最新广东省深圳市龙华区-学年七年级下册数学期末试卷
2023-2024学年广东省深圳市龙华区七年级下学期期末数学试题

2023-2024学年广东省深圳市龙华区七年级下学期期末数学试题1.为全面促进群众体育运动工作,《深圳经济特区促进全民健身条例》规定,每年11月为深圳市的全民健身活动月.下列健身图标是轴对称图形的是()A.B.C.D.2.“准知盘中餐,粒粒皆辛苦”.已知一粒米的质量约千克,则数据用科学记数法表示为()A .B .C .D .3.“某篮球运动员2次罚球,投中1个”所描述的事件是()A .必然事件B .不可能事件C .不确定事件D .确定事件4.下列图形阴影部分的面积能够直观地解释的是()A.B.C .D .5.油纸伞是汉族古老的传统用品之一.图1是一把油纸伞实物图,图2为其伞骨示意图.已知,那么的依据是()A.B.C .D .6.如图,以下条件不能判断的是()A.B.C.D.7.路政工程车的工作示意图如图所示,工作篮底部与支撑平台平行.若,,则的度数为()A.B.C.D .8.如图,书架两侧摆放了若干本相同的书籍,左右两摞书中竖直放入一个等腰直角三角板,其直角顶点C 在书架底部上,当顶点A落在右侧书籍的上方边沿时,顶点B 恰好落在左侧书籍的上方边沿.已知每本书长,厚度为,则两摞书之间的距离为()A.B.C.D .9.杆秤是我国传统的计重工具.数学兴趣小组利用杠杆原理自制了一个如图所示的无刻度简易杆秤.在量程范围内,下面是有关之间的距离y 与重物质量x 之间的一组数据.下列说法不正确的是()质量01234567之间的距离357911131517A.在量程范围内,质量x越大,之间的距离y越大B.未挂重物时,之间的距离y为C.在量程范围内,之间的距离y与重物质量x的关系式为D.当之间的距离y为时,重物质量x为10.如图,两块大小不同的等腰直角三角板的直角顶点C重合,连接,,当点B,D,E在同一条直线上时,下列结论不一定成立的是()A.B.C.平分D.11.《算学启蒙》、《九章算术》、《孙子算经》、《海岛算经》是我国古代数学的重要文献.小明计划选择其中1部阅读学习,恰好选中《算学启蒙》的概率是_________.12.已知,,则______.13.如图,,点A,C,E在同一条直线上,,,则的长为_________.14.小明将一条长方形纸带按如图方式折叠,若,则∠1的度数为________________°.15.如图,在中,,D是的中点,延长至点E,使得.若则的长为__________________.16.计算:(1)(2)17.先化简,再求值:,其中,.18.小深一家逛完超市后,凭小票参加一次抽奖活动,超市设置如下的翻奖牌,翻奖牌的正面、背面如下.如果小深只能抽奖一次,且抽到数字1至9的可能性一样,请解决下面的问题:(1)小深抽到“纸巾”的概率是;(2)小深中奖的概率是;(3)请你设计翻奖牌背面的内容,使得最后抽到“太阳伞”的可能性大小是,要求奖牌内容包含“纸巾、牙刷、太阳伞、谢谢参与”.19.大鹏所城是“全国重点文物保护单位”.端午假期期间,小明一家从大鹏所城出发,按“大鹏所城→东山寺→较场尾海滩→大鹏所城”线路游览,若小明一家在步行过程中速度不变,且途中在每个景点都休息一段时间.小明一家游览时所走的路程S(米)与游览时间t(分钟)之间的图像如图所示.(1)点A表示的实际意义是;(2)小明一家步行的速度是米/分钟;(3)小明一家在东山寺休息了分钟;(4)小明一家步行的总路程为米.20.如图1,在中,点D,E分别在,上(不与端点重合),连接,.(1)在不添加新的点和线的前提下,请增加一个条件:,使得,并说明理由;(2)如图2,过点A作交的延长线于点F,若平分求的度数.21.如图1,在中,的垂直平分线交于点D,的垂直平分线交于点E,连接,.(1)若则的周长为;(2)如图1,利用尺规在边上求作一点P,连接,使得平分的周长(保留作图痕迹,标注有关字母,不用写作法和证明);(3)如图2,是等边三角形,点M,N分别在,上,连接,平分的周长.①设请求出y与x之间的等量关系式;②若,请用合适的方法描述出点M,N的位置.22.在学习《三角形》时,某数学学习小组发现:在一个面积为100的长方形中,点E,F分别在边上,连接.当点F与点C重合时,如图所示,在不求出长方形边长的情况下,可以根据面积公式或三角形全等的性质求出的面积为定值.【提出问题】如图,点E,F都不与端点重合,若的面积是否为定值?【特例分析】(1)给和分别赋予不同的数值,通过特殊数值的计算判断的面积是否发生变化.请你根据上述思路,完成下面的表格.105102041【得出猜想】(2)通过特例分析,猜想:的面积定值.(填“是”或“不是”)【验证猜想】(3)①方法1:假设.,通过计算验证你的猜想.②方法2:如图,过点E作,交于点G,将长方形分成了长方形和长方形,连接.通过图形割补的方式也可以验证猜想,请将下列部分验证过程补充完整(填数值).解:∵等底等高,.,..【拓展应用】(4)在学校游园活动中,数学小组成员计划用三个雪糕简和彩绳在一个长12米,宽10米的长方形场地中,围出一块三角形区域作为游戏场地.如图,在长方形场地中,三个雪糕筒分别摆放在点B、E、F处,且的长为整数.若围出的游戏场地面积为52平方米,即请直接写出所有满足条件的长.。
