化探找矿方法与原理

合集下载

关于地质找矿中物化探方法的使用分析

关于地质找矿中物化探方法的使用分析

关于地质找矿中物化探方法的使用分析地质找矿是矿产资源勘查的重要环节,而物化探方法则是地质找矿中的一种重要技术手段。

物化探方法通过对地下物质的物理性质和化学性质进行监测和分析,来判断地下蕴藏的矿产资源的类型、储量、分布等信息,从而为地质找矿提供重要的依据和技术支持。

本文将从物化探方法在地质找矿中的应用场景、成果效益等方面进行分析,以探讨其在地质找矿中的重要作用。

一、物化探方法在地质找矿中的应用场景1. 地质构造解析物化探方法可以通过地下介质的物理性质变化,来解析地下的构造变化情况。

通过分析地下岩石的密度、磁性、电性等物理性质,可以揭示出地质构造的特征和变化规律,为地质找矿提供重要依据。

2. 矿产资源勘查物化探方法可以通过对矿产资源的物理性质进行监测和分析,来判断地下蕴藏的矿产资源的类型、储量、分布等信息。

尤其对于矿床的深部探测和矿床的侧向分布情况,物化探方法能够发挥其独特优势。

3. 矿产资源评价物化探方法可以对地下矿产资源的成矿条件、矿床规模、品位等进行评价,为资源勘查和开发提供科学依据。

不仅可以帮助开发企业降低勘查和开发成本,还可以提高勘查和开发效率。

4. 矿产环境监测物化探方法可以对矿区地下水、地下气体等环境因素进行监测和分析,为矿区的环境保护和治理提供科学依据。

特别是在矿区水资源管理和土地利用方面,物化探方法可以发挥重要作用。

1. 提高地质勘查效率物化探方法通过对地下物质的物理性质和化学性质进行监测和分析,可以直接获取地下矿产资源的信息。

与传统的地质勘查方法相比,物化探方法可以显著提高地质勘查的效率,节约勘查成本。

2. 提高勘查成果质量物化探方法可以直接获取地下矿产资源的信息并进行立体表达,使勘查成果更加直观、准确,提高了勘查成果的质量和可信度。

3. 降低勘查风险物化探方法可以根据地下的物理性质和化学性质,判断地下蕴藏的矿产资源类型、规模等信息,为矿产资源开发提供科学依据。

通过物化探方法的应用,可以降低矿产资源开发的风险,提高资源开发的成功率。

关于地质找矿中物化探方法的使用分析

关于地质找矿中物化探方法的使用分析

关于地质找矿中物化探方法的使用分析地质找矿是指利用地质学理论和方法,找寻地球内部的各种矿产资源的活动。

在地质找矿中,物化探方法是一种非常重要的技术手段,通过使用物理方法、化学方法以及地球物理学等方法,来寻找矿产资源的分布情况、成矿地质条件等信息。

本文将对物化探方法在地质找矿中的使用进行分析,探讨其在矿产勘查中的作用以及存在的问题和改进的方向。

一、物化探方法的概念物化探是地球科学领域中的一种重要勘探手段,主要是通过测定地球物理场、化学场和地磁场等的一种手段,通过使用重力、磁力、电阻率、地震波等物理现象,来确定地下是否存在矿产资源,以及矿产资源的形成条件和分布规律。

在地质找矿中,物化探的应用非常广泛,是一种高效的勘查手段。

1. 重力方法重力法是利用地球引力场对地下物质的分布情况进行研究,通过观测地表的重力异常,来推断地下岩石密度的变化,从而确定矿产资源的分布情况。

重力法在地质找矿中广泛应用,特别是在石油、天然气和矿产资源的勘查中有着重要的作用。

2. 电磁法3. 地震波法4. 地球物化学方法地球物化学方法是通过测定地质样品的化学成分,来推断地下矿产资源的分布情况和成矿地质条件。

地球物化学方法在矿产资源勘查中也有着重要的作用,通过矿物成分的分析和地球化学特征的研究,可以确定矿产资源的类型、含量和分布规律。

三、物化探方法存在的问题和改进方向尽管物化探方法在地质找矿中有着重要的作用,但也存在一些问题和不足之处,需要进一步改进和完善:1. 技术手段不够先进当前物化探方法在仪器设备、数据处理等方面还存在不足,需要进一步引进先进的技术手段,提高勘查的精度和效率。

