三角函数的图像和性质(1)

合集下载

三角函数的定义和性质

三角函数的定义和性质
三角函数与复数的关系
三角函数与复数的基本关系:复数可以表示为三角函数的形式,即z=r(cosθ+i sinθ)。
三角函数在复平面上的表示:复平面上,三角函数可以表示为点或向量,其模长和幅角分别对应于实部和虚部。
三角函数与复数在交流电中的应用:交流电的电压和电流可以用三角函数表示,而复数则可以更方便地描述正弦波的幅度和频率。
04
三角函数的扩展知识
反三角函数
添加标题
添加标题
添加标题
添加标题
性质:反三角函数具有连续性、单调性、奇偶性和周期性等性质。
定义:反三角函数是三角函数的反函数,表示为arcsin、arccos和arctan等。
图像:反三角函数的图像与三角函数图像关系密切,可以通过三角函数图像得出反三角函数图像。
应用:反三角函数在数学、物理和工程等领域有广泛应用,例如求解三角形、解决极值问题等。
三角恒等式和不等式
三角恒等式:表示三角函数之间关系的等式,如正弦、余弦、正切等函数之间的相互转化。
三角不等式:表示三角函数值大小关系的不等式,用于比较三角函数值的大小或证明不等关系。
三角恒等变换:通过三角函数的和差、倍角、半角等公式,进行恒等变换,简化表达式或证明等式。
三角不等式的证明方法:利用三角函数的性质和几何意义等方法,证明三角不等式的关系。
三角函数与复数在信号处理中的应用:信号处理中,信号常常被表示为复数形式的三角函数,这使得信号的合成、分析和滤波变得更加方便。
汇报人:XX
感谢观看
周期性:三角函数具有明显的周期性,图像呈现规律性的重复。
奇偶性:三角函数具有奇偶性,可以根据函数值的正负判断其奇偶性。
最大值和最小值:三角函数具有最大值和最小值,可以通过函数的极值点判断其最大值和最小值。

三角函数图像和性质练习题(附答案)

三角函数图像和性质练习题(附答案)

三角函数的图像与性质【1】一、选择题1.已知函数f(x)=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,则ϖ的最小值等于( )A.32 B.23C.2D.3 2.若函数cos()3y x πω=+(0)ω>的图象相邻两条对称轴间距离为2π,则ω等于. A .12B .12C .2D .43.将函数sin()()6yx x R π=+∈的图象上所有的点向左平行移动4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈ C .sin()()212x y x R π=-∈ D .5sin()()224x y x R π=+∈4.函数2)62cos(-+=πx y 的图像F 按向量a 平移到F /,F /的解析式y=f(x),当y=f(x)为奇函数时,向量a 可以等于A.)2,6(-π B.)2,6(π C.)2,6(--π D.)2,6(π-5.将函数sin y x =的图象向左平移(02)ϕϕπ≤≤个单位后,得到函数sin()6yx π=-的图象,则ϕ等于( )A .6πB .76πC .116πD .56π6.函数x x y 2cos 32sin -=)66(ππ≤≤-x 的值域为A.[]2,2- B. []0,2- C. []2,0 D. ]0,3[-7.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是 ( )A .B .C.D.8.函数f(θ ) =sin θ-1cos θ-2的最大值和最小值分别是()(A) 最大值 43 和最小值0(B)最大值不存在和最小值 34(C) 最大值 -43 和最小值0(D) 最大值不存在和最小值-349.ααcos sin +=t且αα33cos sin +<0,则t 的取值范围是( )A. [)0,2-B. []2,2-C. ()(]2,10,1 -D. ()()+∞-,30,310.把函数)(x f y =的图象沿着直线0=+y x 的方向向右下方平移22个单位,得到函数x y 3sin =的图象,则()A 、2)23sin(--=x yB 、2)63sin(--=x yC 、2)23sin(++=x yD 、2)63sin(++=x y二、填空题11.设函数).0)(3cos()(πϕϕ<<+=x x f 若)()(x f x f '+是奇函数,则ϕ=. 12.方程2cos()14x π-=在区间(0,)π内的解是.13.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间14.已知x R ∈,则函数sin cos ()max sin ,cos ,2x x f x x x +⎧⎫=⎨⎬⎩⎭的最大值与最小值的和等于。