广东省深圳市七年级初一第二学期期末数学试卷(有答案详解)

广东省深圳市七年级第二学期期末数学试卷一、选择题(本题有12小题,每题3分,共36分)1.如图所示的是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管2.据外汇局网站5月16日消息:国家外汇管理局统计数据显示,2016年4月,银行结售汇逆差1534亿元人民币,其中“1534亿”用科学记数法表示为()A.1.534×103B.1.534×1011C.15.34×108D.1534×1083.下列计算正确是()A.a3+a2=a5 B.a8÷a4=a2C.(a4)2=a8D.(﹣a)3(﹣a)2=a54.下列算式中正确的是()A.3a3÷2a=B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314 D.5.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=45°,那么∠1的度数为()A.45°B.35°C.25°D.15°7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对10.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25m D.30m11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.612.某中学七年级组织学生进行春游,景点门票价格情况如图,则下列说法正确的是()A.当旅游人数为50时,则门票价格为70元/人B.当旅游人数为50或者100的时,门票价格都是70元/人C.两个班级都是40名学生,则两个班联合起来购票比分别购票要便宜D.当人数增多时,虽然门票价格越来越低,但是购票总费用会越来越高二、填空题(本题有4小题,每题3分,共12分)13.5m2n(2n+3m﹣n2)的计算结果是次多项式.14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).15.若a+b=3,ab=2,则a2+b2=.16.如图,有一枚质地均匀的正十二面体形状的骰子,其中1个面标有“0”,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,其余的面标有“5”,将这枚骰子掷出后:①”6”朝上的概率是0;②“5”朝上的概率最大;③“0”朝上的概率和“1”朝上的概率一样大;④“4”朝上的概率是.以上说法正确的有.(填序号)三、解答题(本大题有7题,其中17题15分,18题6分,19题8分,20题7分,21题6分,22题4分,23题6分,共52分)17.(1)计算:(2x2y)3÷6x3y2(2)用简便方法计算:1232﹣122×124.(3)先化简,再求值:x(x﹣3y)+(2x+y)(2x﹣y)﹣(2x﹣y)(x﹣y),其中x=﹣2,.18.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)19.如图,已知,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2,求证:∠A=∠C.请完成证明过程.20.如图,已知:在△AFD和△CEB中,点A,E,F,C在同一条直线上,AE=CF,∠B=∠D,AD∥BC,请问:AD与BC相等吗?为什么?21.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm.(1)根据如图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2016cm吗?为什么?22.先阅读理解下面的例题,再按要求解答下列问题.求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+1的最小值;(2)求代数式4﹣x2+2x的最大值.23.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.广东省深圳市七年级第二学期期末数学试卷一、选择题(本题有12小题,每题3分,共36分)1.如图所示的是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是()A.小车B.弹簧C.钩码D.三极管【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.2.