人教版七年级数学下册一元一次不等式组(基础) 知识讲解

合集下载

人教版七年级数学下册《一元一次不等式》PPT优质教学课件

人教版七年级数学下册《一元一次不等式》PPT优质教学课件

(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.

人教版七年级数学下册--第九章-一元一次不等式含参问题-(36PPT)

人教版七年级数学下册--第九章-一元一次不等式含参问题-(36PPT)

21、己知关于x、y的方程组
.
(1)求这个方程组的解;
(2)当m取何值时,这个方程组的解中,x大于1,y不小于-1.
解:
分析:
22、已知二元一次方程组
解:由题意得 ②+③得 代入①得k=3.
的解为
且m+n=2,求k的值.
23、已知关于x、y的二元一次方程组
(1)求这个方程组的解;(用含有m的代数式表示) (2)若这个方程组的解,x的值是负数,y的值是正数,求m的整数值.
4、已知关于x,y的二元一次方程组
,若x+y>3,则m的取值范围是( D )
A.m>1 B.m<2 C.m>3 D.m>5
5、若关于 的不等式组
A.
B.
的所有整数解的和是10,则m的取值范围是( B )
C
D.
解:
6、若方程组 A.
的解满足
B.
C.
,则a的取值是( A ) D. 不能确定
解:
7、已知关于x的不等式组
求满足条件的m的整数值.
课堂演练
1、 解:
2、 D
解:
3、 解:
4、 解:
5、 ①
结束语
谢谢大家聆听!!!
37
解:(1)

①+②得,2x=4m﹣2,解得x=2m﹣1,
①﹣②得,2y=2m+8,解得y=m+4,所以方程组的解是

(2)据题意得:
,解之得:﹣4<m< ,
所以,整数m的值为﹣3、﹣2、﹣1、0.
24、已知关于 、 的方程组
的解满足 ,求 的取值范围.
25、已知关于x,y的方程组
的解满足不等式组 解:
A.
B.

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

一元一次不等式的所有解组成的集合是一元一次不等式的解集。

注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。

有些问题用方程不能解决,而用不等式却能轻易解决。

人教版七年级数学下册 9.2 一元一次不等式(一元一次不等式的解法)课件(共30张PPT)

人教版七年级数学下册 9.2 一元一次不等式(一元一次不等式的解法)课件(共30张PPT)

例 已知 1 x2a1 5 0 是关于x的一
3
元一次不等式,则a的值是___1_____.
解析:由 1 x2a1 5 0 是关于x的一 3
元一次不等式得2a-1=1,计算即可 求出a的值等于1.
1 一元一次不等式的定义
小试牛刀 试一试,你会了吗
判断下列方程是否为一元一次不等式:
(1) 3y-2x <z+5 不是
(4)
-1 0 1 2 3
4. 解下列不等式,并把它们的解集在数轴上表示出来: (1) 4x-3 < 2x+7 ;
(2)x
233x
5 4
.
解:(1)原不等式的解集为x<5,在数轴上表示为
-1 0 1 2 3 4 5 6
(2)原不等式的解集为式3x-2a≤-2的解集如图所示,求a的值.

-5x >-10
x=2

x<2
(2)再利用表(一)归纳解一元一次
不等式的一般步骤,并指出每个步骤的根据,完成表(二).
表(二)
步骤
根据

去分母
不等式的基本性质2,3

去括号
单项式乘以多项式法则

移项
不等式的基本性质2

合并同类项
合并同类项法则

两边同除以a
不等式的基本性质2,3
写不等式的解时,要把表示未知数的 字母写在不等号的左边。
(2)2(1 - 3x ) > 3x + 20 ;
(3)x - 4 ≥ 2(x+2) ;
(4)
x
1 2
4x 3
5
.
x < 40
答案: (1)

