ()A .y=2sin(2x+3π) B. y=2sin(2x+6π) C .y=2sin(21x+3π) D. y=2sin(21x+6π) 3.三角方程2sin(2π-x)=1的解集为 ( ) A .{x│x=2kπ+3π,k∈Z}B .{x│x=2kπ+35π,k∈Z}.C .{x│x=2kπ±3π,k∈Z}D .{x│x=kπ+(-1)K ,k∈Z}.4.假设函数f(x)=sin(ωx+ϕ)的图象〔局部〕如下图,那么ω,ϕ的取值是 ( )A .3,1πϕω==B.3,1πϕω-==C .6,21πϕω==D.6,21πϕω-==5.函数y=tan(2x+φ)的图象过点(0,12π),那么φ的值可以是 ( ) A. -6π B. 6π C.12π- D.12π6.设函数y=2sin(2x+Φ)的图象为C ,那么以下判断不正确的选项是〔 〕A .过点(,2)3π的C 唯一 B.过点(,0)6π-的C 不唯一C .C 在长度为2π的闭区间上至多有2个最高点D .C 在长度为π的闭区间上一定有一个最高点,一个最低点 7.方程)4cos(lg π-=x x 的解的个数为〔 〕A .0B .无数个C .不超过3D .大于38.假设函数y=f(x)的图像上每点的纵坐标保持不变,横坐标伸长到原2倍,然后再将整个图像沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图像,那么y=f(x)是 ( )A .1sin(2)122y x π=++B.1sin(2)122y x π=-+ C .1sin(2)124y x π=-+ D.11sin()1224y x π=++9.()sin()2f x x π=+,()cos()2g x x π=-,那么f(x)的图像 ( )A .与g(x)的图像一样 B.与g(x)的图像关于y 轴对称C .向左平移2π个单位,得g(x)的图像 D.向右平移2π个单位,得g(x)的图像 10.函数f(x)=sin(2x+2π)图像中一条对称轴方程不可能为( )A.x=4πB. x=2πC. x=πD. x=23π11.函数y=2与y=2sinx ,x ∈3[,]22ππ-所围成的图形的面积为 ( ) A .πB.2πC.3πD.4π12.设y=f(t)是某港口水的深度y 〔米〕关于时间t 〔时〕的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asina(ωt+ϕ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A.]24,0[,6sin312∈+=t t y πB.]24,0[),6sin(312∈++=t t y ππC.]24,0[,12sin 312∈+=t t y πD.]24,0[),212sin(312t t y ππ++=二.填空题 13.函数y=5sin(3x −2π)的频率是______________。

三角函数图像和性质练习题(附答案)

三角函数图像和性质练习题(附答案)

三角函数的图像与性质【1】一、选择题1.已知函数f(x)=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,则ϖ的最小值等于( )A.32 B.23C.2D.3 2.若函数cos()3y x πω=+(0)ω>的图象相邻两条对称轴间距离为2π,则ω等于. A .12B .12C .2D .43.将函数sin()()6yx x R π=+∈的图象上所有的点向左平行移动4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈ C .sin()()212x y x R π=-∈ D .5sin()()224x y x R π=+∈4.函数2)62cos(-+=πx y 的图像F 按向量a 平移到F /,F /的解析式y=f(x),当y=f(x)为奇函数时,向量a 可以等于A.)2,6(-π B.)2,6(π C.)2,6(--π D.)2,6(π-5.将函数sin y x =的图象向左平移(02)ϕϕπ≤≤个单位后,得到函数sin()6yx π=-的图象,则ϕ等于( )A .6πB .76πC .116πD .56π6.函数x x y 2cos 32sin -=)66(ππ≤≤-x 的值域为A.[]2,2- B. []0,2- C. []2,0 D. ]0,3[-7.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是 ( )A .B .C.D.8.函数f(θ ) =sin θ-1cos θ-2的最大值和最小值分别是()(A) 最大值 43 和最小值0(B)最大值不存在和最小值 34(C) 最大值 -43 和最小值0(D) 最大值不存在和最小值-349.ααcos sin +=t且αα33cos sin +<0,则t 的取值范围是( )A. [)0,2-B. []2,2-C. ()(]2,10,1 -D. ()()+∞-,30,310.把函数)(x f y =的图象沿着直线0=+y x 的方向向右下方平移22个单位,得到函数x y 3sin =的图象,则()A 、2)23sin(--=x yB 、2)63sin(--=x yC 、2)23sin(++=x yD 、2)63sin(++=x y二、填空题11.设函数).0)(3cos()(πϕϕ<<+=x x f 若)()(x f x f '+是奇函数,则ϕ=. 12.方程2cos()14x π-=在区间(0,)π内的解是.13.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间14.已知x R ∈,则函数sin cos ()max sin ,cos ,2x x f x x x +⎧⎫=⎨⎬⎩⎭的最大值与最小值的和等于。