2. 成本较高物化探方法在勘查过程中需要耗费大量的人力、物力和财力,成本较高,需要寻求更加节约成本的勘查方法。

3. 不适用于所有地质环境物化探方法是一种通过测定地下物质的物理和化学特征来推断矿产资源分布的方法,但并不适用于所有地质环境,需要根据不同的地质条件选择合适的勘查方法。

关于地质找矿中物化探方法的使用分析

关于地质找矿中物化探方法的使用分析

关于地质找矿中物化探方法的使用分析地质找矿是地球科学的一个重要分支,通过对地球内部结构、矿床分布和成矿规律等方面的研究,以揭示矿产资源的分布规律和找矿远景。

在地质找矿的过程中,物化探方法是一种非常重要的手段,通过对地表的物理、化学性质进行检测和分析,以间接推断地下的地质构造和矿体分布情况。

物化探方法具有操作方便、数据获取相对快速、不破坏地表等优点,因此在地质找矿中得到了广泛应用。

一、物化探方法的基本原理1.地球物理勘查方法。

地球物理勘查方法是通过地球物理条件的不同,如电、磁、重力、地震、放射性等性质差异,间接反映地下构造情况。

电磁法、磁法、重力法、地震法等属于地球物理勘查方法。

这些方法可以用来探测地下地质构造和各种矿床。

2.地球化学勘查方法。

地球化学勘查方法是通过对地表和井下样品进行化学成分分析,以发现地下矿产,掌握矿床的分布和远景。

火焰光度法、原子吸收光谱法、质谱法等属于地球化学勘查方法。

这些方法可以用来探测地下矿床的成矿规律和找矿远景。

二、物化探方法在地质找矿中的应用1.初探阶段的应用:在地质找矿的初探阶段,物化探方法可以对目标区域进行宏观地质、地球物理、地球化学综合勘查,快速掌握区域地质构造、矿产资源分布情况,为后续详细勘查提供基础数据和找矿方向。

2.详细勘查阶段的应用:在地质找矿的详细勘查阶段,物化探方法可以对目标区域进行精细地质、地球物理、地球化学勘查,进一步确定矿产资源的分布、规模、品位等信息,为矿床评价和资源储量评估提供科学依据。

3.找矿预测和矿体定位的应用:物化探方法可以对地下构造和矿体进行预测和定位,通过对目标区域的地球物理、地球化学特征进行分析,判断矿床产状、规模、品位等属性,为矿产资源的合理开发提供技术支持。

4.矿床类型的分类和划分:物化探方法可以根据矿床的地质、地球物理、地球化学特征,对矿床进行分类和划分,从而揭示矿床的成因机制和形成规律,为矿床的选矿和选矿工艺提供参考依据。

各类化探找矿方法

各类化探找矿方法

第一章地球化学异常基本概念地球化学异常:某些地区的地质体或天然物质(岩石、土壤、水、空气),一些元素含量明显偏离正常含量或某些化学性质明显发生变化的现象;地球化学背景:元素含量属于正常的现象;异常含量:高于背景上限值的含量;原生异常:在成岩、成矿作用下,在基岩中形成的异常;次生异常:由于岩石、矿石的表生破坏在现代疏松沉积物(残积物、坡积物、水系、冰川和湖泊沉积物)及生物中形成的异常;同生异常:与介质同时形成的异常;后生异常:介质形成后,异常物质以某种方式进入已形成的介质而形成的异常;(地球化学异常划分为地球化学省、区域异常和局部异常)地球化学省:几千至几万平方公里,常与构造成矿带相重合,预测矿产的区域分布;区域原生异常:几至几百平方公里,表现为与成矿有关的岩体和含矿层中某些元素含量偏高,无论对化学找矿及区域成矿规律研究都有重要意义;局部原生异常:与矿体有关的主要是矿床的原生晕。