三角函数图像与性质

三角函数图像与性质

三角函数图像与性质在数学中,三角函数是研究角与角度关系的一类函数。

其中最重要的三角函数包括正弦函数、余弦函数和正切函数。

这些函数在数学和科学领域中有着广泛的应用,尤其是在研究周期性现象时起到了关键作用。

本文将详细介绍三角函数的图像特征和性质。

正弦函数的图像与性质正弦函数是最基本的三角函数之一,通常用符号$\\sin$表示。

它的图像是一条连续的波浪线,呈现出周期性的特点。

正弦函数的定义域为整个实数集$\\mathbb{R}$,值域为闭区间[−1,1]。

在0度、90度、180度、270度和360度等特殊角度上,正弦函数的取值分别为0、1、0、-1和0。

正弦函数是奇函数,即$\\sin(-x)=-\\sin(x)$,具有对称性。

余弦函数的图像与性质余弦函数是另一个重要的三角函数,通常用符号$\\cos$表示。

它的图像类似于正弦函数,也是一条连续的波浪线,同样呈现周期性。

余弦函数的定义域为整个实数集$\\mathbb{R}$,值域为闭区间[−1,1]。

在0度、90度、180度、270度和360度等特殊角度上,余弦函数的取值分别为1、0、-1、0和1。

余弦函数是偶函数,即$\\cos(-x)=\\cos(x)$,具有对称性。

正切函数的图像与性质正切函数是三角函数中的另一个重要函数,通常用符号$\\tan$表示。

它的图像是一组相互平行的直线,具有间断点。

正切函数的定义域为整个实数集$\\mathbb{R}$,在某些特殊角度上可能不存在定义,例如在90度和270度时。

正切函数的值域为整个实数集$\\mathbb{R}$。

正切函数是奇函数,即$\\tan(-x)=-\\tan(x)$。

三角函数的性质除了上述基本性质外,三角函数还有一些重要的性质:1.周期性:正弦函数和余弦函数的周期为$2\\pi$,即在$[0, 2\\pi]$范围内图像重复;2.奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数;3.最值:正弦函数和余弦函数的最大值为1,最小值为-1;正切函数在定义域内取值范围较广;4.单调性:正弦函数、余弦函数和正切函数在各自的定义域上具有不同的单调性特点。

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图像和性质讲解(定义域,值域,周期,单调性等)

三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。

(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。

正弦函数s i n y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。

4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。

理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。

5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。

三角函数的图象与性质

三角函数的图象与性质

-
;
-1
y=cosx
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
y
si-n6x的对称-5轴:x
k -4
2-,3对 称点-:2(k
,0);
-
y cosx的对称轴:x k , 对称点:(k ,0);
1.4.1正弦、余弦函数的图象
复习
回顾 三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
复习回顾
一.正弦余弦函数的作图: 几何描点法(利用三角函数线) 五点法作简图
二.周期性:
函数y Asin(x )和y Acos(x ),x R的周期T 2 | |
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cosx为偶函数图像关于y轴对称。
-6 -5
-4 -3
复习回顾 y y=sinx
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)

三角函数的图像及其性质

三角函数的图像及其性质

三角函数的图像及其性质1、三角函数的图像及性质sin y xsin y A x k图像值域周期对称轴2x k2x k对称中心(零点)令x k 代入求y令x k 代入,求出x 和y 单调增区间2,222x k k2,222x k k单调减区间32,222x k k32,222x k kcos y xcos y A x k图像值域周期对称轴x kx k 对称中心(零点)2x k代入,求y 2x k求出x 和y 单调增区间 2,2x k k 2,2x k k 单调减区间2,2x k k2,2x k k tan y x图像定义域值域周期单调性与对称性性质【考点分类】考点一:图像变换:1.把函数y =sin x 的图象向右平移个单位得到y =g (x )的图象,再把y =g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.2.将函数f (x )=sin x 图象上所有点的横坐标变为原来的(ω>0),纵坐标不变,得到函数g (x )的图象,若g (x )的最小正周期为6π,则ω=()A.B.6C.D.33.将函数y =2sin2x 图象上的所有点向右平移个单位,然后把图象上所有点的横坐标缩短为原来的倍,(纵坐标不变)得到y =f (x )的图象,则f (x )等于()A.2sin(x ﹣)B.2sin(x ﹣)C.2sin(4x ﹣)D.2sin(4x ﹣)4.已知曲线C 1:y =cos x ,C 2:y =sin(2x +),则下面结论正确的是()A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向左平移个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向左平移个单位长度,得到曲线C 25.把函数y =cos(3x +4)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是()A 向右平移4 B 向左平移4 C 向右平移12 D 向左平移126..函数32sin( x y 的图象是由2sin xy 的图象沿x 轴()得到的。