三角函数图像及性质,图像变换习题

三角函数图像及性质,图像变换习题

考点测试20 三角函数的图象和性质一、根底小题1.f(x)=sin ⎝⎛⎭⎫x +π2,g(x)=cos ⎝⎛⎭⎫x -π2,那么f(x)的图象( ) A .与g(x)的图象相同 B .与g(x)的图象关于y 轴对称 C .向左平移π2个单位,得到g(x)的图象 D .向右平移π2个单位,得到g(x)的图象解析 因为g(x)=cos ⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫π2-x =sinx ,所以f(x)向右平移π2个单位,可得到g(x)的图象,应选D. 2.函数y =+sinx -1的值域为( )A .[-1,1]B .⎣⎡⎦⎤-54,-1C .⎣⎡⎦⎤-54,1 D .⎣⎡⎦⎤-1,54 答案 C 解析 (数形结合法)y =+sinx -1,令sinx =t ,那么有y =t2+t -1,t ∈[-1,1],画出函数图象如下图,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t2+t -1可得y ∈⎣⎡⎦⎤-54,1. 3.函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[-π,0])的单调递增区间是( ) A .⎣⎡⎦⎤-π,-5π6 B .⎣⎡⎦⎤-π3,0 C .⎣⎡⎦⎤-2π3,-π6 D .⎣⎡⎦⎤-π3,-π6 答案 C 解析 因为y =2sin ⎝⎛⎭⎫π6-2x =-2sin ⎝⎛⎭⎫2x -π6,所以函数y =2sin ⎝⎛⎭⎫π6-2x 的单调递增区间就是函数y =sin ⎝⎛⎭⎫2x -π6的单调递减区间.由π2+2kπ≤2x -π6≤3π2+2kπ(k ∈Z),解得π3+kπ≤x≤5π6+kπ(k ∈Z),即函数y =2sin ⎝⎛⎭⎫π6-2x 的单调递增区间为⎣⎡ π3+kπ,⎦⎤5π6+kπ(k ∈Z),又x ∈[-π,0],所以k =-1,故函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[-π,0])的单调递增区间为⎣⎡⎦⎤-2π3,-π6. 4.使函数f(x)=sin(2x +φ)为R 上的奇函数的φ的值可以是( ) A .π4 B .π2C .πD .3π2答案 C 解析 假设f(x)是R 上的奇函数,那么必须满足f(0)=0,即sinφ=0.∴φ=kπ(k ∈Z),应选C. 5.函数f(x)=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,假设f(x)的值域是⎣⎡⎦⎤-12,1,那么a 的取值范围是( ) A .⎝⎛⎦⎤0,π3 B .⎣⎡⎦⎤π3,π2 C .⎣⎡⎦⎤π2,2π3 D .⎣⎡⎦⎤π3,π 解析 假设-π3≤x≤a ,那么-π6≤x +π6≤a +π6.因为当x +π6=-π6或x +π6=7π6时,sin ⎝⎛⎭⎫x +π6=-12,当x +π6=π2时,sin ⎝⎛⎭⎫x +π6=1,所以要使f(x)的值域是⎣⎡⎦⎤-12,1,那么有π2≤a +π6≤7π6,即π3≤a≤π,即a 的取值范围是⎣⎡⎦⎤π3,π.应选D.二、高考小题6.[2021·全国卷Ⅰ]函数f(x)=cos(ωx +φ)的局部图象如下图,那么f(x)的单调递减区间为( ) A .⎝⎛⎭⎫kπ-14,kπ+34,k ∈Z B.⎝⎛⎭⎫2kπ-14,2kπ+34,k ∈ZC .⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z D 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f(x)的一个周期)内,函数f(x)的单调递减区间为⎝⎛⎭⎫-14,34.由f(x)是以2为周期的周期函数可知,f(x)的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,应选D. 7.[2021·四川高考]以下函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin2x +cos2x D .y =sinx +cosx答案 A 解析 选项A ,y =cos ⎝⎛⎭⎫2x +π2=-sin2x ,符合题意,应选A. 三、模拟小题8.[2021·广州调研]函数f(x)=sinx +x 在区间[0,+∞)内( ) A .没有零点B .有且仅有1个零点C .有且仅有2个零点D .有且仅有3个零点答案 B 解析 在同一坐标系中画出函数y =sinx 与y =-x 的图象,由图象知这两个函数图象有1个交点,∴函数f(x)=sinx +x 在区间[0,+∞)内有且仅有1个零点.9.[2021·河北邢台调研]定义在R 上的函数f(x)满足:当sinx≤cosx 时,f(x)=cosx ,当sinx>cosx 时,f(x)=sinx.给出以下结论:①f(x)是周期函数;②f(x)的最小值为-1;③当且仅当x =2kπ(k ∈Z)时,f(x)取得最小值; ④当且仅当2kπ-π2<x<(2k +1)π(k ∈Z)时,f(x)>0;⑤f(x)的图象上相邻两个最低点的距离是2π.其中正确的结论序号是________.答案 ①④⑤解析 易知函数f(x)是周期为2π的周期函数.函数f(x)在一个周期内的图象如下图. 由图象可得,f(x)的最小值为-22,当且仅当x =2kπ+5π4(k ∈Z)时,f(x)取得最小值;当且仅当2kπ-π2<x<(2k +1)π(k ∈①④⑤.四、模拟大题10.[2021·江西上饶模拟]设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)图象的一条对称轴是直线x =π8.(1)求φ的值;(2)求函数y =f(x)的单调递增区间.解 (1)由f ⎝⎛⎭⎫π8=±1得sin ⎝⎛⎭⎫π4+φ=±1,∵-π<φ<0,∴-3π4<φ+π4<π4,∴φ+π4=-π2,φ=-3π4. (2)由(1)得f(x)=sin ⎝⎛⎭⎫2x -3π4,令-π2+2kπ≤2x -3π4≤π2+2kπ,k ∈Z , 可解得π8+kπ≤x≤5π8+kπ,k ∈Z.因此y =f(x)的单调增区间为⎣⎡⎦⎤π8+kπ,5π8+kπ,k ∈Z.函数y =Asin(ωx +φ)的图象和性质一、根底小题1.将函数y =sinx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10B .y =sin ⎝⎛⎭⎫12x -π20C .y =sin ⎝⎛⎭⎫2x -π5 D .y =sin ⎝⎛⎭⎫12x -π10 答案 B 解析 将函数y =sinx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y =sin 12x ,再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x -π10=sin ⎝⎛⎭⎫12x -π20.应选B. 2.要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin4x 的图象( ) A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位 D .向右平移π3个单位答案 B 解析 y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12,故要将函数y =sin4x 的图象向右平移π12个单位.应选B. 3.以下函数中,最小正周期为π且图象关于原点对称的函数是( )A .y =cos ⎝⎛⎭⎫2x +π2B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin2x +cos2xD .y =sinx +cosx答案 A 解析 采用验证法.由y =cos ⎝⎛⎭⎫2x +π2=-sin2x ,可知该函数的最小正周期为π且为奇函数,应选A.4.函数f(x)=sin(ωx +φ)⎝⎛⎭⎫x ∈R ,ω>0,|φ|<π2的局部图象如下图,那么函数f(x)的解析式为( ) A .f(x)=sin ⎝⎛⎭⎫2x +π4B .f(x)=sin ⎝⎛⎭⎫2x -π4C .f(x)=sin ⎝⎛⎭⎫4x +π4D .f(x)=sin ⎝⎛⎭⎫4x -π4 答案 A 解析 由题图可知,函数y =f(x)的最小正周期为T =2πω=⎝⎛⎭⎫3π8-π8×4=π,所以ω=2,又函数f(x)的图象经过点⎝⎛⎭⎫π8,1,所以sin ⎝⎛⎭⎫π4+φ=1,那么π4+φ=2kπ+π2(k ∈Z),解得φ=2kπ+π4,又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎫2x +π4,应选A.5.函数y =2sin ⎝⎛⎭⎫π6x -π3(0≤x≤9)的最大值与最小值之和为( )答案 A 解析 ∵0≤x≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝⎛⎭⎫π6x -π3≤1,∴-3≤2sin ⎝⎛⎭⎫π6x -π3≤2, ∴函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为2- 3.6.ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)图象的两条相邻的对称轴,那么φ=( )A .π4B .π3C .π2D .3π4答案 A 解析 由题意可知函数f(x)的周期T =2×⎝⎛⎭⎫5π4-π4=2π,故ω=1,∴f(x)=sin(x +φ),令x +φ=kπ+π2(k ∈Z),将x =π4代入可得φ=kπ+π4(k ∈Z),∵0<φ<π,∴φ=π4.7.函数f(x)=sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,那么( ) A .函数f(x)的图象关于点⎝⎛⎭⎫π3,0对称 B .函数f(x)的图象关于直线x =π3对称 C .函数f(x)的图象向右平移π3个单位后,图象关于原点对称 D .函数f(x)在区间(0,π)内单调递增答案 C 解析 因为函数的周期T =2πω=4π,所以ω=12,所以f(x)=sin ⎝⎛⎭⎫12x +π6.当x =π3时,f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫12×π3+π6=sin π3=32,所以A 、B 错误.将函数f(x)的图象向右平移π3个单位后得到g(x)=sin ⎣⎡⎦⎤12⎝⎛⎭⎫x -π3+π6=sin x2的图象,关于原点对称,所以C 正确.由-π2+2kπ≤12x +π6≤π2+2kπ(k ∈Z),得-4π3+4kπ≤x≤2π3+4kπ(k ∈Z),所以f(x)=sin ⎝⎛⎭⎫12x +π6的单调递增区间为⎣⎡ -4π3+4kπ,⎦⎤2π3+4kπ,k ∈Z ,当k =0时,增区间为⎣⎡⎦⎤-4π3,2π3,所以D 错误.应选C.8.函数f(x)=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,那么f ⎝⎛⎭⎫π6=________. 答案 ±2解析 函数f(x)=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,那么其对称轴为x =π6,所以f ⎝⎛⎭⎫π6=±2.二、高考小题9.[2021·全国卷Ⅱ]假设将函数y =2sin2x 的图象向左平移π12个单位长度,那么平移后图象的对称轴为( )A .x =kπ2-π6(k ∈Z)B .x =kπ2+π6(k ∈Z)C .x =kπ2-π12(k ∈Z)D .x =kπ2+π12(k ∈Z)答案 B 解析 将函数y =2sin2x 的图象向左平移π12个单位长度得到函数y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12=2sin ⎝⎛⎭⎫2x +π6的图象,由2x +π6=kπ+π2(k ∈Z),可得x =kπ2+π6(k ∈Z).那么平移后图象的对称轴为x =kπ2+π6(k ∈Z),应选B.10.[2021·北京高考]将函数y =sin ⎝⎛⎭⎫2x -π3图象上的点P ⎝⎛⎭⎫π4,t 向左平移s(s>0)个单位长度得到点P′.假设P′位于函数y =sin2x 的图象上,那么( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3答案 A 解析 点P ⎝⎛⎭⎫π4,t 在函数y =sin ⎝⎛⎭⎫2x -π3的图象上,∴t =sin ⎝⎛⎭⎫2×π4-π3=12. 函数y =sin ⎝⎛⎭⎫2x -π3的图象向左平移π6个单位长度即可得到函数y =sin2x 的图象,故s 的最小值为π6.11.[2021·福州一中模拟]函数f(x)=Asin(ωx +φ)⎝⎛⎭⎫A>0,ω>0,|φ|<π2的局部图象如下图,为了得到函数g(x)=Asi nωx 的图象,只需要将y =f(x)的图象( )A .向左平移π3个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度答案 D 解析 根据函数f(x)=Asin(ωx +φ)( A>0,ω>0,|φ|<π2 )的局部图象,可得A =2,T 4=2πω·14=π3-π12,求得ω=2.再根据五点法作图可得2·π12+φ=π2,求得φ=π3,∴f(x)=2sin ⎝⎛⎭⎫2x +π3,g(x)=2sin2x ,故把f(x)=2sin ⎝⎛⎭⎫2x +π3的图象向右平移π6个单位长度,可得g(x)=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=2sin2x 的图象,应选D. 三、高考大题12.[2021·湖北高考]某同学用“五点法〞画函数f(x)=Asin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了局部数据,如下表:ωx +φ 0 π2 π 3π2 2π x π3 5π6 Asin(ωx +φ)5-5(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)将y =f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g(x)的图象.假设y =g(x)图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.解 (1)根据表中数据,解得A =5,ω=2,φ=-π6.数据补全如下表:ωx +φ 0 π2 π 3π2 2π xπ12π37π125π61312π且函数表达式为f(x)=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f(x)=5sin ⎝⎛⎭⎫2x -π6,那么g(x)=5sin ⎝⎛⎭⎫2x +2θ-π6.因为函数y =sinx 的对称中心为(kπ,0),k ∈Z. 令2x +2θ-π6=kπ,k ∈Z ,解得x =kπ2+π12-θ,k ∈Z.由于函数y =g(x)的图象关于点⎝⎛⎭⎫5π12,0成中心对称, 所以令kπ2+π12-θ=5π12,k ∈Z ,解得θ=kπ2-π3,k ∈Z.由θ>0可知,当k =1时,θ取得最小值π6.。