地球化学晕:包裹矿体的、成矿有关元素含量增高的异常地段,由矿体(高含量中心)向外元素含量逐步降低,直至趋于正常含量;原生晕:在成岩、成矿有关作用的影响下,在矿体附近的围岩中所形成的局部地球化学原生异常地段,岩浆矿床和沉积矿床的原生晕属于同生晕,与围岩同时形成、热液矿床的原生晕属于后生的,是围岩形成后元素含量发生变化形成、变质矿床原生晕则较复杂;次生晕:在表生作用下,矿床或其原生晕的表生破坏,元素迁移,在矿体及其原生晕的附近松散覆盖物中形成的次生地球化学异常段,也能在一定条件下反映矿床及原生晕的存在;分散晕:虽然矿床的原生晕并非成矿物质由矿体向外分散所形成,但习惯上常将矿床的原生晕和次生晕,统称为分散晕;分散流:在表生作用下,由于矿体及其分散晕的破坏,在其附近地表水系沉积物中形成的次生异常地带,沿水系呈线状延伸;地球化学找矿:岩石地球化学找矿(原生晕,以矿区工作为主);土壤地球化学找矿(次生晕,矿区或区域调查系统运用);水系沉积物地球化学找矿(分散流);水地球化学找矿;气体地球化学找矿;生物地球化学找矿;第二章岩石地球化学找矿第一节采样布置①规则测网(按一定的测线间距和测点间距,均匀的分布在测区范围)测线的方向:一般要求垂直于矿体或控矿构造的方向;测线和测点的间距:普查找矿时应使1-2条测线和2-3个测点落于异常内;普查评价时应使3-5条测线和3-5个测点落于异常内;对于在矿体规模或矿石成分比较特殊的矿床,应选择典型地段进行试验,以确定适宜的测线、测点间距,特别是测点间距;②不规则测网(样品并不严格按照一定点线均匀布置在测区,具条件和需要随机采取,以满足研究问题的需要为原则)③系统剖面(采样点布置在一系列的剖面上,剖面线间距并无一定的要求,但以追索异常的分布为原则,不要求相互平行,以能基本垂直异常分布为原则)测点间距参考前表;第二节样品采集①样品类型包括:岩石、矿石、断层泥(评价断裂含矿性)、围岩裂隙物(强化热液矿床原生晕,加大找盲矿的有效深度)②样品组成元素分布不均匀,要求采样点附近(一般直径一米范围)采集若干小块岩石(5-7块以上)合为一个样;钻探岩心样以每个采样点上下一米采集5-7个样,合为一个样;③样品间距视原生晕的规模而定,一般2-5米;原生晕规模很大时,采样间距可达10米或更大;蚀变接触带、断裂附近,间距适当缩小;除了薄层岩层或不同岩石交替出现时可做一种地质体处理外,一个样不采集2种岩石物质;④样品重量样重一般为100-200克,对于断层泥、裂隙充填物样品,要求20克以上;⑤样品记录为了便于评价所发现的原生异常,记录每个样点的岩石、构造(主要指断裂、片理等)、矿化、蚀变等特征和组成样品的物质、风化程度;第三节样品加工第三章土壤地球化学找矿第一节采样布置不规则测网:区域性工作中,如同布设地质路线、布设观测点一样,往往重合;规则测网:大比例尺土壤地球化学找矿,测线要求基本垂直矿体或控矿构造延长方向,点距取决于异常规模和工作比例尺;矿体延长方向不明、成矿方向不清或近等轴状,测网可采用方格状;系统剖面:形成异常的物质迁移距离很大,或异常沿一定方向延展甚远时采用,除在冰碛土中进行土壤找矿外,评价区域性断裂带、岩体接触带的含矿性时也往往采用这种形式;第二节样品采集与加工土壤层位及性质:采样多在残坡积层中,要正确识别残坡积、冲积、风成或冰碛;A层属于冲积、风积,元素淋失大,有机质含量高,B层属残坡积;样重及记录:原始样50-100克,记录测线、测点号、采样层位、深度、颜色、湿度及其附近岩石、构造、蚀变、矿化情况等;最佳粒度:不同粒度取决于元素富集情况,需要采样试验;野外初步加工中过20网目(0.85mm)筛后即装袋作为样品,送交实验室后具不同分析方法要求,进一步研磨加工;第四章水系沉积物地球化学找矿第一节采样布置1)沿一定水系、按一定间距布置,大致形成不严格测网2)按汇水盆地布置,在水系中采取样品不同比例尺的水系沉积物测量,线距(采样水系间距)、点距(沿水系分布的样品间距)及采样密度(每平方公里取样点数)。