据外汇局网站5月16日消息:国家外汇管理局统计数据显示,2016年4月,银行结售汇逆差1534亿元人民币,其中“1534亿”用科学记数法表示为()A.1.534×103B.1.534×1011C.15.34×108D.1534×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1534亿有12位,所以可以确定n=12﹣1=11.【解答】解:1534亿=1543 0000 0000=1.534×1011,故选:B.3.下列计算正确是()A.a3+a2=a5 B.a8÷a4=a2C.(a4)2=a8D.(﹣a)3(﹣a)2=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除运算法则以及合并同类项法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、a3+a2无法计算,故此选项错误;B、a8÷a4=a4,故此选项错误;C、(a4)2=a8,正确;D、(﹣a)3(﹣a)2=﹣a5,故此选项错误;故选:C.4.下列算式中正确的是()A.3a3÷2a=B.﹣0.00010=(﹣9999)0C.3.14×10﹣3=0.000314 D.【考点】整式的除法;零指数幂;负整数指数幂.【分析】分别利用整式的除法运算法则以及零指数幂的性质和负整数指数的幂的性质分别化简求出答案.【解答】解:A、3a3÷2a=a2,故此选项错误;B、﹣0.00010=﹣1,(﹣9999)0=1,故此选项错误;C、3.14×10﹣3=0.00314,故此选项错误;D、(﹣)﹣2=9,正确.故选:D.5.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.【解答】解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选B.6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=45°,那么∠1的度数为()A.45°B.35°C.25°D.15°【考点】平行线的性质.【分析】如图,利用平行线的性质可得到∠2=∠3,再由直角三角形的性质可求得∠1.【解答】解:如图,由题意可知BD∥CE,∴∠3=∠2=45°,∵∠A=30°,∠ACB=90°,∴∠ABC=60°,∴∠1=60°﹣∠3=15°,故选D.7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)【考点】作图—基本作图;全等三角形的判定与性质.【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【解答】解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对【考点】等腰三角形的性质;三角形三边关系.【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解答】解:①当11cm为腰长时,则腰长为11cm,底边=26﹣11﹣11=4cm,因为11+4>11,所以能构成三角形;②当11cm为底边时,则腰长=(26﹣11)÷2=7.5cm,因为7.5+7.5>11,所以能构成三角形.故选C.10.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A.5m B.15m C.25m D.30m【考点】三角形三边关系.【分析】根据三角形的三边关系定理得到5<AB<25,根据AB的范围判断即可.【解答】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,则AB的值在5和25之间.故选B.11.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.6【考点】角平分线的性质.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据(1)中所求S△ACD=3列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,∴DE=DF=2.=AC•DF=×3×2=3,∴S△ACD故选A.12.某中学七年级组织学生进行春游,景点门票价格情况如图,则下列说法正确的是()A.当旅游人数为50时,则门票价格为70元/人B.当旅游人数为50或者100的时,门票价格都是70元/人C.两个班级都是40名学生,则两个班联合起来购票比分别购票要便宜D.当人数增多时,虽然门票价格越来越低,但是购票总费用会越来越高【考点】函数的图象.【分析】根据景点门票价格情况图容易得出选项A、B、D错误,选项C正确;即可得出结论.