三角函数的图像与性质(各地经典题)

三角函数的图像与性质(各地经典题)

三角函数的图像与性质1.【湖南省邵阳市邵东县第一中学2019-2020学年高一期末】函数f (x )=x 2﹣2x +1的图象与函数g (x )=3cos πx 的图象所有交点的横坐标之和等于( ) A .2B .4C .6D .82.【西藏林芝市第二高级中学2019-2020学年高一期末】下列函数中,最小正周期为π的是( ) A .sin y x =B .cos y x =C .sin cos y x x =+D .sin cos y x x =⋅3.【陕西省宝鸡市渭滨区2019-2020学年高一期末】已知奇函数()2sin()(0,02)f x x ωϕωϕπ=+><<满足()()44f x f x ππ+=-,则ω的取值可能是( )A .1B .2C .3D .44.【广西河池市2019-2020学年高一期末】将函数()cos(2)(0)f x x ϕϕ=+>的图象向右平移6π个单位长度后得到函数()g x 的图象,若点,04π⎛⎫- ⎪⎝⎭是函数()y g x =图象的一个对称中心,则ϕ的最小值为( ) A .6πB .4πC .3π D .43π 5.【吉林省吉林地区普通高中友好学校联合体第三十届基础年段2019-2020学年高一期末】函数2sin 3cos 3y x x =--+的最小值是( )A .14-B .0C .2D .66.【陕西省咸阳市2019-2020学年高一期末】已知函数()()sin f x x ωϕ=+(0>ω,ϕπ<)的最小正周期为π,且其图象向右平移6π个单位长度得到函数()cos g x x ω=的图象,则()f x 图象的一条对称轴为( ) A .56x π=B .2x π=C .23x π=D .x π=7.【上海市静安区2019-2020学年高一期末】对于函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭,下列命题:①函数()sin 26f x x π⎛⎫+⎝=⎪⎭对任意x 都有66f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭. ②函数()sin 26f x x π⎛⎫+⎝=⎪⎭图像关于点5,012π⎛⎫⎪⎝⎭对称.③函数()sin 26f x x π⎛⎫+⎝=⎪⎭图像可看作是把sin 2y x =的图像向右平移12π个单位而得到. ④函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭图像可看作是把sin 6y x π⎛⎫=+ ⎪⎝⎭的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变)而得到.其中正确命题的个数是( ) A .1B .2C .3D .48.【云南省昆明市2019-2020学年高一期末】若函数()sin()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭同时满足下列三个条件:①当()()121f x f x ==时,12x x -的最小值为π;②()f x 在0,6π⎛⎫⎪⎝⎭上不是单调函数;③()f x 在70,8π⎡⎤⎢⎥⎣⎦上有且仅有一个零点.则实数ϕ的取值范围为( )A .0,6π⎛⎫⎪⎝⎭B .,64ππ⎛⎫⎪⎝⎭ C .,43ππ⎛⎫⎪⎝⎭ D .,32ππ⎛⎫⎪⎝⎭9.【浙江省杭州市高级中学2019-2020学年高一上学期期末】已知函数()f x 是R 上的增函数,且,其中ω是锐角,并且使得()sin 4g x x πω⎛⎫=+⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调递减,则ω的取值范围是( ) A .5,44π⎛⎤⎥⎝⎦B .5,42π⎡⎫⎪⎢⎣⎭C .1,24π⎡⎫⎪⎢⎣⎭D .15,24⎡⎤⎢⎥⎣⎦10.【江西省南昌市八一中学、洪都中学等六校2019-2020学年高一上学期期末联考】设函数(),,则方程在区间上的解的个数是 A .B .C .D .11.【吉林省实验中学2019-2020学年高一上学期期末】已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦12.【安徽省合肥一中,八中、六中2019-2020 学年高一上学期期末】关于函数()sin |||sin |f x x x =+有下述四个结论:①()f x 是偶函数 ②()f x 的最大值为2 ③()f x 在[],ππ-有4个零点 ④()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递减 其中所有正确结论的编号是( ) A .①②④B .②③④C .①③④D .①②③13.【四川省成都市2019-2020学年高一上学期期末】已知函数()()sin f x x R ωω=∈是7,212ππ⎛⎫⎪⎝⎭上的增函数,且满足3244f f ππ⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭,则12f π⎛⎫⎪⎝⎭的值组成的集合为( )A .11,2⎧⎫--⎨⎬⎩⎭B .1,⎧⎪-⎨⎪⎪⎩⎭C .11,2⎧⎪--⎨⎪⎪⎩⎭D .11,2⎧⎫⎪⎪-⎨⎬⎪⎪⎩⎭14.【浙江省绍兴市2019-2020学年高一上学期期末】存在函数()f x 满足:对任意的x ∈R 都有( ) A .()sin sin 2f x x = B .()sin 1f x x =+ C .()2cos cos 1f x x =+D .()cos 2cos 1f x x =+15.【湖北省武汉市武昌区2019-2020学年高一上学期期末】设函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[0,2]π有且仅有5个零点.给出下述三个结论: ①()1y f x =+在(0,2)π有且仅有2个零点; ②()f x 在0,17π⎛⎫⎪⎝⎭单调递增;③ω的取值范围是717,36⎡⎫⎪⎢⎣⎭其中,所有正确结论的编号是( ) A .①②B .①③C .②③D .①②③16.【上海市实验学校2019-2020学年高一期末】已知函数()()[]5sin 2,0,,0,52f x x x πθθπ⎛⎤=-∈∈ ⎥⎝⎦,若函数()()3F x f x =-的所有零点依次记为123,,,,n x x x x 且1231n n x x x x x -<<<<<,*n N ∈,若123212222n n x x x x x --+++++832n x π+=,则θ=__________.17.【浙江省金华市金华十校2019-2020学年高一上学期期末】已知函数()sin cos sin cos f x x x x x =--,,2x πθ⎡⎤∈-⎢⎥⎣⎦,若()f x 的值域为[]1,1-,则θ的取值范围是__________.18.【重庆市重庆一中2017-2018年度高一上期末】已知函数()3sin2cos2f x x x =+,现有如下几个命题: ①该函数为偶函数; ②,46ππ⎡⎤-⎢⎥⎣⎦是该函数的一个单调递增区间; ③该函数的最小正周期为π; ④该函数的图像关于点7,012π⎛⎫⎪⎝⎭对称; ⑤该函数的值域为[]1,2-. 其中正确命题的编号为 ______ .19.【黑龙江省大庆市大庆中学2019-2020学年高一上学期期末】下列说法中,所有正确说法的序号是__________.①终边落在y 轴上角的集合是|,2k k Z παα⎧⎫=∈⎨⎬⎩⎭; ②函数2cos 4y x π⎛⎫=-⎪⎝⎭图象的一个对称中心是3,04π⎛⎫⎪⎝⎭; ③函数tan y x =在第一象限是增函数; ④为了得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,只需把函数sin 2y x =的图象向右平移6π个单位长度.20.【重庆市北碚区2019-2020学年高一上学期期末】将函数())13f x x π=+-的图象向左平移3π个单位长度,再向上平移1个单位长度,得到函数()g x 的图象,则函数()g x 具有性质__________.(填入所有正确性质的序号)3x π=-对称;②图象关于y 轴对称; ③最小正周期为π; ④图象关于点(,0)4π对称;⑤在(0,)3π上单调递减21.【湖北省武汉市(第十五中学、十七中学、常青)2019-2020学年高一上学期期末】已知函数()sin f x x x =+,则下列命题正确的是_____.(填上你认为正确的所有命题序号)①函数()0,2f x x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的单调递增区间是06,π⎡⎤⎢⎥⎣⎦; ②函数()f x 的图像关于点,06π⎛⎫-⎪⎝⎭对称; ③函数()f x 的图像向左平移(0)m m >个单位长度后,所得的图像关于y 轴对称,则m 的最小值是6π; ④若实数m 使得方程()f x m =在[0,2]π上恰好有三个实数解123,,x x x ,则12373x x x π++=.22.【安徽省合肥市一六八中学2019-2020学年高一上学期期末】设函数()xf x mπ=,存在0x 使得()0|()|f x f x ≤和()22200x f x m +<⎡⎤⎣⎦成立,则m 的取值范围是________.23.【河北省邢台市2019-2020学年高一上学期期末】已知函数()sin f x a x x =+的图象关于直线76x π=对称,则函数7()()5g x f x =-在7,22ππ⎡⎤-⎢⎥⎣⎦上的所有零点之和为________. 24.【湖北省武汉市(第一中学、第三中学等六校)2019-2020学年高一上学期期末】若函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭和()()3cos 2g x x ϕ=+的图像的对称轴完全相同则当[]0,x π∈,关于x的不等式()10f x -≥的解集为________.25.【上海市青浦高级中学2019-2020学年高一期末】若不等式(1)sin 10a x --<对于任意x ∈R 都成立,则实数a 的取值范围是____________.26.【江西省新余市2019-2020学年高一期末】将函数()cos 4f x x =-的图象向右平移4π个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()g x . (1)在ABC 中,三个内角,,A B C 且A B C <<,若C 角满足()1g C =-,求cos cos A B +的取值范围;(2)已知常数R λ∈,*n ∈N ,且函数()()sin F x g x x λ=+在()0,n π内恰有2021个零点,求常数λ 与n 的值.27.【广东省云浮市2019-2020学年高一上学期期末】已知函数22()3x xe ef x -+=,其中e 为自然对数的底数.(1)证明:()f x 在(0,)+∞上单调递增.(2)设0a >,函数2()cos2cos 3g x x a x a =+-+,如果总存在1],[x a a ∈-,对任意2x R ∈,()()12f x g x 都成立,求实数a 的取值范围.。