化探

化探

地球化学测量法(1)地球化学测量法的基本原理:地球化学测量主要是通过发现异常、解释评价异常的过程来进行找矿的,而地球化学异常又是相对于地球化学背景而言的。

所以说研究地球化学异常是化学探矿的最基本问题。

1)地球化学背景与背景含量:在无矿或未受矿化影响的地区,区内的地质体和天然物质没有特殊的地球化学特征,且元素含量正常,这种现象称为地球化学背景,简称背景。

正常含量也叫背景含量。

元素呈正常含量的地区称背景区。

背景区内,元素的分布是不均匀的,故背景含量不是一个确定的值,而是在一定范围内变动的值。

背景含量的平均值为背景值。

背景含量的最高值称为背景上限值,或称背景上限。

高于背景上限值的含量就属于异常含量。

因此,也可以称背景上限值为异常下限。

2)地球化学异常与异常值:在广大背景区中,往往有一部分天然物质及地球化学特征与背景区有显著不同,这就是地球化学异常。

如果用数值来表达异常的特征,则该值叫地球化学异常值。

其对应的地区称为地球化学异常区,简称异常区。

3)地球化学异常的分类:地球化学异常可分为在基岩中形成的异常-原生地球化学异常(原生异常)和由岩石、矿石遭表生风化破坏后,在现代疏松沉积物、水及生物中形成的异常-次生地球化学异常(次生异常)。

根据规模大小,又可将地球化学异常分为三类:地球化学省、区域地球化学异常(区域异常)和局部地球化学异常(局部异常)。

4)地球化学测量方法分类:根据地球化学找矿取样介质的不同可以分为下列五类:岩石地球化学测量、土壤地球化学测量、水系沉积物地球化学测量(即分散流测量)、水化学测量、气体地球化学测量。

上述各类地球化学找矿方法中,以前三种最常用,比较成熟且找矿效果也较好。

(2)地球化学测量法的工作方法1)定点及编号:将采样点的位置准确地标定在相应的图件上称为定点。

测区用规则测网采样时,将测量结果换算成坐标落在图件上就行了。

采样点的误差最好不超过点线距的1/20-1/10。

若用不规则测网采样时,定点的误差要大些,一般要求定点的误差在相应图中不超过1mm。

化探找矿方法与原理

化探找矿方法与原理

地球化学勘查技术的智能化与信息化
智能化技术:利用人工智能和机器学习算法实现数据自动处理、异常识别 和预测分析提高找矿精度和效率。
信息化技术:通过大数据、云计算等技术手段实现数据共享、信息交流和 协同工作促进地球化学勘查技术的跨领域合作与创新。
技术应用:在矿产资源勘查、环境监测、地质灾害预警等领域得到广泛应 用为人类社会可持续发展提供重要支撑。
教训总结:从案例中总结出教训如对地质条件的误判、技术手段的局限性、风险控制等方 面。
实际应用:将成功经验和教训应用到实际化探找矿工作中提高勘探效率和成功率。
化探找矿案例的启示与借鉴意义
案例选择:具有代表性能够反映化探找矿的原理和方法 案例分析:深入剖析总结出成功的经验和教训 案例启示:从实践中提炼出对未来找矿工作的启示和借鉴意义 案例应用:将启示应用到实际找矿工作中提高找矿效率和准确性
气体测量:利用气体测量技术检测地下是否存在矿产资源
现代化探找矿方法
遥感技术:利用卫星或飞机获取地球表面信息发现异常区域
地球化学填图:通过对地表岩石、土壤、水系等介质中的元素含量进行测 量和绘制发现地球化学异常
气体测量:利用地下气体如甲烷、二氧化碳等在地下异常区域释放的特点 通过测量其浓度和组分来发现矿床
地球化学异常的评价:根据地球化学异常的特征和规律结合地质勘查成果对异常进行综 合评价预测可能存在的矿产资源。
地球化学异常的应用:在矿产勘查、地质调查、环境监测等领域广泛应用为资源开发和 经济建设提供重要依据。
地球化学异常的预测与验证
预测方法:利用地球化学数据和数学模型进行异常预测 验证手段:通过野外实地调查和采样分析来验证异常的存在和可靠 性 异常识别:根据地球化学指标和数据特征识别出异常区域和异常类型

