八年级数学勾股定理

合集下载

探索勾股定理(19张PPT)数学八年级上册

探索勾股定理(19张PPT)数学八年级上册
在公元前300年左右,著名的数学家希腊的欧几里得提出了一套简洁而准确的几何方法,以求证在给定直角三角形中已知两直角边与斜边,斜边与另外两条边的平方和的关系。
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等

数学八年级上册勾股定理

数学八年级上册勾股定理

数学八年级上册勾股定理一、勾股定理的内容1. 定理表述- 在直角三角形中,两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长度分别是a和b,斜边长度为c,那么a^2+b^2=c^2。

- 例如,一个直角三角形的两条直角边分别为3和4,根据勾股定理,斜边c满足3^2+4^2=c^2,即9 + 16=c^2,c^2=25,所以c = 5。

2. 定理的证明- 赵爽弦图证明法- 赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形。

- 设直角三角形的两条直角边分别为a、b(b>a),斜边为c。

大正方形的面积可以表示为c^2,同时它又等于四个直角三角形的面积加上中间小正方形的面积。

- 四个直角三角形的面积为4×(1)/(2)ab = 2ab,中间小正方形的边长为b - a,其面积为(b - a)^2=b^2-2ab+a^2。

- 所以c^2=a^2+b^2。

- 毕达哥拉斯证法(拼图法)- 用四个全等的直角三角形(直角边为a、b,斜边为c)拼成一个以a + b为边长的正方形。

- 这个大正方形的面积为(a + b)^2=a^2+2ab + b^2,同时它又等于四个直角三角形的面积加上中间边长为c的正方形的面积,即4×(1)/(2)ab+c^2=2ab +c^2。

- 所以a^2+b^2=c^2。

二、勾股定理的应用1. 已知直角三角形的两边求第三边- 当已知两条直角边求斜边时,直接使用c=√(a^2)+b^{2}。

例如,直角边a = 6,b = 8,则c=√(6^2)+8^{2}=√(36 + 64)=√(100)=10。

- 当已知一条直角边和斜边求另一条直角边时,使用a=√(c^2)-b^{2}(设c为斜边,b为已知直角边)。

例如,斜边c = 13,一条直角边b = 5,则a=√(13^2)-5^{2}=√(169 - 25)=√(144)=12。

2. 解决实际问题中的直角三角形问题- 例如,在一个长方形中,已知长为8米,宽为6米,求对角线的长度。

八年级勾股定理的知识点

八年级勾股定理的知识点

八年级勾股定理的知识点作为初中数学的重要知识点之一,勾股定理在八年级学生的学习中扮演着重要的角色。

勾股定理的概念和应用可以帮助学生理解和求解同类问题,并为进一步学习更高级别的数学知识奠定基础。

以下是勾股定理在初中八年级阶段的知识点。

一、勾股定理的定义勾股定理是指直角三角形中长边平方等于两短边平方和的关系。

即在一个直角三角形中,长边的平方等于其他两边平方和。

勾股定理的公式为:a² + b² = c²其中,a、b 代表短边,c 代表长边。

这个公式是勾股定理的基本表达形式。

二、三角形中的勾股定理应用勾股定理不仅仅是为了了解概念,同样也是一种有用的工具来解决各种三角形问题。

在三角形中,有两种使用勾股定理的方式:已知两个边长求第三个边长和已知三角形的三个角度和一个边长,求任意一边长。

2.1 已知两边长求第三边长当我们知道任意两边长的长度时,我们可以使用勾股定理来求解第三边长的长度。

我们可以先将已知的两边长的平方和计算得出,然后再对这个结果求平方根来得到第三边长的长度。

例如,当我们知道一个三角形的两边分别为 3 和 4,需求出第三边长,我们可以使用勾股定理进行计算:(3)² + (4)² = c²9 + 16 = c²25 = c²c = √25 = 52.2 已知三个角度和一个边长,求任意一边长在已知三个角度和一个边长的情况下,我们可以使用正弦、余弦、正切等三角函数结合勾股定理来求解三角形任意一边长。