【解答】解:根据题意得:当旅游人数不超过50人时,则门票价格为80元/人;当旅游人数为50﹣100时,门票价格都是70元/人;若两个班级都是40名学生,则两个班联合起来购票为70元/人,比分别购票要便宜;∵99×70>101×60,∴当人数增多时,虽然门票价格越来越低,但是购票总费用也不会越来越高;∴选项A、B、D错误,选项C正确;故选:C.二、填空题(本题有4小题,每题3分,共12分)13.5m2n(2n+3m﹣n2)的计算结果是五次多项式.【考点】单项式乘多项式;多项式.【分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答】解:5m2n(2n+3m﹣n2)=10m2n2+15m3n﹣5m2n3,则计算结果是五次多项式,故答案为:五14.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【考点】平方差公式的几何背景.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.15.若a+b=3,ab=2,则a2+b2=5.【考点】完全平方公式.【分析】根据a2+b2=(a+b)2﹣2ab,代入计算即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=9﹣4=5.故答案为:5.16.如图,有一枚质地均匀的正十二面体形状的骰子,其中1个面标有“0”,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,其余的面标有“5”,将这枚骰子掷出后:①”6”朝上的概率是0;②“5”朝上的概率最大;③“0”朝上的概率和“1”朝上的概率一样大;④“4”朝上的概率是.以上说法正确的有①③④.(填序号)【考点】概率的意义.【分析】正十二面每个面向上的机会相同,因而根据概率公式解答即可.【解答】解:没有6的面,所以①”6”朝上的概率是0,正确;②“5”朝上的概率=概率小,故②错误;③“0”朝上的概率=和“1”朝上的概率=一样大,正确;④“4”朝上的概率是.正确;故答案为:①③④三、解答题(本大题有7题,其中17题15分,18题6分,19题8分,20题7分,21题6分,22题4分,23题6分,共52分)17.(1)计算:(2x2y)3÷6x3y2(2)用简便方法计算:1232﹣122×124.(3)先化简,再求值:x(x﹣3y)+(2x+y)(2x﹣y)﹣(2x﹣y)(x﹣y),其中x=﹣2,.【考点】整式的混合运算—化简求值.【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果;(3)原式利用单项式乘以多项式,平方差公式计算得到结果,将x与y的值代入计算即可求出值.【解答】解:(1)原式=8x6y3÷6x3y2=x3y;(2)原式=1232﹣×=1232﹣1232+1=1;(3)原式=x2﹣3xy+4x2﹣y2﹣2x2+2xy+xy﹣y2=3x2﹣2y2,当x=﹣2,y=﹣时,原式=12﹣=11.18.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)【考点】利用轴对称设计图案.【分析】(1)利用已知图形的特征分别得出其共同的特征;(2)利用(1)所写的特征画出符合题意的图形即可.【解答】解:(1)答案不唯一,例如,所给的四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线型图案;④图案中不含钝角等等.只要写出两个即可.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如,同时具备特征①、②的部分图案如图:19.如图,已知,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2,求证:∠A=∠C.请完成证明过程.【考点】平行线的判定与性质.【分析】求出∠1=∠3,求出∠2=∠3,根据平行线的判定得出AB∥CD,根据平行线的性质得出∠A+∠ADC=180°,∠C+∠ABC=180°,即可得出答案.【解答】证明:∵BE、DF分别平分∠ABC、∠ADC,∴∠1=∠ABC,∠3=∠ADC(角平分线的定义),∵∠ABC=∠ADC,∴∠1=∠3(等量的代换),∵∠1=∠2,∴∠2=∠3(等量代换),∴AB∥DC(内错角相等,两直线平行),∴∠A+∠ADC=180°,∠C+∠ABC=180°(两直线平行,同旁内角互补)∴∠A=∠C(等量代换).20.如图,已知:在△AFD和△CEB中,点A,E,F,C在同一条直线上,AE=CF,∠B=∠D,AD∥BC,请问:AD与BC相等吗?为什么?【考点】全等三角形的判定与性质.【分析】先求出AF=CE,再由平行线的性质得出∠A=∠C,由AAS证明△ADF≌△CBE,得出对应边相等即可.