求函数解析式方法

合集下载

求函数解析式的五种方法及其例子

求函数解析式的五种方法及其例子

求函数解析式的五种方法及其例子在数学领域中,求解函数解析式是一项重要的任务。

本文将介绍五种常用的方法来求解函数解析式,并通过例子来展示其应用。

1. 数列法:该方法适用于已知函数的输出序列,并希望找到一个函数解析式来描述它。

通过观察函数输出值之间的规律,可以尝试找到相应的数学模式。

例如,若某函数的输出序列为1,4,9,16,25,...,我们可以观察到这是个平方数序列,因此函数解析式为f(x) = x^2。

2. 经验法:该方法适用于已知函数的输入和输出值,但不清楚具体的数学关系。

通过绘制出函数的散点图,可以尝试通过经验找到适合的函数类型。

例如,若某函数的输入和输出值如下表所示:| x | 1 | 2 | 3 | 4 | 5 ||-------|-------|-------|-------|-------|-------|| y | 3 | 5 | 7 | 9 | 11 |我们可以观察到y值递增2,因此猜测函数解析式为f(x) = 2x + 1。

3. 代数法:该方法适用于通过已知函数的性质和结构来推导函数解析式。

例如,若需要求解一个线性函数,已知它通过点(1, 3)和(2, 5),可以使用直线的斜率公式来得到函数解析式。

根据两点之间的斜率公式,我们可以得到函数解析式f(x) = 2x + 1。

4. 差分法:该方法适用于已知函数的差分序列,即函数输出值之间的差异。

通过观察差分序列之间的规律,可以尝试找到函数的解析式。

例如,若某函数的输出值差分序列为1, 3, 5, 7,我们可以观察到差分序列的差值为2,因此猜测函数解析式为f(x) = 2x。

5. 推理法:该方法适用于已知函数的一些特殊性质或限制条件。

通过寻找函数性质和限制条件的推理,可以得到函数解析式。

例如,若某函数是一个偶函数且通过原点(0, 0),我们知道偶函数具有对称性,并且f(0) = 0。

因此,猜测函数解析式为f(x) = ax^2。

通过以上五种方法中的一种或多种方法,我们可以在求解函数解析式时获得准确的结果。

函数解析式的求解及常用方法

函数解析式的求解及常用方法

函数解析式的求解及常用方法
1.直接法:当函数的表达式比较简单时,可以通过观察函数在一些特定点上的值来找到函数的解析式。

例如,给定函数的函数值和定义域,通过观察函数的值与自变量之间的关系来确定函数的解析式。

2. 反函数法:对于一些特殊函数,可以通过求解函数的反函数来得到函数的解析式。

例如,对于幂函数y=x^n,可以通过求解其反函数
y=\sqrt[n]{x}来得到幂函数的解析式。

3.已知条件法:对于一些已知条件,可以通过利用这些条件来求解函数的解析式。

例如,已知函数的导函数或者积分表达式,可以利用这些条件来求解函数的解析式。

4.递归法:有些函数可以通过递归的方式来定义,即函数的值依赖于前面的函数值。

例如,斐波那契数列就是通过递归来定义的,可以通过递归的方式来求解函数的解析式。

5.求导和积分法:对于一些函数,可以通过求导和积分的方式来求解函数的解析式。

特别是对于一些常见的函数,可以通过求导和积分的规则来求解函数的解析式。

以上是常用的函数解析式求解方法,不同函数的特点和已知条件可能需要采用不同的方法来求解函数的解析式。

在实际问题中,需要根据具体情况选择合适的方法来求解函数的解析式。

求函数解析式的七种方法

求函数解析式的七种方法

函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数的解析式结构时,用待定系数法。

例1 已知)(x f 是一次函数,且34)]([+=x x f f ,求)(x f解:设b ax x f +=)( )0(≠a ,则b ab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+xx 2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f解:令1+=x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 , 点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='yy x x 64代入得: )4()4(62--+--=-x x y整理得672---=x x y ∴67)(2---=x x x g五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