例如,假设我们知道一个三角形的三个角分别为 60 度、30 度和 90 度,此三角形的一个边长为 5,需求出另外两边长的长度。

我们可以利用下列公式进行计算:sin(60°) = 对边 / 斜边 = c / 5c = 5 sin(60°) = 4.33(约)cos(60°) = 邻边 / 斜边 = b / 5b = 5 cos(60°) = 2.5(约)根据勾股定理,我们可以求出第三条边的长度:a² + b² = c²a² + (2.5)² = (4.33)²a² = (4.33)² - (2.5)²a² = 9 - 6.25a = √2.75 = 1.66(约)通过这种方式,我们可以使用勾股定理解决许多有关三角形的问题。

八年级-人教版-数学-下册-第3课时-勾股定理及其逆定理的综合应用

八年级-人教版-数学-下册-第3课时-勾股定理及其逆定理的综合应用

∴AC2+BC2=AB2, ∴△ABC是直角三角形.
∴S△ABC=
1 2
AC·BC=
1 2
CD·AB,
∴150×200=250·CD,
∴CD=150 200 =120(m).
C
250
∵拖拉机周围 130 m 以内为受噪声影响区域,
B D
∴学校 C 会受噪声影响.
A
(2)若拖拉机的行驶速度为 50 m/min,拖拉机噪声影响该 学校持续的时间有多少分钟?
解:(2)当 a2+b2>c2 时,△ABC 为锐角三角形; 当 a2+b2<c2 时,△ABC 为钝角三角形.
在△ABC 中,BC=a,AC=b,AB=c,设 c 为最长边,当 a2+b2=c2 时,△ABC 是直角三角形;当 a2+b2≠c2 时,利用代 数式 a2+b2 和 c2 的大小关系,探究△ABC 的形状(按角分类).
分析:(2)利用勾股定理得出 ED 以及 EF 的长,进而可得 出拖拉机噪声影响该学校持续的时间.
B
C
F
D
E
A
解:(2)如图,取 EC=130 m,FC=130 m,当拖拉机在 EF
上时学校会受噪声影响.
∵ED2=EC2-CD2=1302-1202=502,
∴ED=50(m), ∴EF=100(m).
(1)当△ABC 三边分别为 6,8,9 时,△ABC 为__锐__角___三角 形;当△ABC 三边分别为 6,8,11 时,△ABC 为__钝__角___三角形.
6
9
8
6
10
8
6
11
8
解:(1)直角三角形两直角边分别为 6,8 时, 斜边= 62+82 =10,

人教版八年级数学下册《勾股定理》PPT课件

人教版八年级数学下册《勾股定理》PPT课件

b
a
c b
a
c a
b
证明:∵S大正方形=c2,
cb
S小正方形=(b - a)2,
a b- a
赵爽弦图
∴S大正方形=4·S三角形+S小正方形,
∴c2 4 1 ab b a2 a2 b2.
2
“赵爽弦图”表现了我国古人对数学的钻研精神和
聪明才智,它是我国古代数学的骄傲.因此,这个图案
被选为2002年在北京召开的国际数学家大会的会徽.
分称为“勾”,下半部分称为“股”. 我国古代学者把 直角三角形较短的直角边称为“勾”,较长的直角边 称为“股”,斜边称为“弦”.
勾股
勾2 + 股2 = 弦2
利用勾股定理进行计算
例1 如图,在 Rt△ABC 中, ∠C = 90°.
(1) 若 a = b = 5,求 c;
(2) 若 a = 1,c = 2,求 b.
问题1 试问正方形 A、B、 C 面积之间有什么样的数 量关系?
S正方形A S正方形B S正方形C
AB C
问题2 图中正方形 A、B、C 所围成的等腰直角三 角形三边之间有什么特殊关系?
AB C
一直角边2 + 另一直角边2 = 斜边2
问题3 在网格中一般的直角三角形,以它的三边为 边长的三个正方形 A、B、C 是否也有类似的面积关 系?观察下边两幅图(每个小正方形的面积为单位1):
C A
B
C A
B
左图:SC
4
1 2
2
3
11
13
右图: SC
4
1 2
4
3
11
25
你还有其 他办法求C 的面积吗?
根据前面求出的 C 的面积直接填出下表:

数学八年级上册知识点第一章

数学八年级上册知识点第一章

数学八年级上册知识点第一章数学八年级上册知识点第一章1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾最短的边、股较长的直角边、弦斜边。

勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:若一个直角三角形三边的.长分别是三个连续的自然数,则这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为解析:可知三边长度为6,8,10,则周长为24例2:已知直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,则斜边为5第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7例3:一个直角三角形中,两直角边长分别为3和4,以下说法正确的是( )A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择C数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式〞。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

(完整)八年级数学上册知识点复习总结(北师大版),推荐文档

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

八年级上册数学公式法

八年级上册数学公式法
1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方。

公式:$a^2 + b^2 = c^2$
其中,$a$ 和 $b$ 是直角三角形的两条直角边,$c$ 是斜边。

2.平方差公式:$(a+b)(a-b) = a^2 - b^2$
用于计算两个数的平方差。

3.完全平方公式:$(a+b)^2 = a^2 + 2ab + b^2$ 和$(a-b)^2 = a^2 -
2ab + b^2$
用于计算一个数的平方,加上或减去两倍的该数与另一数的乘积,再加或减另一数的平方。

4.二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ (其中$a
\geq 0, b \geq 0$)
用于计算两个非负数的平方根的乘积。

5.二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ (其
中 $a \geq 0, b > 0$)
用于计算一个非负数的平方根除以另一个非负数的平方根。

6.分式的乘法法则:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$
用于计算两个分式的乘积。

7.分式的除法法则:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times
\frac{d}{c} = \frac{ad}{bc}$
用于计算一个分式除以另一个分式。

八年级数学探索勾股定理


100%
解决物理问题
勾股定理在解决物理问题中也有 着广泛的应用,如求物体的速度 、加速度等。
80%
建立物理模型
勾股定理可以用来建立物理模型 ,如建立质点运动模型、弹性碰 撞模型等。
在日常生活中的应用
建筑测量
在建筑测量中,勾股定理可以 用来确定建筑物的角度和长度 ,以确保建筑物的稳定性和安 全性。
航海定位
八年级数学探索勾股定理

CONTENCT

• 引言 • 勾股定理的证明 • 勾股定理的应用 • 勾股定理的扩展 • 勾股定理的探索与发现
01
引言
勾股定理的背景
勾股定理是数学中一个基本而重要的定理,它揭示 了直角三角形三边之间的数量关系。这个定理在古 代文明中就已经被发现和应用,如古希腊、古中国 和古巴比伦等。
勾股定理的推广在几何学中有着广泛的应用,它可以用来判 断一个三角形是否为直角三角形,也可以用来证明一些与三 角形相关的定理和性质。
勾股定理在复数域中的应用
勾股定理在复数域中的应用是指将勾股定理应用到复数领域 中。在复数域中,勾股定理仍然成立,即对于任意两个复数a 和b,有a^2 + b^2 = c^2,其中c是a和b的模长。
在西方,勾股定理最早可以追溯到公元前6世纪,古 希腊数学家毕达哥拉斯学派发现了直角三角形三边 之间的数量关系,并给出了证明。
在中国,勾股定理也被称为商高定理,最早的记载 可以追溯到周朝时期的《周髀算经》。
勾股定理的重要性
勾股定理是几何学中的基石之 一,它不仅在数学领域有着广 泛的应用,而且在物理学、工 程学、天文学等领域也有着重 要的应用。
勾股定理在三角函数、解析几 何、微积分等数学分支中也有 着广泛的应用,是数学学习中 不可或缺的一部分。

八年级数学《勾股定理》知识点

八年级数学《勾股定理》知识点一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。

)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n的线段1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.1 勾股定理(四)
一、教学目标
1.会用勾股定理解决较综合的问题。

