相关正态随机过程的仿真实验报告
2021年随机过程实验报告

过程试验汇报班级: 通信1004班姓名: 杨靖学号: U13098试验目:了解数产生, 而且利用数来模拟均匀分布、 正态分布、 指数分布、 泊松分布而且计算均值和自相关序列。
试验工具:C++编程模拟试验原理:数产生原理: 经过数学算法产生伪数来, 模拟数产生。
数序列含有循环周期性。
能够证实, 任何产生伪数算法总会进入循环, 这么为了确保随机数序列不产生反复数据, 就要求循环周期足够长。
均匀分布产生原理:利用线性同余法(1)设置y0, 即设置种子(2)yn=kyn-1(mod N), un=yn/N泊松分布产生原理: 从泊松分布分布律可知, 采取前述方法很不适用。
因为: 所以, 采取递推法组成泊松分布: (1)产生均匀分布数u; (2) (3)若u<F, 令X=i, 停止; (4) (5)转向(3)。
正态分布产生原理:标准正态变量分布函数 反函数不存在显式, 所以也不能用逆变法产生。
故采取以下方法:设Ui ~U(0, 1), i=1,2,…,n, 且相互独立, 由中心极限定理可知, 当n 较大时设Ui ~U(0, 1), i=1,2,…,n, 且相互独立, E(Ui)=1/2, D(Ui)=1/12, 当n 较大时有:取n=12, 近似有:也就是说, 只要产生12个伪数u1,u2,…u12, 将它们加起来, 再减去6, 就能近似得到标准正态变量样本值。
{}!i i e p P X i i λλ-===11(1)!1i i i e p p i i λλλ+-+==++0,,;i p e F p λ-===/(1),,1;p p i F F p i i λ=+=+=+()~(0,1)n i i U nE U Z N -=∑~(0,1)ni n U Z N -=∑1216~(0,1)i i Z U N ==-∑指数分布产生原理:(1)产生均匀分布数{ui};(2)计算指数分布数: xi=-ln ui /λ试验代码:(1)数产生/*函数功效, 采取线性同余法, 依据输入种子数产生一个伪数, 假如种子不变,则将能够反复调用产生一个伪序列利用CMyRand类中定义全局变量: S, K, N, Y。
实验三 随机过程通过线性系统

实验名称线性系统对随机过程的响应一、实验目的通过本仿真实验了解正态白色噪声随机过程通过线性系统后相关函数以及功率谱的变化;培养计算机编程能力。
二、实验平台MATLAB R2014a三、实验要求(1)运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。
(2)设离散时间线性系统的差分方程为x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000).画出x(n)的波形图。
(3)随机过程x(n)的理论上的功率谱函数为在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图。
(4)根据步骤二产生的数据序列x(n)计算相关函数的估计值与理论值1.1296、-0.666、0.85、0、0、0的差异。
(5)根据相关函数的估计值对随机过程的功率谱密度函数进行估计在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图,比较其与理论上的功率谱密度函数S(w)的差异。
(6)依照实验1的方法统计数据x(n)在不同区间出现的概率,计算其理论概率,观察二者是否基本一致。
四、实验代码及结果A、运用正态分布随机数产生函数产生均值为m=0,根方差σ=1的白色正态分布序列{u(n)|n=1,2,…,2000},画出噪声u(n)的波形图。
代码实现:波形图:分析:运用正态分布随机数产生函数产生均值为0,根方差σ=1的白色噪声样本序列。
B、设离散时间线性系统的差分方程为x(n)=u(n)-0.36u(n-1)+0.85u(n-2)(n=3,4,…,2000).画出x(n)的波形图。
代码实现:波形图:分析:正态随机序列通过离散时间线性系统生成的仍是正态随机序列。
C、随机过程x(n)的理论上的功率谱函数为在[0,π]范围内对w进行采样,采样间隔0.001π,计算S(i×0.001π) (i=1,2,…,1000);画出波形图。
湖南大学应用统计与随机过程实验_何松华

实验名称: 实验名称:正弦信号的相关积累检测仿真 4.实验结果
(通过程序运行得到的各种数据、图表并运用随机过 程理论对实验结果进行分析)
5.实验体会
2.实验要求
(后面将具体介绍)
3.程序代码
(自己采用Matlab或VB进行编程)