【解答】解:AD=BC,理由如下:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AD=BC.21.将长为40cm,宽为15cm的长方形白纸,按如图所示的方法粘合起来,粘合部分宽为5cm.(1)根据如图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2016cm吗?为什么?【考点】函数关系式;函数值.【分析】(1)根据题意找出白纸张数跟纸条长度之间的关系,然后求解填空即可;(2)x张白纸黏合,需黏合(x﹣1)次,重叠5(x﹣1)cm,所以总长可以表示出来;(3)解当y=2016时得到的方程,若x为自变量取值范围内的值则能,反之不能.【解答】解:(1)75,180;(2)根据题意和所给图形可得出:y=40x﹣5(x﹣1)=35x+5.(3)不能.把y=2016代入y=35x+5,解得,不是整数,所以不能.22.先阅读理解下面的例题,再按要求解答下列问题.求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0,∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+1的最小值;(2)求代数式4﹣x2+2x的最大值.【考点】配方法的应用.【分析】(1)利用配方法把原式变形,根据非负数的性质解答;(2)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)m2+m+1==,所以m2+m+1的最小值是(2)4﹣x2+2x=﹣x2+2x﹣1+5=﹣(x﹣1)2+5≤5所以4﹣x2+2x的最大值是5.23.如图①②,点E、F分别是线段AB、线段CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)线段AD和线段BC有怎样的数量关系?请说明理由;(2)当DG⊥GC时,试判断直线AD和直线BC的位置关系,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)由GF垂直平分DC,可得GD=GC,同理可得,GA=GB,又由∠AGD=∠BGC,即可证得△ADG≌△BCG(SAS),继而证得结论;(2)首先延长AD,与CG相交于点O、与BC的延长线相交于点Q,由(1)可证得∠ADG=∠BCG,继而可求得∠Q的度数,【解答】解:(1)AD=BC.理由:∵GF垂直平分DC,∴GD=GC同理,GA=GB,在△ADG和△BCG中,,∴△ADG≌△BCG(SAS),∴AD=BC;(2)AD⊥BC.理由:延长AD,与CG相交于点O、与BC的延长线相交于点Q.∵△ADG≌△BCG,∴∠ADG=∠BCG,则∠GDO=∠QCO,∴∠QDC+∠QCD=∠DQC+∠DCG+∠QCG=∠QDC+∠GDQ+∠DCG=∠CDG+∠DCG,∵DG⊥GC,∴∠QDC+∠QCD=∠CDG+∠DCG=90°,∴∠Q=90°,∴AD⊥BC.第21页(共21页)。
广东省深圳市2022-2023学年七年级下学期期末数学试题(A卷)(含答案)

2022—2023学年第二学期七年级学科素养测试数学(A 卷)说明:1.答卷前,请将学校、班级、姓名填写在答题卡指定位置上;请将试卷类型填涂在答题卡指定位置上;并核对条形码上自己的学校、姓名和考号,核对无误后,将条形码正向、准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损。
2.全卷共8页,共24题。
考试时间100分钟,满分120分。
素养题选做,分值12分。
3.作答选择题时,选出每题答案后,用2B 铅笔把答案涂在答题卡上对应题目选项的相应的位置,务必涂黑,涂满格。
如有改动,请用橡皮擦干净后,再选涂其他答案;作答非选择题时,用黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。
所有题目写在本试卷或者是草稿纸上,其答案一律无效。
4.考试结束后,请将答题卡交回。
一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式中,计算结果为32的是( )A .B .C .D .2.在科幻小说《三体》中,制造太空电梯的材料是由科学家汪淼发明的一种超高强度纳米丝——“飞刃”,已知“飞刃”的直径为,用科学记数法表示为( )A .B .C .D .3.树的高度随时间的变化而变化,下列说法正确的是( )A .,都是常量B .是自变量,是因变量C .,都是自变量D .是自变量,是因变量4.如图,当光线从空气射入水中时,光线的传播方向发生了改变,这就是折射现象.那么,图中的对顶角是()A .B .C .D .都不是5.如图,,,则()4(2)-5(2)-42520.0009dm 3910dm -⨯4910dm -⨯5910dm -⨯6910dm-⨯h t h t t h h t h t 1∠AOB ∠BOC ∠AOC ∠//AB DE 76E ∠=︒B C ∠+∠=A .B .C .D .6.