三角函数的图像与性质-拔高难度-习题

三角函数的图像与性质-拔高难度-习题

三角函数的图像与性质一、选择题(共12小题;共60分)1. 有下列说法:①作正弦函数的图象时,单位圆的半径长与 []_________________的图象关于点对称;③的图象关于直线成轴对称;④正弦函数()__________________ᗒ_ᗔ_ᗘ_ᡄ_ᡄ_ᡄ_ᡄ_ᡄA. B. C. D.2. 已知函数,则下列结论正确的是A. 的最小正周期是B. 在上单调递增C. 的图象关于对称D. 的图象关于点对称3. 已知函数,则下列结论中,正确的是A. 是奇函数B. 不是周期函数C. 定义域是D. 值域是4. 若函数在区间上单调递增,在区间上单调递减,则A. B. C. D.5. 已知函数,下面结论错误的是A. 函数的最小正周期为B. 函数在区间上是增函数C. 函数的图象关于直线对称D. 函数是奇函数6. 如图所示,对单摆施加一个作用力后单摆从某点开始来回摆动,离开平衡位置(/)_D_Dd__________-ðϨϨ____,单摆摆动时从最右边到最左边的距离为A. 厘米B. 厘米C. 厘米D. 厘米7. 函数)的图象是A. B.C. D.8. 已知和是函数的图象的两条相邻的对称轴,则A. B. C. D.9. 函数 (/内的图象是A. B.C. D.10. 已知函数,其部分图象如图所示,点(/)√D_,, ()的解析式可以是A. B.C. D.11. 函数在一个周期内的图象是A. B.C. D.12. 设,且,下列不等式中成立的是①;②;③;④.A. ①②B. ③④C. ①④D. ②③二、填空题(共5小题;共25分)13. 如果函数是定义在上的偶函数,其在上的图象如图所示,那么不等式D_Dd__________ĬĝϨϨ_14. 锐角三角形的内角分别是 D_Dd___①②③15. 已知,,的值为.16. 已知函数,则下面结论错误的是.(填序号)①函数的最小正周期为②函数在区间上是增函数;③函数的图象关于直线 (④函数是奇函数.17. 函数的最大值为,最小值为.三、解答题(共5小题;共65分)18. 求下列函数的最小正周期:(1);(2).19. 已知函数(1)当 ()D_的单调递减区间;(2)当时,在上的值域为,求20. 若的图象的一个对称中心为且,求 D21. 在锐角三角形 (){22. 已知函数(1)画出的图象,并写出其单调区间、最大值、最小值.(2)判断是否为周期函数,如果是,求出最小正周期.答案第一部分1. D 【解析】由正弦函数图象可明确判断出①②③④均正确.2. D3. D 【解析】因为,且在上是减函数,在上是增函数,所以函数的值域为.4. C 【解析】因为当时,函数是增函数,当时,函数为减函数,即当时,函数为增函数,当时,函数为减函数,所以,所以.5. D6. A 【解析】因为,所以,从最左边到平衡位置需要的时间为秒.由得从最右边到最左边的距离为厘米.7. D 【解析】利用排除法.由于时,无意义,故排除A,B,又因为时,有,,所以排除C.8. A 【解析】因为直线和是函数的图象的相邻的两条对称轴,所以,即,,又,所以,所以,因为直线是函数图象的对称轴,所以,所以,因为,所以,检验知此时直线也为函数图象的对称轴.9. D10. A【解析】由已知可得,设其周期为,则:,,,由于,可得:,可得:,整理可得:,解得:,,由于,可得:,所以,,,解得:,,所以,当时,,函数的解析式是.11. A 【解析】由,知,所以的周期为,排除B,D.令,得,所以,若,则,即图象过点.12. B 【解析】设点,点,由于函数的图象在上是上凸型的,而表示线段中点的纵坐标,故有,故①不正确;由于函数的图象在上是上凸型的,表示线段中点的纵坐标,故有,故②不正确;由于函数的图象在上是上凹型的,表示线段中点的纵坐标,故有,故③正确;由于函数的图象在上是上凹型的,故有,故④正确.第二部分13.【解析】当时,当时.由的图象知在上.因为为偶函数,也是偶函数,所以为偶函数,所以的解集为.14. ①②③【解析】故①成立.函数在区间上是减函数.因为所以,故②成立.在锐角三角形中,因为,所以,则有,即,同理,故③成立.15.【解析】构造函数,则在上是奇函数,由已知,,得,即.因为在上单调递增,且,所以,所以.16. ④【解析】因为,所以,故①正确;因为在上是减函数,则在上是增函数,故②正确;由图象知的图象关于直线对称,故③正确;为偶函数,故④不正确.17. ,【解析】由题知,而,所以函数的最大值为,最小值为.素材来源于网络,林老师编辑整理第三部分18. (1)因为,即,所以所求函数的最小正周期是.另解:.(2)因为,所以所求函数的最小正周期是.另解.19. (1)当时,.因为的单调递减区间为,所以当.即时,是减函数,所以的单调递减区间是.(2),因为,所以,所以.又因为,所以,所以.因为的值域是,所以,且,解得,.20. 因为的对称中心为,所以,把代入,得,又因为,所以当时,;当时,,所以或.21. 因为为锐角三角形,所以,所以,因为在上是增函数,所以,同理可得,,所以.22. (1)图中实线为的图象.由图可知,函数的单调递增区间为,,单调递减区间为,,,.(2)由(1)知为周期函数,最小正周期.。