湖南大学教学课件:应用统计学与随机过程
课程实验2
湖南大学教学课件:应用统计学与随机过程
Page 3
3
湖南大学教学课件:应用统计学与随机过程
课程实验3
湖南大学教学课件:应用统计学与随机过程
课程实验4
(5) 根据相关函数的估计值对随机过程的功率谱密度函 数进行估计
ˆ (0) + 2 R ˆ (1) cos(ω ) + 2 R ˆ (2) cos(2ω ) S1 (ω ) = R X X X
Page 4
4
实验名称: 实验名称:相关正态随机过程的仿真 4.实验结果
(通过程序运行得到的各种数据、图表并运用随机过 程理论对实验结果进行分析)
5.实验体会
2.实验要求
(后面将具体介绍)
3.程序代码
(自己采用Matlab或VB进行编程)
湖南大学教学课件:应用统计学与随机过程
课程实验1
湖南大学教学课件:应用统计学与随机过程
2.实验要求
(后面将具体介绍)
5.实验体会
3.程序代码
(自己采用Matlab或VB进行编程)
湖南大学教学课件:应用统计学与随机过程
课程实验3
湖南大学教学课件:应用统计学与随机过程
课程实验3
实验要求: 采用MATLAB或VB语言进行编程 (1) 运用正态分布随机数产生函数产生均值为零、根方差σ=1 的白色噪声样本序列 [或可参考实验1的正态分布产生方法] {u(n)|n=1,2,…,2000};画出噪声u(n)的波形图 (2) 设离散时间线性系统的差分方程为
随机过程实验报告

随机过程实验报告一.实验目的通过随机过程的模拟实验, 熟悉随机过程编码规律以及各种随机过程的实现方法, 通过理论与实际相结合的方式, 加深对随机过程的理解。
二. 实验原理及实现代码1.伪随机数的产生函数功能: 采用线性同余法, 根据输入的种子数产生一个伪随机数, 如果种子不变, 则将可以重复调用产生一个伪随机序列实现思路:利用CMyRand类中定义的全局变量:S, K, N, Y。
其中K和N为算法参数, S用于保存种子数, Y为产生的随机数, 第一次调用检查将seed赋值与S获得Y的初值, 之后调用选择rand()函数赋值与Y。
代码如下:unsigned int CMyRand::MyRand(unsigned int seed){Y=seed;Y=K*seed%N;S=Y;return Y;}2.均匀分布随机数的产生在上面实验中, 已经产生了伪随机序列, 所以为了得到0~N 的均匀分布序列, 只需将其转化为min 到max 的均匀分布即可, 代码如下:double CMyRand::AverageRandom(double min,double max) {double dResult;dResult = (double(MyRand(S))/N)*(max-min)+min; dResult=(int(dResult*10000))/10000.0 ;return dResult; }3.正态分布随机数的产生由AverageRandom 函数获得0-1间隔均匀分布随机数U(0,1), i=1,2,…,n, 且相互独立, 由中心极限定理可知, 当n 较大时,()~(0,1)nU nE U Z N -=取n=12, 近似有, 也就是说, 只要产生12个伪随机数u1,u2,…u12, 将它们加起来, 再减去6, 就能近似得到标准正态变量的样本值。
代码如下:double CMyRand::NormalRandom(double miu, double sigma, double min, double max){double dResult;dResult = 0;for(int i=0;i<12;i++)dResult+=(double(MyRand(S))/N); //循环相加12次dResult-=6;dResult=(dResult*sigma+miu)*(max-min)+min;return dResult;}3.指数分布的随机数的产生用AverageRandom产生均匀分布随机数{ui}, 计算指数分布随机数: xi=-ln ui /λdouble CMyRand::ExpRandom(double lambda, double min, double max){double dResult = 0.0;dResult=-log(AverageRandom(min,max))/lambda;return dResult;}4.泊松分布的随机数产生unsigned int CMyRand::PoisonRandom(double lambda, double min, double max){unsigned int dResult = 0;double F=exp(-lambda);while(AverageRandom(0,1)>=F){F+=(lambda*F)/(dResult+1);dResult++;}return dResult;}5.计算任意分布的随机过程的均值根据大数定律, 调用任意函数加和求平均即为该分布的均值。