勘查地球化学

勘查地球化学

绪论勘查地球化学是20世纪30年代兴起的地学最年轻的分支学科之一。

它是地学与化学相结合的产物,即化学方法找矿,简称化探。

随着社会进步与发展,地球化学找矿已以从纯粹的找矿领域拓展到环境地球化学、工程地球化学、农业地球化学、基础地质研究等领域。

“化探(地球化学找矿)”这一名词逐步被勘查地球化学所取代。

5※<一.概念>20世纪中叶,原苏联学者认为:“地球化学找矿是根据基岩及其覆盖层中、地下水及地表水流中、植物中、土壤中和气体中的含矿物质不明显的微观晕,以发现矿床的一种找矿方法。

”西方国家的学者对地球化学找矿的定义则是:“地球化学找矿是基于系统的测定天然物质中一种或数种化学物质的任何勘查方法。

”我国学者认为:“勘查地球化学是为了各种不同目的,系统地在不同比例尺与规模上考察地壳元素的分布变化,应用化学元素分布分配、共生组合及变化规律来指导找矿等的应用学科。

”5※<二.勘查地球化学发展史>勘查地球化学是从一种找矿技术地球化学找矿发展起来的年轻的地学分支。

地球化学探矿最早是在北欧和前苏联发展起来的,受到了几位大师的影响。

一个是戈尔德施密特,他在挪威的哥廷根实验室开始使用光谱技术,于是有了痕量地球化学的发展。

另外两位是俄罗斯的维尔纳茨基和费尔斯曼。

我国在勘查地球化学领域做出杰出贡献的是谢学锦院士。

V.M.戈尔德施密特Goldschmidt,Victor Moritz1888年生于瑞典苏黎世,其父亲是一位颇有名望的奥斯陆大学物理化学家。

1911年在奥斯陆大学获得了哲学博士学位,毕业论文:地壳中矿物学变化的相位定律。

1929年在哥廷根大学任职。

戈尔德施米特使矿物学不再是一门纯描述性的学科。

如同古腾贝格是地球物理的倡导者一样,戈尔德施米特是地球化学的先驱者。

戈尔德施米特是犹太人,在集中营关押时期健康受到严重损害,1947年卒于挪威奥斯陆。

贡献1:1917年在挪威奥斯陆创立了晶体化学新学科,并在此基础上开创了微量元素地球化学的研究,揭示微量元素在岩石及矿物中存在形式和分布规律。

新时期地质矿产的地球化学勘探及找矿预测研究

新时期地质矿产的地球化学勘探及找矿预测研究

新时期地质矿产的地球化学勘探及找矿预测研究摘要:文章主要是分析了地质勘查及找矿技术,在此基础上讲解了地质勘查及找矿技术原则,最后探讨了能够提高勘查及找矿技术的对策,望可以为有关人员提供到一定的参考和帮助。

关键字:新时期;地质矿产勘查;找矿技术1、前言新时期地质矿产勘探主要对以往工作中新发现的含矿层、矿化蚀变带、矿带和其他重要找矿线索,进行了全面的概略检查。

由于矿产资源已经被大力开采,地球化学勘探主要针对植被覆盖严重,露头较差的矿化点。

地表新发现的矿化点总体偏少,调查过程中新发现的矿化点几乎全部落在矿权内,上述客观情况在一定程度上限制了概略性检查成果。

对经过勘查工作的矿床或矿点,以资料收集和踏勘为主,了解矿床地质条件、矿化特征、找矿标志,以便指导新时期地质找矿和评价工作。

地球化学勘探为多元素组合,各元素套和较好,异常范围大,元素分带为Au、Cu、Zn、PbMo、Sn、As、Sb、Ag—Bi2.根据异常套和程度,可判断区域内金、铜、铅、锌多金属成矿地球化学特征。