三角函数的图象和性质

三角函数的图象和性质

三角函数的图象和性质知识网络三角函数的图象和性质结构简图画龙点晴 概念三角函数的图象:(1) 函数x y sin =的图象叫做正弦曲线, 如图1; (2) 函数x y cos =的图象叫做余弦曲线, 如图2; (3) 函数x y tan =的图象叫做正切曲线, 如图3; (4) 函数x y cot =的图象叫做余切曲线, 如图4;周期函数: 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x +T)=f (x )那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。

说明:1︒周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界;2︒“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0)); 3︒T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期). 三角函数的性质: 三角函数的性质如下表:[活用实例][例1] 求下列函数的最值: (1)y=sin(3x+4π)-1 ; (2) y=sin 2x-4sinx+5 ; (3) y=x x cos 3cos 3+- ; (4))3cos(2π-=x y (6π≤x ≤32π).[题解] (1) 当3x+4π=2k π+2π即 x=1232ππ+k (k ∈Z)时y max =0; 当3x+4π=2k π-2π即x=432ππ-k (k ∈Z)时y min =-2. (2) y=(sinx-2)2+1 ∴当x=2k π-2π k ∈Z 时y max =10; 当x=2k π-2πk ∈Z 时y min = 2. (3)y=-1+xcos 31+ 当x=2k π+π k ∈Z 时 y max =2; 当x=2k π k ∈Z 时 y min = 21.(4)∵x ∈[6π,32π] ∴x-3π∈[-6π,3π], ∴当x-3π=0 即x=3π时 y max =2; 当x-3π=3π 即x=32π时 y min =1. [例2] 求下列函数的定义域:(1)y=x x 2cos 21cos 3-- ; (2)y=lg(2sinx+1)+1cos 2-x ; (3)y=)cos(sin x . [题解] (1)∵3cosx-1-2cos 2x ≥0 ∴21≤cosx ≤1 ∴定义域为:[2k π-3π, 2k π+3π] (k ∈Z). (2))(32326726221cos 21sin Z k k x k k x k x x ∈⎪⎩⎪⎨⎧+≤≤-+<<-⇒⎪⎩⎪⎨⎧≥->ππππππππ )(3262Z k k x k ∈+≤<-⇒ππππ ∴定义域为:)](32,62(Z k k k ∈+-ππππ.(3) ∵cos(sinx)≥0 ∴ 2k π-2π≤x ≤2k π+2π(k ∈Z) ∵-1≤sinx ≤1 , ∴x ∈R , 1cos ≤y ≤1.[例3] 已知函数f(x)=2asin 2x-23asinxcosx+b 的定义域为[0,2π],值域为[-5,4],求常数a,b 的值。

三角函数的图像和性质

三角函数的图像和性质

当0<A<1时,图像在y轴方向压缩。
02
周期变换
ω表示周期变换的系数,周期T=2π/|ω|。当ω>1时,周期减小,图像
在x轴方向压缩;当0<ω<1时,周期增大,图像在x轴方向拉伸。
03
相位变换
φ表示相位变换的角度,当φ>0时,图像左移;当φ<0时,图像右移。
正弦型曲线应用举例
振动问题
在物理学中,正弦函数常用来描述简谐振动,如弹簧振子 、单摆等。通过正弦函数的振幅、周期和相位等参数,可 以描述振动的幅度、频率和初始状态。
三角函数的图像和性 质
汇报人:XX 2024-01-28
contents
目录
• 三角函数基本概念 • 正弦函数图像与性质 • 余弦函数图像与性质 • 正切函数图像与性质 • 三角函数复合与变换 • 三角函数在解决实际问题中的应用
01
三角函数基本概念
角度与弧度制
角度制
01
将圆周分为360等份,每份称为1度,用度(°)作为单位来度量
角的大小。
弧度制
02
以弧长等于半径所对应的圆心角为1弧度,用符号rad表示,是
国际通用的角度度量单位。
角度与弧度的换算
03
1° = (π/180)rad,1rad = (180/π)°。
三角函数定义及关系
正弦函数
sinθ = y/r,表示单位圆上任意 一点P(x,y)与x轴正方向形成的 角θ的正弦值。
光学
在光的反射、折射等现象中,三角函数可以 帮助计算入射角、折射角等角度问题。
在工程问题中的应用
1 2
建筑设计
在建筑设计中,三角函数可以帮助计算建筑物的 角度、高度、距离等参数,确保设计的准确性和 安全性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章第3节 三角函数的图像和性质(1)
主备人: 审核人: .
班级 姓名 .
【教学目标】
① 了解三角函数的周期性.
② 能画出y =sinx ,y =cosx ,y =tanx 的图象,并能根据图象理解正弦函数、余弦函数在[0,2π],
正切函数在⎝ ⎛⎭
⎪⎫-π2,π2上的性质. ③ 了解三角函数 y =Asin (ωx+φ)的实际意义及其参数A 、ω、φ对函数图象变化的影响.
【重点难点】
1.重点:能画出y =sinx ,y =cosx ,y =tanx 的图象,并能根据图象理解正弦函数、余弦函数在[0,
2π],正切函数在⎝ ⎛⎭
⎪⎫-π2,π2上的性质. 2.难点:y =sinx ,y =cosx ,y =tanx 性质的熟练运用。