求函数解析式的六种常用方法

求函数解析式的六种常用方法

求函数解析式的六种常用方法函数解析式指的是用代数式或公式来表示函数的方式。

以下是六种常用方法:一、明确函数定义域和值域在确定函数解析式之前,首先需要明确函数的定义域和值域。

函数的定义域是指函数可以取值的自变量的范围,而值域则是函数的函数值可以取的范围。

明确函数的定义域和值域可以帮助我们确定函数解析式的形式和特点。

二、利用已知条件和性质确定函数解析式在求函数解析式时,可以利用已知条件和性质来确定函数解析式的形式。

例如,已知函数的导函数,可以通过求导的逆运算确定原函数的解析式。

又如,已知函数的周期性质,可以利用周期性质来确定函数解析式的形式。

三、从实际问题中建立函数关系函数解析式可以从实际问题中建立起来。

在解决实际问题时,可以首先建立自变量和函数值之间的关系,然后根据问题中给出的条件来确定函数解析式。

例如,求解经济学中的需求函数、生长模型等。

四、利用已知函数的性质和运算建立函数解析式在求函数解析式时,可以利用已知函数的性质和运算来建立函数解析式。

例如,可以利用已知函数的线性性质、对称性质、指数性质等来建立函数解析式。

又如,可以利用已知函数的运算性质,如加减乘除、复合等来建立函数解析式。

五、利用恒等式和方程组建立函数解析式在求解一些复杂的函数问题时,可以利用恒等式和方程组来建立函数解析式。

通过列方程并求解,可以得到函数解析式中的一些未知系数。

例如,可以通过建立差分方程求解离散函数的解析式。

六、利用已知函数的级数展开建立函数解析式在求解一些函数的解析式时,可以利用已知函数的级数展开式来建立函数解析式。

通过逐项求和,可以得到函数解析式的形式。

例如,可以利用幂级数展开来确定一些特殊函数的解析式。

求函数解析式的几种方法

求函数解析式的几种方法

求函数解析式的几种方法函数的表示方法有三种:解析式法、图像法、列表法,其中最常用的是解析式法,下面介绍几种求函数解析式的方法。

一、利用换元法求函数的解析式。

例1、已知函数f(ex)=x2+1,求函数f(x)的解析式。

解:设ex=t,t>0,则x=㏑t, f(t)=㏑2t+1.则f(x)=㏑2x+1 (x>0).注:已知f[g(x)]是关于x的函数即f[g(x)]=F(x) 求函数f(x)的解析式。

通常令g(x)=t,解出x=φ将x=φ代入f[g(x)]=F(x)中,求得f(t) 的解析式,再用x替换t便得f(x) 的解析式。

用换元法求函数解析式时,如果所求函数的定义域不是全体实数,需要根据实际情况标明函数的定义域.二、根据函数的奇偶性求函数的解析式。

例2、设f(x)是定义在R上的奇函数,且当x∈(0,﹢∞)时f(x)=x2+lg(1+x), 求函数f(x)的解析式。

解:设x∈(-∞,0),则-x∈(0,﹢∞)。

f(x)=-f(-x)=-x-lg(1-x)则当x∈(0,﹢∞),f(x)=x2+lg(1+x),x=0时,f(x)=0 x∈(-∞,0),f(x)=-x2-lg(1-x)三、消元法求函数的解析式。

例3、已知函数f(x)满足3f(x)+2f()=4x, 求函数f(x)的解析式.解:用代换x,列方程组解f(x)3f(x)+2f()=4x, 3f()+2f(x)=解得f(x)=x- 。

注:此题是利用消元法和函数奇偶性求函数的解析式.四、根据对称性求函数的解析式。

例4、已知函数f(x)=x2-2x, x∈[2,3],且f(x)关于(2,0)中心对称,求x∈[1,2]上的解析式。

解:设p(x,y)是x∈[1,2]图像上的点,则其关于(2,0)的对称点为Q(4-x,-y),则-f(x)=(4-x)2-2(4-x) f(x)=-(4-x)2+2(4-x)。