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。

三角函数图像与性质练习题

三角函数图像与性质练习题

三角函数图像与性质练习题三角函数是高中数学中的重要内容,它们在数学和物理等学科中有着广泛的应用。

掌握三角函数的图像和性质对于解题和理解概念非常重要。

本文将通过一些练习题来帮助读者加深对三角函数图像和性质的理解。

1. 练习题一:给定函数y = sin(x),请画出它的图像。

解答:首先,我们需要知道sin函数的一个周期是2π。

根据这个周期,我们可以画出一段函数图像。

在0到2π的区间内,sin函数的图像从0开始,然后逐渐上升到1,再下降到0,最后再下降到-1。

这样,我们就得到了sin函数在0到2π区间内的图像。

为了得到完整的图像,我们可以将这段图像沿x轴复制,直到覆盖整个坐标平面。

2. 练习题二:给定函数y = cos(x),请画出它的图像。

解答:cos函数与sin函数非常相似,它们的主要区别在于初始值和峰值。

对于cos函数,它的初始值是1,而峰值是-1。

在0到2π的区间内,cos函数的图像从1开始,然后逐渐下降到-1,再上升到0,最后再上升到1。

同样地,我们可以将这段图像沿x轴复制,直到覆盖整个坐标平面。

3. 练习题三:给定函数y = tan(x),请画出它的图像。

解答:tan函数是sin函数和cos函数的比值,它的图像有一些特殊性质。

首先,tan函数在π/2和3π/2处有垂直渐近线,这是因为在这些点上,cos函数的值为0。

其次,tan函数的图像在每个π的整数倍处有一个周期。

我们可以通过计算一些点的坐标来画出tan函数的图像。

例如,当x等于0时,tan(0)等于0;当x等于π/4时,tan(π/4)等于1;当x等于π/2时,tan(π/2)是无穷大。

根据这些点的坐标,我们可以画出tan函数的图像。

通过这些练习题,我们可以加深对三角函数图像的理解。

除了图像,三角函数还有许多重要的性质。

例如,sin函数和cos函数的值都在-1到1之间;tan函数在某些点上是无穷大;sin函数和cos函数是周期函数等等。

三角函数的图像与性质练习题

三角函数的图像与性质练习题

三角函数的图像与性质练习题一、选择题1. 在三角函数sin(x)的定义域内,函数值的范围是:A. (-∞, ∞)B. [-1, 1]C. [0, 1]D. [0, 2π]2. 函数y = cos(x)的一个周期是:A. πB. 2πC. π/2D. 4π3. 函数y = tan(x)的导数是:A. sec^2(x)B. cos^2(x)C. sin^2(x)D. csc^2(x)4. 在函数y = sin(x)的图像中,当x = π/2时,函数值等于:B. 1C. -1D. 不存在5. 函数y = cos(x)的对称轴是:A. y轴B. x轴C. 原点D. 平行于x轴且距离x轴1个单位的直线6. 函数y = tan(x)在定义域内的奇点是:A. x = 0B. x = π/2C. x = πD. x = 2π7. 函数y = sin^2(x) + cos^2(x)等于:A. 1B. 0C. 28. 函数y = sin(x) + cos(x)的一个周期是:A. 2πB. 4πC. π/2D. π/4二、填空题1. 函数y = sin(x)在区间[0, π]内的最小值是____,最大值是____。