随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
随机过程实验报告

一、实验目的1. 理解随机过程的基本概念和性质。
2. 掌握随机过程的基本运算和性质。
3. 通过实验验证随机过程的性质和规律。
二、实验原理随机过程是指一系列随机变量按照一定规则排列而成的序列。
在现实生活中,随机过程广泛存在于自然界和人类社会,如股票价格、气象变化、生物进化等。
随机过程的研究有助于我们更好地理解和预测这些现象。
随机过程可以分为两类:离散随机过程和连续随机过程。
本实验主要研究离散随机过程。
三、实验设备与材料1. 计算机2. 随机过程模拟软件(如Matlab)3. 纸笔四、实验内容1. 随机过程的基本概念(1)随机变量的概念随机变量是指具有不确定性的变量,它可以取多个值。
在随机过程中,随机变量是基本的研究对象。
(2)随机过程的概念随机过程是由一系列随机变量按照一定规则排列而成的序列。
2. 随机过程的基本性质(1)无后效性无后效性是指随机过程的前后状态相互独立。
(2)无记忆性无记忆性是指随机过程的状态只与当前时刻有关,与过去时刻无关。
(3)马尔可夫性马尔可夫性是指随机过程的状态只与当前时刻有关,与过去时刻无关。
3. 随机过程的运算(1)随机过程的和设{Xn}和{Yn}是两个随机过程,则它们的和{Zn}定义为Zn = Xn + Yn。
(2)随机过程的差设{Xn}和{Yn}是两个随机过程,则它们的差{Zn}定义为Zn = Xn - Yn。
(3)随机过程的乘积设{Xn}和{Yn}是两个随机过程,则它们的乘积{Zn}定义为Zn = Xn Yn。
4. 随机过程的模拟利用随机过程模拟软件(如Matlab)模拟随机过程,观察其性质和规律。
五、实验步骤1. 初始化随机数生成器2. 定义随机过程(1)根据随机过程的基本性质,定义随机过程{Xn}。
(2)根据随机过程的运算,定义随机过程{Yn}。
3. 模拟随机过程(1)使用随机过程模拟软件(如Matlab)模拟随机过程{Xn}和{Yn}。
(2)观察模拟结果,分析随机过程的性质和规律。
随机过程实验报告全

随机过程实验报告学院:专业:学号:姓名:一、实验目的通过随机过程的模拟实验,熟悉随机过程编码规律以及各种随机过程的实现方法,通过理论与实际相结合的方式,加深对随机过程的理解。
二、实验内容(1)熟悉Matlab工作环境,会计算Markov链的n步转移概率矩阵和Markov链的平稳分布。
(2)用Matlab产生服从各种常用分布的随机数,会调用matlab自带的一些常用分布的分布律或概率密度。
(3)模拟随机游走。
(4)模拟Brown运动的样本轨道的模拟。
(5)Markov过程的模拟。
三、实验原理及实验程序n步转移概率矩阵根据Matlab的矩阵运算原理编程,Pn = P ^n。
已知随机游动的转移概率矩阵为:P =0.5000 0.5000 00 0.5000 0.50000.5000 0 0.5000求三步转移概率矩阵p3及当初始分布为P{x0 = 1} = p{x0 = 2} = 0, P{x0 = 3} = 1 时经三步转移后处于状态3的概率。
代码及结果如下:P = [0.5 0.5 0; 0 0.5 0.5; 0.5 0 0.5] %一步转移概率矩阵P3 = P ^3 %三步转移概率矩阵P3_3 = P3(3,3) %三步转移后处于状态的概率1、两点分布x=0:1;y=binopdf(x,1,0.55);plot(x,y,'r*');title('两点分布');2、二项分布N=1000;p=0.3;k=0:N;pdf=binopdf(k,N,p);plot(k,pdf,'b*');title('二项分布');xlabel('k');ylabel('pdf');gridon;boxon3、泊松分布x=0:100;y=poisspdf(x,50);plot(x,y,'g.');title('泊松分布')4、几何分布x=0:100;y=geopdf(x,0.2);plot(x,y,'r*');title('几何分布');xlabel('x');ylabel('y');5、泊松过程仿真5.1 % simulate 10 timesclear;m=10; lamda=1; x=[];for