2、地质勘查及找矿技术概述重砂勘探法的主要目的是疏松天然重矿物地层中的沉积物,通过研究和分析,可以追踪和分析砂矿和原矿,经过搜索,可以发现矿体的风化作用。

按照这个原理,可以提取一定量的方法,该方法的原理是追踪山坡,河流系统或冰川活动区的矿石和砾石,寻找矿床,进行勘探和地质调查以及分析地图。

这种方法的主要目的是进行全面而全面的研究。

调查和研究地质和矿产资源,了解工作区的基本地质特征,发现矿化的规律和各种探矿信息,并进行采矿工作,按照一氧化碳定位矿化的理论,一氧化碳定位矿化主要是指不同地区不同类型矿床中相对稳定的矿化时期。

在一些重要且相对稳定的大型矿床形成过程中相同的矿化特征明显相似。

因此,在矿物勘探中,必须重视成矿信息的收集与分析,掌握矿物的特征。

应用地质体运动理论进行勘查,解决矿区成矿规律是深部找矿研究的关键。

通过对深部矿区成矿环境、成矿系统和成矿过程的分析,确定了矿床的深部空间和成矿过程,才可以发现深层沉积物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1) 异常下限
异常下限,又称为背景上限,它 是划分异常与背景的临界值。确 定背景上下限常用的公式为 Ca = C0 + RS
C0— 背景平均值;
R — 决定可靠性的系数;
S — 标准离差值。
2)异常衬度
又称对衬度、对比度,是指某一指示元素所 形成的异常含量平均值CA与异常所在区域该元 素的背景平均值Cb (或异常下限T)的比值
矿体
矿体
矿体 矿体
地球化学异常
地球化学异常及其分类 描述地球化学异常的参数
正常分布与异常分布 元素含量的背景分布图
C
Ca背景上限 C0背景值 C1背景下限
不同级次的背景

局部的背景值 区域的背景值 地球化学省的背景值 全球的背景值
地球化学异常
是相对于地球化学背景区而言的,是指 与地球化学背景区相比有显著差异的元 素含量富集区或贫化区
化探找矿方法与原理
潘家 永
东华理工大学 2012.2.16
找矿方法
地质:地表找矿 物探:深部找矿、但存在多解性 化探:深部找矿、直接、快速! 遥感:区域找矿,预测靶区
化探找矿方法与原理
化探找矿原理 地球化学异常 地球化学找矿方法概述
化探找矿原理:
岩石地球化学异常 土壤地球化学异常 水文地球化学异常 水系沉积物异常 生物地球化学异常 气体地球化学异常
如:线金属量值PLi=(CA-Cb)Lisin异θ
面金属量Ps= =(CA-Cb)S
常 长