如图所示,将长为8的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等.若要将其围成如图2所示的三棱柱形物体.则图中的值可以是()图1图2A .1B .2C .3D .47.下列计算正确的是()A .B .C .D .8.如图,为了测量学校的教学楼AB 的高度,在旗杆CD 与楼之间选定一点.测得视线PC 与地面夹角,测得视线PA 与地面夹角,量得米,米,则AB 的高度为()米.A .36B .46C .56D .109.图1是水滴进玻璃容器的示意图(滴水速度不变),图2是容器中水高度随滴水时间变化的图象.那么水的高度是如何随时间变化的,请选择分别与①、②、③、④匹配的图象()图1图2A .(3)(2)(4)(1)B .(2)(3)(1)(4)C .(2)(3)(4)(1)D .(3)(2)(1)(4)10.已知,点是的重心,过顶点作一条直线平行于BC ,连接CD 并延长,交AB 于点,交直线于点,连接BD 并延长交AC 于点,则的面积与四边形AGDE 的面积之比为()114︒44︒38︒76︒a 2(32)32x x x +=+()23(2)12x y x x y ++=+5232824x y x y x y -÷=-()32226332x y x yxy x y xy-÷=-P 42DPC ∠=︒48APB ∠=︒10PB CD ==46DB =D ABC △A l E l F G AEF △A .B .C .D .二、填空题(本大题共5小题,每小题3分,共15分)11.已知,则的余角的度数为_______°.12.已知变量x ,y 满足下面的关系x …012…y…36…则x 、y 之间用关系式表示为________.13.若,,则________.14.如图,在中,和的角平分线交于点,延长BO 与的外角平分线交于点,若,则________.15.如图,中,,,以点为圆心,BC 长为半径作弧;以点为圆心,AC 长为半径作弧,两弧相交于点,则的度数为_______.三、解答题(一)(共3小题,每题8分,共24分)16.计算:(1);(2).17.先化简,再求值:,其中,.18.如图,已知,,.求证:.证明:∵,(已知),又∵______(______),∴______(______).∴______(______).∴(______).1:23:22:14:345A ∠=︒A ∠2-1-6-3-y =5m a =2n a =2m n a -=ABC △ABC ∠ACB ∠O ACB ∠D BOC x ∠=D ∠=ABC △23A ∠=︒57B ∠=︒A B D DBC ∠223(2023)1π-+--()324282a a a a a ⋅+-÷2()()()42x y y x x y y y ⎡⎤+-++-÷⎣⎦1x =-2y =12∠=∠34∠=∠B D ∠=∠//AD BC 12∠=∠34∠=∠2∠=1∠=//AB B DCG ∠=∠∵,(已知)∴.∴(______).四、解答题(二)(共3小题,每题9分,共27分)19.小明坐车到地游玩,他从家出发0.8小时后到达地,逗留一段时间后继续坐车到B 地.小明离家一段时间后,爸爸驾车沿相同的路线前往B 地.如图是他们离家路程与小明离家时间的关系图,请根据图象回答下列问题:(1)图中自变量是_______,因变量是_______;(2)小明出发_______小时后爸爸驾车出发;(3)小明从家到地的平均速度为_______,小明爸爸驾车的平均速度为_______;(4)小明爸爸出发多久后追上了小明?20.(1)若,,求的值.根据上面的解题思路与方法解决下列问题:(2)已知中,,分别以AC 、BC 边向外侧作正方形.如图所示,设,两正方形的面积和为20,求的面积.(3)若,求的值.21.如图,在中,是CA 延长线上的一点,点是AB 的中点.(1)利用尺规作图,在的内部作,使得,并在AM 上取一点,使B D ∠=∠DCG D ∠=∠//AD BC B A (km)s (h)t A km /h km /h 2a b -=1ab =22a b +ABC △90C ∠=︒6AD =ABC △(6)(2)1x x -+=22(6)(2)x x -++ABC △D E BAD ∠BAM ∠BAM B ∠=∠F,分别连接CE 、EF .(要求:在图中标明相应字母,保留作图痕迹,不写作法,写出作图小结)【温聚提醒:请考生在答题卡上作图后,用黑色水笔将作图痕迹描黑.】(2)求证:点C 、E 、F 三点在同一直线上.五、解答题(三)(共2小题,每题12分,共24分)22.已知关于的三次三项式及关于的二次三项式(,均为非零常数).(1)当为关于的三次三项式时,_______.(2)当多项式与的乘积中不含项时,________.