i=1:ms=exprnd(lamda,'seed',1);x=[x,exprnd(lamda)];t1=cumsum(x);end[x',t1']5.2%输入:N=[];for t=0:0.1:(t1(m)+1)if t<t1(1)N=[N,0];elseif t<t1(2)N=[N,1];elseif t<t1(3)N=[N,2];elseif t<t1(4)N=[N,3];elseif t<t1(5)N=[N,4];elseif t<t1(6)N=[N,5];elseif t<t1(7)N=[N,6];elseif t<t1(8)N=[N,7];elseif t<t1(9)N=[N,8];elseif t<t1(10)N=[N,9];elseN=[N,10];endendplot(0:0.1:(t1(m)+1),N,'r-') 5.3% simulate 100 timesclear;m=100; lamda=1; x=[];for i=1:ms= rand('seed');x=[x,exprnd(lamda)];t1=cumsum(x);end[x',t1']N=[];for t=0:0.1:(t1(m)+1)if t<t1(1)N=[N,0];endfor i=1:(m-1)if t>=t1(i) & t<t1(i+1)N=[N,i];endendif t>t1(m)N=[N,m];endendplot(0:0.1:(t1(m)+1),N,'r-')6、泊松过程function I=possion(lambda,m,n)for j=1:mX=poissrnd(lambda,[1,n]); %参数为lambda的possion 过程N(1)=0;for i=2:nN(i)=N(i-1)+X(i-1);endt=1:n;plot(t,N)grid onhold onend7、布朗运动7.1一维布朗运动程序:function [t,w]=br1(t0,tf,h)t=t0:h:tf;t=t';x=randn(size(t));w(1)=0;for k=1:length(t)-1w(k+1)=w(k)+x(k);endw=sqrt(h)*w;w=w(:);end调用t0=1;tf=10;h=0.01;[t,w]=br1(t0,tf,h);figure;plot(t,w,'*');xlabel('t');ylabel('w');title('一维Brown运动模拟图'); 7.2二维布朗运动:function [x,y,m,n]=br2(x0,xf,y0,yf,h)x=x0:h:xf;y=y0:h:yf;a=randn(size(x));b=randn(size(y));m(1)=0;n(1)=0;for k=1:length(x)-1m(k+1)=m(k)+a(k);n(k+1)=n(k)+b(k);endm=sqrt(h)*m;n=sqrt(h)*n;end调用x0=0;xf=10;h=0.01;y0=0;yf=10;[x,y,m,n]=br2(x0,xf,y0,yf,h);figure;plot(m,n);xlabel('m');ylabel('n');title('二维Brown运动模拟图');7.3三维布朗运动:npoints =1000;dt = 1;bm = cumsum([zeros(1, 3); dt^0.5*randn(npoints-1, 3)]);figure(1);plot3(bm(:, 1), bm(:, 2), bm(:, 3), 'k');pcol = (bm-repmat(min(bm), npoints, 1))./ ...repmat(max(bm)-min(bm), npoints, 1);hold on;scatter3(bm(:, 1), bm(:, 2), bm(:, 3), ...10, pcol, 'filled');grid on;hold off;8、马尔科夫链离散服务系统中的缓冲动力学m=200;p=0.2;N=zeros(1,m); %初始化缓冲区A=geornd(1-p,1,m); %生成到达序列模型, for n=2:mN(n)=N(n-1)+A(n)-(N(n-1)+A(n)>=1);endstairs((0:m-1),N);9、随机数游走9.1 100步随机游走n = 100; %选取步数。
随机过程实验