人教版数学七年级下册一元一次不等式第一课时一元一次不等式及其解法课件

人教版数学七年级下册一元一次不等式第一课时一元一次不等式及其解法课件
不无为所穷 求分变则节无,所母不获为。、贱易_志。__去__括__号___、__移__项____、合并同类项、未知数系数化成1.
褴褛衣内可藏志。 志不真则心不热,心不热则功不贤。
第九章 不等式与不等式组
1.下列不等式中,是一元一次不等式的是
A.13(x+2)>4x-1
B.(1+x)(1-x)>5
C.x+2 1-4≤x
第九章 不等式与不等式组
(2)2x-74≥94.
解:去分母,得2x-7≥9, 移项,得2x≥9+7, 合并同类项,得2x≥16. 系数化为1,得x≥8,其解集在数轴上表示,如图2所示.
第九章 不等式与不等式组
4.解下列各题: (1)解不等式:2(5x+3)≤x-3(1-2x); (2)解不等式:2x+ 3 2-3x+ 2 1<1,并把解集表示在数轴上. 解:(1)去括号,得 10x+6≤x-3+6x, 移项、合并同类项,得 3x≤-9, 系数化为 1,得 x≤-3. 所以原不等式的解集是 x≤-3.
解:移项,得 2x-4x>-3,即-2x>-3. 去括号,得4x+4-9x-3<6,
但方程两边同乘(或除以)一个负数时,方程的解不变. 6.已知3m-5x3+m>4是关于x的一元一次不等式, 系数化为1,得x>-1.
3 移项、合并同类项,得7x≥-14, 系数化为 1,得 x<2,其解集在数轴上表示,如图 1 所示. 去括号,得3x+12+4x+2≥0,
志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。 去括号,得3x+12+4x+2≥0, 志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。
(1)2x+3>4x; 解:(1)∵3m-5x3+m>4是关于x的一元一次不等式,
(2)求这个不等式的解集. 【第二关】 建议用时6分钟 ②不等式中,当两边同乘(或除以)一个负数时,不等号的方向改变;

人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义

人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义

人教版七年级数学下册第9章。

一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。

常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。

2.不等式的解与解集不等式的解是使不等式成立的未知数的值。

不等式的解集是一个含有未知数的不等式的解的全体。

解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。

其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。

5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。

对于每段话,进行小幅度的改写,使其更加通顺易懂。

解一元一次不等式和解一元一次方程类似。

不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。

这是解不等式时最容易出错的地方。

例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。

七年级数学下册第九章不等式与不等式组知识点归纳

七年级数学下册第九章不等式与不等式组知识点归纳

第九章 不等式与不等式组一、知识结构图 二、知识要点 (一、)不等式的概念 1、不等式:一般地,用不等符号(“<”“>"“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。

不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。

3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围).4、解不等式:求不等式的解集的过程,叫做解不等式.5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。

规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。

(二、)不等式的基本性质⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 .用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式.(注:①传递性:若a >b ,b >c ,则a >c 。

一元一次不等式——实际问题与一元一次不等式 课件 2022—2023学年人教版数学七年级下册

一元一次不等式——实际问题与一元一次不等式 课件 2022—2023学年人教版数学七年级下册
是每台10万元.经预算,该企业购买设备的资金不高于105万元.
(1)请问该企业有几种购买方案?
解:设购买污水处理设备A型x台,则B型为(10-x)台.
根据题意,得12x+10(10 – x)≤105.
解这个不等式,得x≤2.5.
又因为x取非负整数,所以x取0,1,2.
所以有3种购买方案:A型0台,B型10台;A型1台,B型9台;
购物都不享受优惠,且两商场以同样价格出售同
样的商品,因此到两商场购物花费一样.
新课讲解
典型例题
购物款
甲商场收费
乙商场收费
0<x≤50
x
x
50<x≤100
x
50+0.95(x–50)
乙商场少
x>100
100+0.9(x–100)
50+0.95(x–50)
继续分类讨论
收费相等
若在甲商场花费少,则100+0.9(x–100)<50+0.95(x–90)
社说:“所有人按全票价的 6 折优惠.”已知全票价 240 元.设学
生有 x 名,就学生人数讨论哪家旅行社更优惠.
解:①若 240+120x=144x+144,解得 x=4,
此时两家旅行社收费一样;
②若 240+120x>144x+144,解得 x<4,
此时乙旅行社更优惠;
③若 240+120x<144x+144,解得 x>4,
2.一般步骤:
(1)审题;
(2)找等量关系;
(3)设未知数;
(4)列方程;
(5)解方程;
(6)检验;
(7)答。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学下册一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3xx<⎧⎨<-⎩的解集是______;(3)2,3xx<⎧⎨>-⎩的解集是_______;(4)2,3xx>⎧⎨<-⎩的解集是_______.【答案】(1)2x>;(2)3x<-;(3)32x-<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1)313112123x xx x+<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x+>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得: 88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。

相关文档
最新文档