(3)若写成(其中a ,b ,c ,d 均为常数),求的值.(4)若能被整除,求的值.23.【数学概念】平移,翻折,旋转是初中数学几何的三大全等变换,无论哪种变换都不会改变图形的形状和大小.【概念探索】在生活中,我们常用实物体验图形变换的过程.小明同学利用一块四边形纸片完成了如下的操作:如图1,已知四边形,,.图1图2图3(1)操作一:沿AC 所在的直线对折.(如图2)你认为左右两侧对折后能完全重合吗?如果能,请证明.如果不能,请说明理由.(2)操作二:对折后,将纸片撕成两个三角形(和),先固定,再将绕点顺时针旋转一定的角度(如图3所示)得到,连接、.求证:.【应用拓展】(3)如图4,在中,,,点在边BC 上,,点E ,F 在线段AD 上,,,若的面积为,求与的面积之和.图4AF BC =x 3221A x x =-+x 2B x mx n =++m n A B +x n =A B 4x m =3221A x x =-+32(1)(1)(1)A a x b x c x d =-+-+-+a b c ++B 1x -m n +ABCD AB AD =BC CD =ACB △ACD △ACB △ACD △A 'AC D △CD 'C B 'CD C B =ABC △AB AC =AB BC >D BD mCD =130AEB AFC ∠=∠=︒50BAC ∠=︒ABC △n ABE △CDF △六、素养题(选做题,共12分)假如你有12根手指在小时候,我们做加法运算会用手指一个一个掰着算.但是计算“”会发现手指不够用了,于是畅想自己如果有12根手指就好了.在中国文化中,“12”有广泛的应用.古代设有12地支,与一天的12个时辰对应.一个地支还对应两个节气,从而表示一年的二十四节气.同时,将地支与12种动物对应,成为十二生肖,来表示12年为周期的循环.我们发现,将各国的数字构造进行比较,与12也有一定关系.比如英文中,一到十二,这十二个数字是独立的,十三以后又有一个构成法,但与二十以后的数又不同.而法文与英文的构成法略有不同.数字123456789101112中文一二三四五六七八九十十一十二英文one two three four five six seven eight nine ten eleven twelve 法文un deux trois quatre cinqsixsepthuitneuf dix onzedouze数字131415161718192021中文十三十四十五十六十七十八十九二十二十一英文thirteen fourteenfifteen sixteenseventeen eighteen nineteen twenty Twenty-one 法文treizequatorze quinzeseizedix-septdix-huitdix-neufvingtvingt-un(1)(3分)请你观察表格的规律,并用三种语言表示数字28.中文英文法文28(2)(6分)英国人计数经常使用十二进制.十二进制数通常使用数字0—9以及字母t,e表示,其中即数字10,e 即数字11.我们熟知“九九乘法表”,现在我们帮助英国人设计一个与十二进制有关的“依依乘法表”(如下图表示部分)请试着填一填:=_______,=_______,=_______.123456789t e 1123456789t e 22468101214181t 33691013161920232629448101418202428303438551318212634394247…(3)(3分)爱尔兰小说《格列佛游记》里,有格列佛在小人国一顿吃了1728份小人饭的叙述,作者为什么要使用这么复杂的数字呢?许多研究者认为这与十二进制有关.对于右面的程序框图,若输入,,则输出的结果为________.57+t 1728a =12k =2022—2023学年第二学期七年级学科素养测试数学答案一、选择题(共10题,每题3分,共计30分)题号1题2题3题4题5题6题7题8题9题10题答案DBBADCCAAB二、填空题(共5题,每题3分,共计15分)11. 12. 13. 14. 15.或(答错或未答完整均不得分)三、解答题(一)(共3小题,每题8分,共24分)16.计算:(1)解:原式 3分 4分(2)解:原式3分4分17.化简求值解:原式3分4分6分当,时 7分原式 8分18.(每空1分)如图,已知,,.求证:.45︒3x 252-90x -︒34︒80︒1119=+-19=666a a a =+-6a =()2222242y x x xy y y y =-+++-÷()22242xy y y y =+-÷2x y =+-1x =-2y =1=-12∠=∠34∠=∠B D ∠=∠//AD BC证明:∵,(已知),又∵(对顶角相等),∴(等量代换).∴(内错角相等,两直线平行).∴(两直线平行,同位角相等).∵,(已知)∴.∴(内错角相等,两直线平行).19.