五、利用赋值法求函数的解析式。

例5、已知函数y= f(x)对任意实数x. y均满足f(x-y)=f(x)-y(2x-y+1)且f(0)=1,求函数y= f(x)的解析式。

求函数解析式的六种常用方法

求函数解析式的六种常用方法

求函数解析式的九种常用方法一、换元法已知复合函数f [g (x)]的解析式,求原函数f(x)的解析式, 把g (x)看成一个整体t ,进行换元,从而求出f(x)的方法。

例1 已知f(xx 1+)= x x x 1122++,求f(x)的解析式. 解: 设x x 1+= t ,则 x= 11-t (t ≠1), ∴f (t)= 111)11(1)11(22-+-+-t t t = 1+2)1(-t +(t-1)= t 2-t+1 故 f (x)=x 2-x +1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域.二、配凑法例2 已知f(x +1)= x+2x ,求f (x)的解析式.解: f (x +1)= 2)(x +2x +1-1=2)1(+x -1,∴ f(x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x,则有f(x)= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错.三、待定系数法已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。

例3 已知二次函数f(x)满足f(0)=0,f(x+1)= f(x)+2x+8,求f (x )的解析式.解:设二次函数f(x )= ax 2+bx+c,则 f(0)= c= 0 ①f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a +b)x+a+b ② 由f(x+1)= f (x)+2x +8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f(x)= x 2+7x.评注: 已知函数类型,常用待定系数法求函数解析式.四、消去法(方程组法)例4 设函数f (x )满足f(x )+2 f(x 1)= x (x ≠0),求f (x )函数解析式. 分析:欲求f(x),必须消去已知中的f(x 1),若用x 1去代替已知中x,便可得到另一个方程,联立方程组求解即可.解:∵ f(x )+2 f(x1)= x (x ≠0) ① 由x 1代入得 2f(x)+f(x 1)=x1(x ≠0) ② 解 ①② 构成的方程组,得 f(x )=x 32-3x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足,求的解析式。