实验名称:随机变量的仿真与实验实验内容:用MATLAB 分别产生服从(二项分布、泊松分布、正态分布、均匀分布、指数分布、瑞利分布)的随机变量,并分析他们的:1、分布函数或概率密度函数2、均值、方差1、服从二项分布的随机变量理论分析如果随机变量X 的分布律为k n k k n k q p C k X P p -===}{0<p<1, q=1-p, k=0,1,2,…n,则称X 服从参数为n ,p 的二项分布,记为X~B(n ,p)。
其期望和方差分别为E(X) = np ,D(X)=npq 。
随机变量X~B(20,0.4),可以通过matla b 计算其期望和方差,绘制分布律和分布函数。
程序如下:n = 20;p = 0.4;[E,D] = binostat(n ,p); %计算期望和方差f = binopdf(1:21, n, p); %计算分布律F = binocdf(1:21, n, p); %计算分布函数subplot(2,2,1); stem(f); %绘制分布律title('二项分布理论分布律 n=20 p=0.4');xlabel('x');ylabel('p');subplot(2,2,3); stem(F); %绘制分布函数title('二项分布理论分布函数 n=20 p=0.4');xlabel('x');ylabel('f');计算得结果E(X) = 8,D(X) = 4.800,分布律和分布函数如图1。
图1 X~B(20,0.4)的分布律和分布函数样本分析利用matlab中binornd函数产生一个X~B(20,0.4)的样本,样本点总数为20000。
计算其均值和方差,计算分布律和分布函数,并与理论结果进行比较。
程序如下:n = 20;p = 0.4;R = binornd(n,p,1,20000);e = mean(R); %期望d = var(R); %方差f = zeros (1,21);F = zeros (1,21);for j = 1:21 %计算统计分布律for i=1:20000if j == R(i)f(1,j) = f(1,j) + 1;endendf(1,j) = f(1,j) / 20000;endsubplot(2,2,1);stem(f);title('二项分布样本分布律 n=20 p=0.4');xlabel('x');ylabel('p');for j = 1:21 %计算分布函数for i = 1:jF(1, j) = F(1, j) + f(1,i);endendsubplot(2,2,3);stem(F);title('二项分布样本分布函数 n=20 p=0.4');xlabel('x');ylabel('f');计算结果为e=8.0218,d=4.7760,与理论值(E(X)=8,D(X)=4.8)基本接近。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:相关正态随机过程的仿真
一、实验目的
以正态随机过程为例,掌握离散时间随机过程的仿真方法,理解正态分布随机过程与均匀分布随机过程之间的相互关系,理解随机过程的相关函数等数值特征;培养计算机编程能力。
二、实验内容
相关正态分布离散随机过程的产生
(1)利用计算机语言的[0,1]区间均匀分布随机数产生函数生成两个相互独立的序列
{U1(n)|n=1,2,…100000},{U2(n)|n=1,2,…100000}
程序代码:
clc;
N=100000;
u1=rand(1,N);
u2=rand(1,N);%----------------在[0,1] 区间用rand函数生成两个相互独立的随机序列
n1=hist(u1,10);%--------------------------hist函数绘制分布直方图
subplot(121);%-----------------------------一行两列中的第一个图
bar(n1);
n2=hist(u2,10);
subplot(122);
bar(n2);
实验结果:
(2)生成均值为m=0,根方差σ=1的白色正态分布序列
{e(n)|n=1,2, (100000)
[][]m n u n u n +=)(2cos )(ln 2-)(e 21πσ
程序代码:
clc;
N=100000;
u1=rand(1,N);
u2=rand(1,N);%---------------在[0,1] 区间用rand 函数生成两个相互独立的随机序列 en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n)
n=hist(en,100);%--------------------------hist 函数绘制分布直方图
bar(n); 实验结果:
(3)假设离散随机过程x(n)服从均值为x m =0、根方差为2x =σ、相关函数为||2)(r k x x k ασ= )6.0(=α
功率谱函数为
∑∞
-∞=----=-=k jw jw x x x e e jwk k r w P )1)(1()1()exp()()(22ααασ 1
211)(---=z z G x αασ 随机过程x(n)的生成方法为
)(1)1()(x 2n e n x n x ασα-+-= (n=1,2,…100000)
给定初始条件x(0)=0
程序代码:
clc;
N=100000;
u1=rand(1,N);
u2=rand(1,N);%---------------在[0,1] 区间用rand 函数生成两个相互独立的随机序列 en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n)
a=0.6;
x(1)=2*sqrt(1-a*a)*en(1);%-----------------初始化
for n=1:100000-1;
x(n+1)=a*x(n)+2*sqrt(1-a*a).*en(n+1);
end%------------------------------------生成随机过程x(n)
hist(x,100);%--------------------------hist 函数绘制分布直方图
实验结果:
(4)采用集合统计的方法计算
∑==1000001'
)(1000001n x n x m ∑==10000012'
)(1000001n x n x σ ∑-=+-=k n x k n x n x k r 1000001'
)()(1000001 )4,3,2,1(=k 验证计算出来的统计参数与理论值是否一致,差异大小
程序代码:
sum=0;
for i=1:100000
sum=sum+x(i);%--------------------表示x(n)的1到100000项的累加和
end
mx=sum/100000%-----------------------------算出mx 的值
sum=0;
for i=1:100000
sum=sum+x(i)*x(i);%--------------------表示x(n)*x(n)的1到100000项的累加和 end
ax=sqrt(sum/100000)%-----------------------算出标准差
for k=1:4
sum=0;%--------------------------------sum 清零
for j=1:100000-k
sum=sum+x(j)*x(j+k);
end
r(k)=sum/(100000-k);%------------------用集合统计的方法算出相关函数
end
r%-----------------------------------------算出r 的值
实验结果:
(5)采用计算机程序计算正态分布的区间积分
00001.0]22)00001.0(exp[221
]22exp[2212000001222
22⨯⨯⨯-⨯=⨯-⨯=∑⎰=i i ds s P ππ
根据已生成的序列x(n),在100000个数据中,分别计算(-∞,-2),
[-2,0],(0,2],[2,∞)区间上数据出现的比例P1,P2,P3,P4。
比较P1,P2,P3,P4与理想值(0.5-P ), P , P ,(0.5-P )的一致性。
程序代码:
num1=0;num2=0;num3=0;num4=0;
for i=1:100000
if(x(i)<-2)
num1=num1+1;
else if(x(i)>=-2)&(x(i)<=0)
num2=num2+1;
else if(x(i)>0)&(x(i)<=2)
num3=num3+1;
else
num4=num4+1;
end
end
end
end
disp('实验值为')
p1=num1/100000
p2=num2/100000
p3=num3/100000
p4=num4/100000
p2=0;
for i=1:200000
p2=p2+1/(sqrt(2*pi)*2)*exp(-(i*0.00001)*(i*0.00001)/(2*2*2))*0.00001;
end
p3=p2;
p1=(1-2*p2)/2;
p4=p1;
disp('理想值为')
p1,p2,p3,p4
实验结果:
三、实验体会
学会了MATLAB的基本使用,用来进行随机过程的仿真十分
方便,不过对一些系统函数的功能还不熟悉,以及将文字叙述转化为程序代码能力还需要提高,对相关正态分布离散随机过程的产生有了更深的了解。