【教学过程】
一. 基础自测:
1. 函数13sin()24y x π=+
的最小正周期为______________;
2.函数21sin -=
x y 的定义域为 .
3.函数)4cos(2π
+=x y 的单调减区间为 .
三.典型例题
例1.求下列函数的定义域:
(1)tan 4y x π⎛⎫=-
⎪⎝⎭
; (2)y =
例2.求下列函数的值域
(1)2()sin 2,[
,]63f x x x ππ=∈; (2)2()64sin cos f x x x =--;
(3)2sin 1sin 2x y x +=
-; (4)sin cos 2sin cos 2,y x x x x x R =+++∈
例3.已知函数sin(2)3y x π
=+,求(1)周期;
(2)当x 分别为何值时函数取得最大值,最小值;(3)单调增区间,单调减区间;(4)对称轴、对称中心.
例4.设函数的最小正周期为. (Ⅰ)求的值.(Ⅱ)若函数的图像是由的图像向右平移
个单位长度得到,求的单调增区间.
22()(sin cos )2cos (0)f x x x x ωωωω=++>23
πω()y g x =()y f x =2
π()y g x =
四.课堂反馈
1. 11tan y x =
-的定义域为
2. 求函数sin cos ()sin cos x x f x x x =
+的值域
3. 函数],0[),26sin(
2ππ∈-=x x y 为增函数的区间是 __ .
五.课后练习 班级 姓名 .
1.
lgcos y x =
的定义域为
2.
y =
的定义域为
3. 定义运算,,a a b a b b a b ≤⎧*=⎨
>⎩
,如121*=,则函数()sin cos f x x x =*的值域为
4. 函数上的最大值为
5. 函数2sin(
)cos(),36y x x x R ππ
=--+∈的最小值等于________
6.
求函数44sin cos cos y x x x x =+-,[]0,x π∈的最值;并写出该函数的单调区间
7. 函数sin 12x y ⎛⎫= ⎪⎝⎭
的递增区间是_______________________.
8. 如果函数3cos(2)y x ϕ=+的图像关于点4,03π⎛⎫
⎪⎝⎭中心对称,那么ϕ的最小值为 .
9.
函数lg(2sin 1)y x =-的定义域为 .
]32,32[sin 2ππ--=在区间
x x y
10.
若函数())f x x θ=
+为偶函数,则θ的值为 .
11. 已知函数2sin 2,3y x x R π⎛
⎫=-∈ ⎪⎝⎭
. (1)用五点作图法作出函数在长度为一个周期的闭区间上的简图;
(2)说明2sin 23y x π⎛⎫=-
⎪⎝⎭的图像可由sin y x =的图像经过怎样的变换得到.
12. 已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π(Ⅰ)求f (8π)的值;(Ⅱ)将函数y =f (x )的图象向右平移6
π个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间.
13. 已知函数(其中)的图象与x 轴的交点中,
相邻两个交点之间的距离为,且图象上一个最低点为. (Ⅰ)求的解析式;(Ⅱ)当,求的值域.
-=填空题答题纸=-
1. 2. 3.
()sin(),f x A x x R ωϕ=+∈0,0,02A π
ωϕ>><<2π2(,2)3M π-()f x [,]122x ππ
∈()f x
4. 5. 6.
7. 8. 9.
10. .。

相关文档
最新文档