求函数解析式的方法和例题

求函数解析式的方法和例题

求函数解析式的方法和例题一、常见的求函数解析式的方法。

1. 代数法,通过代数运算,将已知的函数关系式化简成解析式的形式。

例如,对于一元一次函数y=ax+b,我们可以通过代数运算将已知的函数关系式y=ax+b化简为解析式y=2x+3。

2. 图像法,通过观察函数的图像特征,推导出函数的解析式。

例如,对于二次函数y=ax^2+bx+c,我们可以通过观察抛物线的开口方向、顶点坐标等特征来推导出函数的解析式。

3. 系数法,对于一些特定的函数类型,可以通过系数的求解来得到函数的解析式。

例如,对于指数函数y=a^x,我们可以通过已知的函数值和指数的关系来求解出函数的解析式。

4. 反函数法,有些函数的解析式可以通过求解其反函数得到。

例如,对于对数函数y=log_a(x),我们可以通过求解其反函数来得到函数的解析式。

二、求函数解析式的例题。

1. 求一元一次函数y=ax+b的解析式,已知当x=1时,y=3;当x=2时,y=5。

解:根据已知条件,我们可以列出方程组:a1+b=3。

a2+b=5。

通过解方程组,可以求解出a=2,b=1,因此函数的解析式为y=2x+1。

2. 求二次函数y=ax^2+bx+c的解析式,已知其图像经过点(1,2),顶点坐标为(-1,3)。

解:根据已知条件,我们可以列出方程组:a1^2+b1+c=2。

a(-1)^2+b(-1)+c=3。

通过解方程组,可以求解出a=1,b=0,c=1,因此函数的解析式为y=x^2+1。

3. 求指数函数y=a^x的解析式,已知当x=2时,y=16;当x=3时,y=64。

解:根据已知条件,我们可以列出方程组:a^2=16。

a^3=64。

通过解方程组,可以求解出a=4,因此函数的解析式为y=4^x。

以上就是关于求函数解析式的方法和例题的介绍,希望能对大家有所帮助。

通过学习和掌握这些方法和技巧,相信大家可以更好地理解和运用函数解析式,提高数学解题的能力。

求函数解析式的四种常用方法

求函数解析式的四种常用方法

求函数解析式的四种常用方法函数是数学中的重要概念,它描述了变量之间的关系。

函数解析式是用代数表达式来表示函数的定义域、值域和具体的变化规律。

常用的四种方法来得到函数的解析式是:通过公式、通过图像、通过数据和通过给定条件。

一、通过公式:一些函数的解析式可以通过简单的数学公式来得到。

例如,直线函数y = kx + b、二次函数y = ax^2 + bx + c以及指数函数y = a^x等。

这些函数可以根据已知的系数和常数来确定解析式。

例如,对于直线函数y = 2x + 3,我们可以知道它的斜率是2,截距是3,因此解析式为y = 2x + 3二、通过图像:函数的解析式可以通过观察图像来确定。

例如,可以根据函数的特点,如对称性、切线的斜率等,来确定解析式。

对于一元函数来说,可以通过绘制函数的图像来判断函数的特点,从而得到函数的解析式。

例如,对于一次函数来说,可以通过观察图像的直线特点来确定解析式;对于二次函数来说,可以根据开口方向、抛物线的顶点位置等来确定解析式。

三、通过数据:有时候可以通过给定的数值表格或函数的值来确定函数的解析式。

通过列举一组合适的输入和输出值,然后观察数值的规律,可以找到函数的解析式。

例如,已知函数的自变量为x,函数的值为y,通过给定一些具体的x和对应的y值,可以通过观察它们之间的关系来确定函数的解析式。

四、通过给定条件:在一些具体的问题中,函数的解析式可以通过给定的条件来确定。

例如,在几何问题中,根据给定的几何条件和函数的特性,可以建立函数的解析式。

例如,根据直线过点的条件和斜率的特性,可以确定直线的解析式。

综上所述,函数解析式的四种常用方法是通过公式、通过图像、通过数据和通过给定条件。

通过这些方法,可以确定函数的解析式,进而研究函数的性质和变化规律,以及解决一些实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函 数 解 析 式 的 六 种 求 法
一、 待定系数法:在已知函数解析式的构造时,可用待定系数法.
它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。

其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。

例1 设
)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .
二、配凑法:已知复合函数
[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域.
例2 已知
221)1(x
x x x f +=+ )0(>x ,求 ()f x 的解析式.
三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。

它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。

例3 已知
x x x f 2)1(+=+,求)1(+x f .
四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.
例4已知:函数
)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式.
五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式. 例5 设
,)1(2)()(x x
f x f x f =-满足求)(x f .
例6 设
)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式
小结:消元法适用于自变量的对称规律。

互为倒数,如f(x)、
1()f x ;互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。

六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简
单化,从而求得解析式.
例7 已知:
1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f .
例5:已知
(0)1,()()(21),f f a b f a b a b =-=--+求()f x 。

第 1 页 共 3 页 练 习
求函数的解析式
例1.已知f (x )= 22x x -,求f (1x -)的解析式. ( 代入法 / 拼凑法 )
变式1.已知f (x )= 21x -, 求f (2x )的解析式.
变式2.已知f (x +1)=223x x ++,求f (x )的解析式.
例2.若f [ f (x )]=4x +3,求一次函数f (x )的解析式. ( 待定系数法 )
变式1.已知f (x )是二次函数,且()()211244f x f x x x ++-=-+,求f (x ).
例3.已知f (x )-2 f (-x )=x ,求函数f (x )的解析式. ( 消去法/ 方程组法 )
变式1.已知2 f (x )- f (-x )=x +1 ,求函数f (x )的解析式.
变式2.已知2 f (x )-f 1x ⎛⎫
⎪⎝⎭
=3x ,求函数f (x )的解析式.
例4.设对任意数x ,y 均有()()222233f x y f y x xy y x y +=++-++, 求f (x )的解析式. ( 赋值法 / 特殊值法)
变式1.已知对一切x ,y ∈R ,()()()21f x y f x x y y -=--+都成立,且f (0)=1, 求f (x )的解析式.。

相关文档
最新文档