测线
θ
方 向
L
线金属量值:在一个地球化学异常中, 为了对比各剖面线的异常规模大小, 必须求各剖面线上的异常金属量值。 如果测线上各采样点是等距的,则线 金属量值可按下式计算:
PL (C A - Cb )Li sin q
7)根据异常与矿的关系分为:
1、矿异常:A、矿体(矿床)异常;B、矿化异常; 2、非矿异常:
地球化学异常
地球化学异常及其分类 描述地球化学异常的参数 地球化学勘查的概念及基本原理 地球化学找矿方法的分类 地球化学找矿的优势
地球化学异常的参数值
1)异常下限 2)异常衬度 3)异常强度 4)异常面积 5)异常规模 6)异常浓度分带性 7)综合异常组分特征
7)综合异常组分特征
多组分的异常要比单一组分的异常有意义。 异常组分的复杂性,反映了形成异常的矿床 其组分的复杂性。(矿化作用过程及矿化类 型)
As.Sb.W.Au.Hg. 一组
地球化学找矿
地球化学找矿方法的分类 地球化学找矿的优势
勘查地球化学找矿方法分类
岩石地球化学找矿(亦称基岩地球化学测量,原 生晕找矿法)。
次生异常——矿体遭受破坏以后在表生条件 下,元素再次迁移、分配而形成的地球化学 异常。
3)根据异常与其赋存介质形成的相对时间关 系可以分为同生异常和后生异常。
同生异常——异常物质与其赋存介质同时形成。 后生异常——异常物质在其所赋存的介质形成之
后以某种方式进入而形成的地球化学异常。
4)根据异常所赋存的介质的不同,又分为:
高含量值度量。
依照异常强度大小可对其进行浓度分带,如 高值带,中值带及低值带或分为内带、中带、 外带
4)异常面积
以异常下限值所圈出的异常范围,是评价异 常的一个重要因素,它较少受地表因素影响。
见下图:
5)异常规模
综合了异常强度与面积(宽度)而提出 的参数值。常用用异常线金属量或面金 属量度量。
- Cb ) sin q
lj—由第i条测线上某一端点至第j个采样
点的距离;
l j+1 - l j-1 2
—第j个采样点所控制的实际
距离;
CAj—第j个采样点的异常含量,单位ppm。
计算异常面金属值应用如下的公 式:
Ps (CA - Cb )S
Ps—异常面金属量值,单位平方
米·ppm;
S —异常面积,单位平方米。
地球化学异常与背景
元 素
地球化学 异常


异常范围
剖面距离
异常下限 背景范围
负异常是怎么形成的?对找矿有意义吗?
地球化学异常分类
1)根据异常形成的环境条件可分为内生异常 和表生异常两大类。
2)根据异常与矿体形成的相对时间关系可以 分为原生异常和次生异常。
原生异常——与矿体同时形成的地球化学异 常。
Li — 由 第 i 条 测 线 上 金 属 量 值 , 单 位
米·ppm;
C
—第i条测线上的异常平均值,单位ppm;
A
Cb—异常外围背景平均值,单位ppm;
θ —第i条测线与异常长轴方向的交角。
当采样点为不等间距时,第i
条测线上的线金属量值则为 :
å PL

N j 1
l
j +1
2
l j-1
(C Aj
土壤地球化学找矿(亦称土壤地球化学测量,次 生晕找矿法)。
水系沉积物地球化学找矿(亦称分散流找矿,水 系沉积物地球化学测量)。
水文地球化学找矿(亦称水文地球化学测量,水 化学找矿)。
气体地球化学找矿(亦称气体地球化学测量)。 生物地球化学找矿(亦称生物地球化学测量)。 新的一些找矿方法常以方法技术特征而命名。如
Ci
CA Cb
Ci
CA T
应用:可消除不同区域内背景的差异及样品
在分析方法是的系统偏倚,可用于对比同一
元素在不同地区所形成的异常强度,显示异
常相对背景的起伏变化情况。
3)异常强度
即异常浓度,它指指示元素的含量值的大小。
某一元素所形成的异常强度可用其异常含量
平均值
C
度量。
A
如果异常多为高含量值组成,可用异常的最
标准化面金属量值 :
N Ap

S · CA Cb
NAP—标准化面金属量值,单位平
方米
6)异常浓度分带性
也称为异常浓度梯度。它也是评价异常的重 要因素之一。
指沿着元素扩散的方向上,某一点的元素浓 度对距离的变化率。
一般地说,一个具有工业意义的矿化异常, 往往具有较为明显的浓度分带。
异常浓度梯度值越小,分带性不好;相反, 分带性较好。
岩石地球化学异常 土壤地球化学异常 水系沉积物地球化学异常 岩石化学异常 水文地球化学异常 气体地球化学异常 生物地球化学异常
5)根据地球化学异常在数值上是高于或低于 背景分为:正异常、负异常
6)根据异常规模的大小可分为:
1、地球化学省: 2、区域异常; 3、局部异常:
相关文档
最新文档