2. 函数y = cos(2x)的周期是____。

3. 函数y = cos(x)在区间[-π/2, π/2]内的最小值是____,最大值是____。

4. 函数y = tan(x)的定义域是____。

5. 函数y = sin(2x)的一个周期是____。

6. 函数y = cos(x)的对称中心是____。

7. 函数y = tan(x)在区间[0, π]内的最小值是____,最大值是____。

8. 函数y = sin^2(x)的对称轴是____。

三、解答题1. 画出函数y = sin(x)在区间[0, 2π]上的图像。

2. 画出函数y = cos(2x)的图像,并求出它在区间[0, 2π]上的最小值和最大值。

3. 画出函数y = tan(x)在区间[-π/2, π/2]上的图像,并指出它的所有零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的图像与性质练习题正弦函数、余弦函数的图象A组1.下列函数图象相同的是()=sin x与y=sin(x+π)=cos x与y=sin=sin x与y=sin(-x)=-sin(2π+x)与y=sin x解析:由诱导公式易知y=sin=cos x,故选B.答案:B=1+sin x,x∈[0,2π]的图象与直线y=2交点的个数是()解析:作出y=1+sin x在[0,2π]上的图象,可知只有一个交点.答案:B3.函数y=sin(-x),x∈[0,2π]的简图是()解析:y=sin(-x)=-sin x,x∈[0,2π]的图象可看作是由y=sin x,x∈[0,2π]的图象关于x轴对称得到的,故选B.答案:B4.已知cos x=-,且x∈[0,2π],则角x等于()A. B.C. D.解析:如图:由图象可知,x=.答案:A5.当x∈[0,2π]时,满足sin≥-的x的取值范围是()A. B. C. D.解析:由sin≥-,得cos x≥-.画出y=cos x,x∈[0,2π],y=-的图象,如图所示.∵cos=cos=-,∴当x∈[0,2π]时,由cos x≥-,可得x∈.答案:C6.函数y=2sin x与函数y=x图象的交点有个.?解析:在同一坐标系中作出函数y=2sin x与y=x的图象可见有3个交点.答案:37.利用余弦曲线,写出满足cos x>0,x∈[0,2π]的x的区间是.?解析:画出y=cos x,x∈[0,2π]上的图象如图所示. cos x>0的区间为答案:8.下列函数的图象:①y=sin x-1;②y=|sin x|;③y=-cos x;④y=;⑤y=.其中与函数y=sin x 图象形状完全相同的是.(填序号)?解析:y=sin x-1的图象是将y=sin x的图象向下平移1个单位,没改变形状,y=-cos x的图象是作了对称变换,没改变形状,与y=sin x的图象形状相同,∴①③完全相同.而②y=|sin x|的图象,④y==|cos x|的图象和⑤y==|sin x|的图象与y=sin x的图象形状不相同.答案:①③9.若函数y=2cos x(0≤x≤2π)的图象和直线y=2围成一个封闭的平面图形,求这个封闭图形的面积.解:观察图可知:图形S1与S2,S3与S4是两个对称图形,有S1=S2,S3=S4,因此函数y=2cos x的图象与直线y=2所围成的图形面积可以转化为求矩形OABC的面积.因为|OA|=2,|OC|=2π,所以S矩形OABC=2×2π=4π.故所求封闭图形的面积为4π.10.作出函数y=-sin x,x∈[-π,π]的简图,并回答下列问题.(1)观察函数图象,写出满足下列条件的x的区间:①y>0;②y<0.(2)直线y=与函数y=-sin x,x∈[-π,π]的图象有几个交点解:列表:x-π-0πsin0-1010x-sin010-10x描点作图:(1)根据图象可知,①当y>0时,x∈(-π,0);②当y<0时,x∈(0,π).(2)在简图上作出直线y=,由图可知有两个交点.B组1.函数f(x)=-cos x在[0,+∞)内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点解析:数形结合法,令f(x)=-cos x=0,则=cos x.设函数y=和y=cos x,它们在[0,+∞)上的图象如图所示,显然两函数图象的交点有且只有一个,所以函数f(x)=-cos x在[0,+∞)内有且仅有一个零点.答案:B2.已知f(x)=sin,g(x)=cos,则f(x)的图象()A.与g(x)的图象相同B.与g(x)的图象关于y轴对称C.向左平移个单位,得g(x)的图象D.向右平移个单位,得g(x)的图象解析:∵f(x)=sin=cos x,g(x)=cos=sin x,∴f(x)的图象向右平移个单位,得g(x)的图象.由y=sin x和y=cos x的图象知,A,B,C都错,D正确.答案:D3.在(0,2π)内,使sin x>cos x成立的x的取值范围是()A. B.C. D.解析:如图所示(阴影部分)时满足sin x>cos x.答案:C4.在[0,2π]内,不等式sin x<-的解集是.?解析:画出y=sin x,x∈[0,2π]的草图如下:因为sin,所以sin=-,sin=-.即在[0,2π]内,满足sin x=-的是x=或x=.可知不等式sin x<-的解集是.答案:5.(2016·河南南阳一中期末)函数y=的定义域是.?解析:由题意,得∴∴2kπ+≤x≤2kπ+π,k∈Z.故函数y=的定义域为,k∈Z.答案:,k∈Z6利用正弦曲线,写出函数y=2sin x的值域是.?解析:y=2sin x的部分图象如图.当x=时,y max=2,当x=时,y min=1,故y∈[1,2].答案:[1,2]7.画出正弦函数y=sin x(x∈R)的简图,并根据图象写出:(1)y≥时x的集合;(2)-≤y≤时x的集合.解:(1)画出y=sin x的图象,如图,直线y=在[0,2π]上与正弦曲线交于两点,在[0,2π]区间内,y≥时x的集合为.当x∈R时,若y≥,则x的集合为.(2)过两点分别作x轴的平行线,从图象可看出它们分别与正弦曲线交于点(k∈Z),(k∈Z)和点(k∈Z),(k∈Z),那么曲线上夹在对应两点之间的点的横坐标的集合即为所求,故当-≤y≤时x的集合为.8.作出函数y=2+sin x,x∈[0,2π]的简图,并回答下列问题:(1)观察函数图象,写出y的取值范围;(2)若函数图象与y=在x∈[0,π]上有两个交点,求a的取值范围.解:列表:x0π2πsin x010-102+sin23212x描点、连线,如图.(1)由图知,y∈[1,3].(2)由图知,当2≤<3时,函数图象与y=在[0,π]上有两个交点,即-5<a≤-3.故a的取值范围是(-5,-3].正弦函数、余弦函数的性质(一)A组1.函数f(x)=-2sin的最小正周期为()π C.π解析:T==2.答案:D2.下列函数中,周期为的是()=sin=sin 2x=cos=cos(-4x)解析:对D,y=cos(-4x)=cos 4x,∴T=,故选D.答案:D3.(2016·四川遂宁射洪中学月考)设函数f(x)=sin,x∈R,则f(x)是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数解析:因为f(x)=sin=-cos 2x,所以f(-x)=-cos 2(-x)=-cos 2x=f(x),所以f(x)是最小正周期为π的偶函数.答案:B4.已知函数f(x)=sin,g(x)=sin的最小正周期分别为T1,T2,则sin(T1+T2)=()C. D.解析:由已知T1=,T2=,∴sin(T1+T2)=sin=sin=-sin=-.答案:B5.(2016·浙江金华一中月考)设f(x)是定义域为R且最小正周期为2π的函数,且有f(x)=则f=()A.解析:因为f(x)是定义域为R且最小正周期为2π的函数,所以f=f=f.又因为0≤≤π,所以f=f=sin.答案:A6.函数y=4sin(2x+π)的图象关于对称.?解析:y=4sin(2x+π)=-4sin 2x,易证函数为奇函数,所以其图象关于原点对称.答案:原点7.函数y=sin(ω>0)的最小正周期为π,则ω=.?解析:∵y=sin的最小正周期为T=,∴,∴ω=3.答案:38.若f(x)(x∈R)为奇函数,且f(x+2)=f(x),则f(4)=.?解析:∵f(x+2)=f(x),∴f(x)的周期为T=2.∴f(4)=f(0).又f(x)(x∈R)为奇函数,∴f(0)=0.∴f(4)=0.答案:09.判断函数f(x)=cos(2π-x)-x3sin x的奇偶性.解:因为f(x)=cos(2π-x)-x3sin x=cos x-x3sin x的定义域为R,f(-x)=cos(-x)-(-x)3sin(-x)=cos x-x3sin x=f(x),所以f(x)为偶函数.10.若函数f(x)是以为周期的偶函数,且f=1,求f的值.解:∵f(x)的周期为,且为偶函数,∴f=f=f=f.而f=f=f=f=1,∴f=1.B组1.下列是定义在R上的四个函数图象的一部分,其中不是周期函数的是()解析:显然D中函数图象不是经过相同单位长度图象重复出现.而A,C中每经过一个单位长度,图象重复出现.B中图象每经过2个单位,图象重复出现.所以A,B,C中函数是周期函数,D中函数不是周期函数.答案:D2.函数y=cos(k>0)的最小正周期不大于2,则正整数k的最小值应是()解析:∵T=≤2,∴k≥4π.又k∈Z,∴正整数k的最小值为13.答案:D3.将函数y=sin x的图象向左平移个单位,得到函数y=f(x)的图象,则下列说法正确的是()=f(x)是奇函数=f(x)的周期为π=f(x)的图象关于直线x=对称=f(x)的图象关于点对称解析:y=sin x的图象向左平移个单位,得y=f(x)=sin=cos x的图象,所以f(x)是偶函数,A不正确;f(x)的周期为2π,B不正确;f(x)的图象关于直线x=kπ(k∈Z)对称,C不正确;f(x)的图象关于点(k∈Z)对称,当k=-1时,点为,故D正确.综上可知选D.答案:D4.若函数f(x)是以π为周期的奇函数,且当x∈时,f(x)=cos x,则f=()A. B.解析:∵f(x)的最小正周期是π,∴f=f=f.又f(x)是奇函数,∴f=-f=-cos=-.答案:C5.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=x-2,则有下面三个式子:①f<f;②f<f;③f(sin 1)<f(cos 1).其中一定成立的是.(填序号)?解析:当0≤x≤1时,3≤-x+4≤4,f(-x+4)=-x+4-2=-x+2,∴f[-(x-4)]=f(x-4)=f(x)=-x+2,∴f(x)在[0,1]上是减函数.∵1>sin>cos>0,1>sin 1>cos 1>0,1>cos>sin>0,∴f<f,f(sin 1)<f(cos1),f>f.