2.树立数形结合的思想。

二、重点、难点
1.重点:勾股定理的综合应用。

2.难点:勾股定理的综合应用。

三、例题的意图分析
例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用。

目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。

例2(补充)让学生注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角。

让学生掌握解一般三角形的问题常常通过作高转化为直角三角形的问题。

使学生清楚作辅助线不能破坏已知角。

例3(补充)让学生掌握不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。

在转化的过程中注意条件的合理运用。

让学生把前面学过的知识和新知识综合运用,提高解题的综合能力。

例4(教材P76页探究3)让学生利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。

四、课堂引入
复习勾股定理的内容。

本节课探究勾股定理的综合应用。

五、例习题分析
例1(补充)1.已知:在Rt△ABC中,∠C=90°,CD⊥BC于D,∠A=60°,CD=3,求线段AB的长。

分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。

目前“双垂图”需要掌握的
知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。

C D
要求学生能够自己画图,并正确标图。

引导学生分析:欲求AB ,可由AB=BD+CD ,分别在两个三角形中利用勾股定理和特殊角,求出BD=3和AD=1。

或欲求AB ,可由
22BC AC AB +=,分别在两个三角形中利用勾股定理和特殊角,求出AC=2和BC=6。

例2(补充)已知:如图,△ABC 中,AC=4,∠B=45°,∠A=60°,根据题设可知什么?
分析:由于本题中的△ABC 不是直角三角形,所以根据题设只能直接求得∠ACB=75°。

在学生充分思考和讨论后,发现添置AB
边上的高这条辅助线,就可以求得AD ,CD ,BD ,AB ,BC 及S △ABC 。

让学生充分讨论还可以作其它辅助线吗?为什么?
小结:可见解一般三角形的问题常常通过作高转化为直角三角形的问题。

并指出如何作辅助线? 解略。

例3(补充)已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD 的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC ,
或延长AB 、DC 交于F ,或延长AD 、BC 交于E ,根据本题给
定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

教学中要逐层展示给学生,让学生深入体会。

解:延长AD 、BC 交于E 。

∵∠A=∠60°,∠B=90°,∴∠E=30°。

∴AE=2AB=8,CE=2CD=4,
∴BE 2=AE 2-AB 2=82-42
=48,BE=48=34。

∵DE 2= CE 2-CD 2=42-22
=12,∴DE=12=32。

∴S 四边形ABCD =S △ABE -S △CDE =
21AB ·BE-2
1
CD ·DE=36 小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。

例4(教材P76页探究3)
分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一
C
A
B
D
B
对应的理论。

变式训练:在数轴上画出表示22,13--的点。

六、课堂练习
1.△ABC 中,AB=AC=25cm ,高AD=20cm,则BC= ,S △ABC = 。

2.△ABC 中,若∠A=2∠B=3∠C ,AC=32cm ,则∠A= 度,∠B= 度,∠C= 度,BC= ,S △ABC = 。

3.△ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △
ABC
= 。

4.已知:如图,△ABC 中,AB=26,BC=25,AC=17, 求S △ABC 。

七、课后练习
1.在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3,AB= 。

2.在Rt △ABC 中,∠C=90°,S △ABC =30,c=13,且a <b ,则a= ,b= 。

3.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=22,
求(1)AB 的长;(2)S △ABC 。

4.在数轴上画出表示-52,5+的点。

课后反思:
C
C
八、参考答案: 课堂练习:
1.30cm ,300cm 2

2.90,60,30,4,32; 3.2,3,3,1,32;
4.作BD ⊥AC 于D ,设AD=x ,则CD=17-x ,252
-x 2
=262
-(17-x )2
,x=7,BD=24, S △ABC =
2
1
AC ·BD=254; 课后练习: 1.4; 2.5,12;
3.提示:作AD ⊥BC 于D ,AD=CD=2,AB=4,BD=32,BC=2+32,S △ABC = =2+32; 4.略。

相关文档
最新文档