答案:②③6.已知函数y=sin x+|sin x|.(1)画出这个函数的简图;(2)这个函数是周期函数吗如果是,求出它的最小正周期.解:(1)y=sin x+|sin x|=函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,故函数的最小正周期是2π.7.定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈时,f(x)=sin x.(1)求当x∈[-π,0]时,f(x)的解析式;(2)画出函数f(x)在[-π,π]上的简图;(3)求当f(x)≥时x的取值范围.解:(1)∵f(x)是偶函数,∴f(-x)=f(x).∵当x∈时,f(x)=sin x,∴当x∈时,f(x)=f(-x)=sin(-x)=-sin x.又当x∈时,x+π∈,f(x)的周期为π,∴f(x)=f(π+x)=sin(π+x)=-sin x.∴当x∈[-π,0]时,f(x)=-sin x.(2)如图.(3)∵在[0,π]内,当f(x)=时,x=,∴在[0,π]内,f(x)≥时,x∈.又f(x)的周期为π,∴当f(x)≥时,x∈,k∈Z.正弦函数、余弦函数的性质(二)A组1.函数y=|sin x|的一个单调增区间是()A. B.C. D.解析:画出y=|sin x|的图象即可求解.故选C.答案:C2.(2016·福建三明一中月考)y=cos(-π≤x≤π)的值域为()A. B.[-1,1] C. D.解析:因为-π≤x≤π,所以-.所以-≤cos≤1,y=cos(-π≤x≤π)的值域为.答案:C3.函数f(x)=3sin在下列区间内递减的是()A. B.[-π,0]C. D.解析:令2kπ+≤x+≤2kπ+,k∈Z可得2kπ+≤x≤2kπ+,k∈Z,∴函数f(x)的递减区间为,k∈Z.从而可判断,∴在x∈时,f(x)单调递减.答案:D4.函数f(x)=2sin(ω>0)的最小正周期为4π,当f(x)取得最小值时,x的取值集合为() A.B.C.D.解析:∵T==4π,∴ω=.∴f(x)=2sin.由x-=2kπ-(k∈Z),得x=4kπ-(k∈Z).答案:A5.已知函数f(x)=sin,x∈R,下列结论错误的是()A.函数f(x)的最小正周期为2πB.函数f(x)在区间上是增函数C.函数f(x)的图象关于y轴对称D.函数f(x)是奇函数解析:f(x)=sin=-sin=-cos x,∴周期T=2π,∴选项A正确;f(x)在上是增函数,∴选项B正确;定义域是R,f(-x)=-cos(-x)=-cos x=f(x),∴f(x)是偶函数,其图象关于y轴对称,∴选项C正确,选项D错误.答案:D6.函数y=sin |x|+sin x的值域是.?解析:∵y=sin |x|+sin x=∴-2≤y≤2.答案:[-2,2]7.函数y=cos x在区间[-π,a]上为增函数,则a的取值范围是.?解析:∵y=cos x在[-π,0]上为增函数,又在[-π,a]上递增,∴[-π,a]?[-π,0].∴a≤0.又∵a>-π,∴-π<a≤0.答案:(-π,0]8.若函数f(x)=sin ωx(0<ω<2)在区间上单调递增,在区间上单调递减,则ω=.?解析:由题意知函数f(x)在x=处取得最大值,∴=2kπ+,ω=6k+,k∈Z.又0<ω<2,∴ω=.答案:9.已知函数f(x)=sin(x∈R,ω>0)的最小正周期为π.(1)求f(x)在上的值域,并求出取最小值时的x值;(2)求f(x)的单调递增区间.解:由已知得=π,ω=1,∴f(x)=sin.(1)当x∈时,≤2x+.∴-≤sin≤1.∴f(x)值域为.当2x+时,f(x)取最小值-,∴x=时,f(x)取最小值.(2)令2kπ-≤2x+≤2kπ+(k∈Z),得kπ-≤x≤kπ+(k∈Z).∴f(x)的递增区间为(k∈Z).10.已知函数f(x)=2a sin+a+b的定义域是,值域是[-5,1],求a,b的值.解:∵0≤x≤,∴≤2x+.∴-≤sin≤1.∴a>0时,解得a<0时,解得因此a=2,b=-5或a=-2,b=1.B组1.若0<α<β<,a=sin,b=sin,则()<b>b<1 >解析:∵0<α<β<,∴<α+<β+.而正弦函数y=sin x在x∈上是增函数,∴sin<sin.∴sin sin,即a<b.答案:A2.若a为常数,且a>1,0≤x≤2π,则函数y=sin2x+2a sin x的最大值为() +1解析:令sin x=t,则-1≤t≤1,原函数变形为y=t2+2at=(t+a)2-a2.∵a>1,∴当t=1时,y max=12+2a×1=2a+1,故选A.答案:A3.函数y=cos的单调递增区间是()A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z解析:函数y=cos=cos,令2kπ-π≤2x-≤2kπ,k∈Z,得kπ-≤x≤kπ+,k∈Z,故单调递增区间为,k∈Z.答案:B4.函数y=2sin-cos(x∈R)的最小值为.?解析:∵,∴y=2sin-cos=2cos-cos=cos.∴y min=-1.答案:-15.若函数f(x)=sin ωx(ω>0)在区间上单调递增,则当ω取最大值时,函数f(x)=sin ωx的周期是.?解析:令2kπ-≤ωx≤2kπ+可得≤x≤,∴k=0时,f(x)在上递增.又∵f(x)在上递增,∴解得0<ω≤.∴ω的最大值为.∴周期T=.答案:6.对于函数f(x)=给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x=π+kπ(k∈Z)时,该函数取得最小值-1;③该函数的图象关于直线x=+2kπ(k∈Z)对称;④当且仅当2kπ<x<+2kπ(k∈Z)时,0<f(x)≤.其中正确命题的序号是.?解析:画出f(x)在一个周期[0,2π]上的图象.由图象知,函数f(x)的最小正周期为2π,在x=π+2kπ(k∈Z)和x=+2kπ(k∈Z)时,该函数都取得最小值,为-1,故①②错误.由图象知,函数图象关于直线x=+2kπ(k∈Z)对称,在2kπ<x<+2kπ(k∈Z)时,0<f(x)≤,故③④正确.答案:③④7.已知函数y=sin.(1)求函数的周期;(2)求函数在[-π,0]上的单调递减区间.解:y=sin可化为y=-sin.(1)周期T==π.(2)令2kπ-≤2x-≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,所以x∈R时,y=sin的单调递减区间为,k∈Z.从而x∈[-π,0]时,y=sin的单调递减区间为.8.已知函数f(x)=sin(ωx+φ)其中ω>0,|φ|<,若函数y=f(x)的图象与x轴的任意两个相邻交点间的距离为,且直线x=是函数y=f(x)图象的一条对称轴.(1)求ω的值;(2)求y=f(x)的单调递增区间;(3)若x∈,求y=f(x)的值域.解:(1)因为函数y=f(x)的图象与x轴的任意两个相邻交点间的距离为,所以函数的周期T=π,所以ω==2.(2)因为直线x=是函数y=f(x)图象的一条对称轴,所以2×+φ=kπ+,k∈Z,φ=kπ+,k∈Z.又|φ|<,所以φ=.所以函数的解析式是y=sin.令2x+,k∈Z,解得x∈,k∈Z.所以函数的单调递增区间为,k∈Z.(3)因为x∈,所以2x+.所以sin,即函数的值域为.正切函数的性质与图象A组1.当x∈时,函数y=tan |x|的图象()A.关于原点对称B.关于y轴对称C.关于x轴对称D.没有对称轴解析:∵x∈,f(-x)=tan |-x|=tan |x|=f(x),∴f(x)为偶函数,即y=tan |x|的图象关于y轴对称.答案:B2.(2016·河北衡水二中月考)函数f(x)=tan的单调递减区间为()A.,k∈ZB.,k∈ZC.,k∈ZD.(kπ,(k+1)π),k∈Z解析:因为f(x)=tan=-tan,所以原函数的单调递减区间就是函数y=tan的单调递增区间.故kπ-≤x-≤kπ+,k∈Z,kπ-≤x≤kπ+,k∈Z.所以原函数的单调递减区间是,k ∈Z.答案:B3.函数f(x)=tan ax(a>0)的图象的相邻两支截直线y=所得线段长为2,则a的值为()A. B. C.π解析:由已知得f(x)的周期为2,∴=2.∴a=.答案:A4.函数f(x)=的奇偶性是()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数解析:f(x)的定义域为,∴f(-x)==-f(x).∴f(x)是奇函数.答案:A5.下列图形分别是①y=|tan x|;②y=tan x;③y=tan(-x);④y=tan |x|在x∈内的大致图象,那么由a 到d对应的函数关系式应是()A.①②③④B.①③④②C.③②④①D.①②④③解析:y=tan(-x)=-tan x在上是减函数,只有图象d符合,即d对应③.答案:D6.已知函数y=3tan的最小正周期是,则ω=.?解析:由题意知,T=,∴ω=±2.答案:±27.函数y=3tan的对称中心的坐标是.?解析:由x+,k∈Z,得x=,k∈Z,即对称中心坐标是(k∈Z).答案:(k∈Z)8.满足tan≥-的x的集合是.?解析:把x+看作一个整体,利用正切函数的图象可得kπ-≤x+<kπ+,k∈Z,解得kπ-≤x<kπ+,k∈Z.故满足tan≥-的x的集合是.答案:9.求函数y=tan的定义域、值域,并指出它的周期性、奇偶性、单调性.解:由4x-≠kπ+,得x≠,∴所求定义域为,值域为R,周期T=.又f没有意义,f=tan=0,∴f(x)是非奇非偶函数.令-+kπ<4x-+kπ,k∈Z,解得<x<,k∈Z.∴f(x)的单调递增区间是(k∈Z),不存在单调递减区间.10.已知函数f(x)=2tan(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于2π,求f(x)的单调递增区间.解:由题意知,函数f(x)的周期为2π,则=2π,由于ω>0,故ω=.所以f(x)=2tan.再由kπ-x+<kπ+,k∈Z,得2kπ-<x<2kπ+,k∈Z,即函数f(x)的单调递增区间为,k∈Z.11.求函数y=-tan2x+4tan x+1,x∈的值域.解:∵-≤x≤,∴-1≤tan x≤1.令tan x=t,则t∈[-1,1].∴y=-t2+4t+1=-(t-2)2+5.∴当t=-1,即x=-时,y min=-4,当t=1,即x=时,y max=4.故所求函数的值域为[-4,4].B组1.函数y=的定义域为()A.B.C.D.解析:由题意知即得故x≠(k∈Z).答案:A2.函数f(x)=tan与函数g(x)=sin的最小正周期相同,则ω=()A.±1 C.±2解析:∵函数g(x)的周期为=π,∴=π,∴ω=±1.答案:A3.设a=lo tan 70°,b=lo sin 25°,c=,则有()<b<c<c<a<b<a<c<b解析:∵tan 70°>tan 45°=1,∴a=lo tan 70°<0.又∵0<sin 25°<sin 30°=,∴b=lo sin 25°>lo=1.而c=∈(0,1),∴b>c>a.答案:D4.已知函数y=tan ωx在内是减函数,则ω的取值范围为.?解析:由题意可知ω<0,又.故-1≤ω<0.答案:-1≤ω<05.已知y=2tan(ωx+φ)的部分图象如图所示,则ω=,φ=.?解析:由题图可知,当x=时,y=2,即2tan=2,tan=1,即ω+φ=kπ+(k∈Z).①又直线x=为它的一条渐近线,∴ω+φ=kπ+(k∈Z), ②而ω>0,|φ|<,由①②可得答案:2-6.方程-tan x=0在x∈内的根的个数为.?解析:分别画出y=与y=tan x在x∈内的图象,如图.易知y=与y=tan x在相应区间内有2个交点,原方程有2个根.答案:27.函数f(x)=tan(3x+φ)图象的一个对称中心是,其中0<φ<,试求函数f(x)的单调区间.解:由于函数y=tan x的对称中心为,其中k∈Z,则+φ=,即φ=.由于0<φ<,所以当k=2时,φ=.故函数解析式为f(x)=tan.由于正切函数y=tan x在区间(k∈Z)上为增函数,则令kπ-<3x+<kπ+, 解得<x<,k∈Z,故函数的单调增区间为,k∈Z.没有单调减区间.8.设函数f(x)=tan.(1)求函数f(x)的定义域、周期和单调区间;(2)求不等式-1≤f(x)≤的解集;(3)作出函数y=f(x)在一个周期内的简图.解:(1)由+kπ(k∈Z),得x≠+2kπ,∴f(x)的定义域是.∵ω=,∴周期T==2π.由-+kπ<+kπ(k∈Z),得-+2kπ<x<+2kπ(k∈Z).∴函数f(x)的单调递增区间是(k∈Z).(2)由-1≤tan,得-+kπ≤+kπ(k∈Z),解得+2kπ≤x≤+2kπ(k∈Z).∴不等式-1≤f(x)≤的解集是.(3)令=0,则x=.令,则x=.令=-,则x=-.∴函数y=tan的图象与x轴的一个交点坐标是,在这个交点左、右两侧相邻的两条渐近线方程分别是x=-,x=.从而得函数y=f(x)在区间内的简图(如图所示).函数y=A sin(ωx+φ)的图象A组1.把函数y=cos x的图象上每一点的纵坐标保持不变,横坐标变为原来的倍,然后将图象沿x轴负方向平移个单位长度,得到的图象对应的解析式为()=sin 2x=-sin 2x=cos=cos解析:y=cos x的图象上每一点的横坐标变为原来的倍(纵坐标不变)得到y=cos 2x的图象;再把y=cos 2x的图象沿x轴负方向平移个单位长度,就得到y=cos 2=cos的图象.即y=-sin 2x的图象.答案:B2.某同学用“五点法”画函数y=A sin(ωx+φ)(A>0,ω>0)在一个周期内的简图时,列表如下:ωx+φ0π2πxy020-20则有()=0,ω=,φ=0 =2,ω=3,φ==2,ω=3,φ=-=1,ω=2,φ=-解析:由表格得A=2,,∴ω=3.∴ωx+φ=3x+φ.当x=时,3x+φ=+φ=0,∴φ=-.答案:C3.将函数f(x)=sin ωx(其中ω>0)的图象向右平移个单位长度,所得图象经过点,则ω的最小值是()A. C.解析:把f(x)=sin ωx的图象向右平移个单位长度得y=sin的图象.又所得图象过点,∴sin=0.∴sin=0,∴=kπ(k∈Z).∴ω=2k(k∈Z).∵ω>0,∴ω的最小值为2.答案:D4.把函数y=sin的图象向左平移个单位,再把所得的函数图象上所有点的纵坐标伸长为原来的2倍,横坐标不变,得到函数g(x)的图象,则函数g(x)为()A.最大值为的偶函数B.周期为π的偶函数C.周期为2π,且最大值为2的函数D.最大值为2的奇函数解析:y=siny=sin=sin 2xy=2sin 2x,即g(x)=2sin 2x,故g(x)的最大值为2,周期T=π,g(x)为奇函数,故选D.答案:D5.(2016·四川成都石室中学期中)为了得到函数y=3cos 2x的图象,只需把函数y=3sin的图象上所有的点()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度解析:函数y=3cos 2x=3sin=3sin,把函数y=3sin的图象上所有的点向左平移个单位长度,可得函数y=3cos 2x的图象.答案:D6.把y=sin x的图象上所有点的横坐标和纵坐标都缩短到原来的倍,得到的图象.?解析:将y=sin x的图象上所有点的横坐标缩短到原来的倍得y=sin 3x的图象,纵坐标再缩短为原来的倍得到y=sin 3x的图象.答案:y=sin 3x7.已知函数f(x)=sin(ω>0)的最小正周期为π,为了得到g(x)=sin的图象,只需将y=f(x)的图象上.?解析:∵f(x)的最小正周期为π,∴=π.∴ω=2.∴f(x)=sin.又g(x)=sin=sin,∴只需将y=f(x)的图象上所有点的横坐标伸长为原来的4倍,纵坐标不变,得到g(x)=sin的图象.答案:所有点的横坐标伸长为原来的4倍,纵坐标不变8.设函数f(x)=cos ωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与原图象重合,则ω的最小值等于.?解析:将f(x)的图象向右平移个单位长度得g(x)=f=cos=cos的图象, 则-ω=2kπ(k∈Z),∴ω=-6k(k∈Z).又ω>0,∴k<0(k∈Z),∴当k=-1时,ω有最小值6.答案:69.将函数y=f(x)的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再向左平移个单位所得的曲线是y=sin x的图象,试求y=f(x)的解析式.解:将y=sin x的图象向右平移个单位得y=sin的图象,化简得y=-cos x.再将y=-cos x的图象上的横坐标缩短为原来的倍(纵坐标不变)得y=-cos 2x的图象,所以f(x)=-cos 2x.10.(2016·湖北武汉十一中期末)已知函数f(x)=3sin,x∈R.(1)用五点法作出y=f(x)在长度为一个周期的闭区间上的简图;(2)请说明函数y=f(x)的图象可以由正弦函数y=sin x的图象经过怎样的变换得到.解:(1)列表:2x+0π2πx-f(x)030-30简图如下:(2)将函数y=sin x图象上所有点的横坐标不变,纵坐标变为原来的3倍得到y=3sin x的图象,再将得到的图象向左平移个单位长度得到y=3sin的图象,最后将得到的图象上所有点的纵坐标不变,横坐标变为原来的得到y=3sin的图象.B组1.给出几种变换:(1)横坐标伸长到原来的2倍,纵坐标不变;(2)横坐标缩小到原来的倍,纵坐标不变;(3)向左平移个单位长度;(4)向右平移个单位长度;(5)向左平移个单位长度;(6)向右平移个单位长度.则由函数y=sin x的图象得到y=sin的图象,可以实施的方案是()A.(1)→(3)B.(2)→(3)C.(2)→(4)D.(2)→(5)解析:由y=sin x的图象到y=sin的图象可以先平移变换再伸缩变换,即(3)→(2);也可以先伸缩变换再平移变换,即(2)→(5).答案:D2.(2016·河北唐山一中期末)把函数y=sin(4x+φ)图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有的点向右平移个单位,所得图象关于y轴对称,则φ的一个可能值为()A. B. C. D.解析:函数y=sin(4x+φ)图象上各点的横坐标伸长到原来的2倍(纵坐标不变)可得函数y=sin(2x+φ)的图象,再将图象上所有的点向右平移个单位,可得函数y=sin=sin的图象,若此函数图象关于y轴对称,则-+φ=kπ+,k∈Z,所以φ=kπ+,k∈Z,当k=-1时,有φ=.故选B.答案:B3.把函数y=3sin(ωx+φ)(ω>0,|φ|≤π)的图象向左平移个单位,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的解析式为y=3sin x,则()A.ω=2,φ=B.ω=2,φ=-C.ω=,φ=D.ω=,φ=-解析:y=3sin(ωx+φ)的图象向左平移个单位,得到y=3sin=3sin的图象,再将图象上所有点的横坐标伸长到原来的2倍,得到y=3sin=3sin x的图象, 则答案:B4.函数y=sin x的图象上所有点的横坐标和纵坐标同时扩大到原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为.?解析:y=sin x y=3sin x y=3sin(x-3)=3sin.答案:y=3sin5.先把函数y=2sin的图象上的所有点向左平移个单位长度,再把所有点的横坐标伸长到原来的倍,纵坐标不变,得到的图象对应的函数解析式是.?解析:把y=2sin的图象上的所有点向左平移个单位长度,得函数y=2sin=2sin=2cos 2x的图象,再把所有点的横坐标伸长到原来的倍,纵坐标不变,得到函数y=2cos 4x的图象.答案:y=2cos 4x6.函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移个单位后,与函数y=sin的图象重合,则φ=.?解析:函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移个单位,得平移后的图象对应的函数解析式为y=cos=cos(2x+φ-π),而函数y=sin=cos,由函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移个单位后与函数y=sin的图象重合,得2x+φ-π=2x+,解得φ=,符合-π≤φ<π,故答案为.答案:7.已知函数y=cos.求:(1)函数的周期及单调递减区间;(2)函数的图象可由y=cos x的图象经过怎样的变换得到解:(1)∵ω=2,∴T==π.由2kπ≤2x+≤2kπ+π,k∈Z,得kπ-≤x≤kπ+,k∈Z.∴函数的周期为π,单调递减区间为,k∈Z.(2)将函数y=cos x的图象上的所有点向左平移个单位长度,所得图象的函数解析式为y=cos,再把所得图象上各点的横坐标缩短到原来的倍(纵坐标不变),得y=cos的图象,再把图象上各点的纵坐标伸长到原来的倍(横坐标不变),即得y=cos的图象.8.设函数f(x)=sin(ω>0)的最小正周期为π.(1)求ω;(2)若f,且α∈,求tan α的值;(3)完成下面列表,并画出函数y=f(x)在区间[0,π]上的图象.列表:x0πy-11描点连线:解:(1)∵函数f(x)=sin(ω>0)的最小正周期为π,∴=π,∴ω=2.(2)由(1)知,f(x)=sin.由f,得sin α=,∴cos α=±.又-<α<,∴cos α=,∴tan α=.(3)由y=sin知:x0πy--1010-故函数y=f(x)在区间[0,π]上的图象是:。

相关文档
最新文档