(1)自变量是小明离家的时间t1分因变量是离家的路程s 2分(2)2.53分(3) 7分(4)9分答:小明爸爸出发后追上了小明.20.(1)∵,,∴1分∴ 2分∴3分(2)设正方形ACGF 与正方形BCDE 的边长分别为,.由题意可得,4分∴ 6分(3)令,由题可知,7分12∠=∠34∠=∠24∠=∠13∠=∠//()AB CD CF 或B DCG ∠=∠B D ∠=∠DCG D ∠=∠//AD BC 15km /h 30km /h (3012) 1.512-÷=122h 30123=-2h 32a b -=1ab =2()4a b -=22ab =2224a b ab +-=226a b +=x y 6x y AD +==2220x y +=()222111()4222ABC S xy x y x y ⎡⎤==⨯+-+=⎣⎦△6x a -=2x b+=1ab =8a b +=,8分∴ 9分21.(1)如图所示3分如图所示即为所求 4分(2)证明:∵点是AB 的中点,∴, 5分∴在和中∴(SAS ) 7分∴,∵∴,∴点C 、E 、F 三点在同一直线上 9分22.(1) 2分(2)4分(3)当时,6分当时,∴ 8分(4)令∴∴,∴ 12分(其他方法酌情给分)23.(1)能够完全重合 1分证明:在与中∵,,∴(SSS)2()64a b +=22ab =22222(6)(2)()262x x a b a b ab -++=+=+-=E AE BE =AEF △BEC △AF BC FAE CBE AE BE =⎧⎪∠=∠⎨⎪=⎩AEF BEC ≌△△AEF BEC ∠=∠180BEC AEC ∠+∠=︒180AEF AEC ∠+∠=︒1-1x =1210d =-+=2x =1a b c d +++=1a b c ++=2(1)()x x a x mx n -+=++22(1)x a x a x mx n +--=++1m a =-n a =-1m n +=-ABC △ADC △AB AD =BC CD =AC AC =ABC ADC ≌△△所以对折后可以完全重合 4分(2)∵∴∴ 6分∵, ∴(SAS )∴8分(3)∵∴ 9分∴∵ ∴又∵,∴ ∴ 10分∴∵∴ 11分12分素养题:(1)二十八,twenty-eight ,vingt-huit 每空1分,3分(2)=t,=16,= 2e 每空2分,9分(3)100012分'C AD CAB∠=∠'C AD BAD CAB BAD ∠+∠=∠+∠'C AB CAD ∠=∠'C A CA =AB AD ='C AB CAD ≌△△'CD C B =130AFC ∠=︒18050CFD AFC ∠=-∠=︒50CAD ACF ∠+∠=︒50BAC BAD CAD ∠=∠+∠=︒BAD ACF∠=∠AEB AFC ∠=∠AB AC=(AAS)ABE CAF ≌△△ABE CAF S S =△△ABE CDF CAF CDF CAD S S S S S +=+=△△△△△BD mCD =:1:(1)CD BC m =+::1:(1)CAD ABC S S CD BC m ==+△△ABC S n=△1ABE CDF nS S m +=+△△。
2022-2023学年广东省深圳市龙华区七年级(下)期末数学试卷及答案解析

2022-2023学年广东省深圳市龙华区七年级(下)期末数学试卷一、选择题(本大题共有10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的.)1.(3分)一个企业的log o(标志)代表着一种精神,一种企业文化.以下是深圳市四个公司的log o,其中是轴对称图形的是()A.B.C.D.2.(3分)华为近年来一直在努力自主研发核心领域,3月下旬,华为轮值董事长徐直军宣布完成了芯片14nm以上EDA工具国产化,年内将完成对其全面验证.14nm芯片即0.000000014m用科学记数法表示是()A.1.4×10﹣8m B.0.14×10﹣7m C.1.4×10﹣9m D.14×10﹣8m 3.(3分)某气象台预报“本市明天下雨的概率为90%”对此信息,下列说法正确的是()A.明天一定会下雨B.明天全市90%的地方在下雨C.明天90%的时间在下雨D.明天下雨的可能性比较大4.(3分)下列图形能够直观地解释(3b)2=9b2的是()A.B.C.D.5.(3分)如图,将两根同样的钢条AC和BD的中点O固定在一起,使其可以绕着O点自由转动,就做成了一个测量工件内径的工具.这时根据△OAB≌△OCD,CD的长就等于工件内槽的宽AB,这里判定△OAB≌△OCD的依据是()A.SAS B.ASA C.SSS D.AAS6.(3分)如图,以下条件不能判断AB∥CD的是()A.∠2=∠3B.∠1=∠2C.∠4=∠1+∠3D.∠ABC+∠BCD=180°7.(3分)下表是不同的海拔高度对应的大气压强的值,仔细分析表格中数据,下列说法中正确的是()海拔高度/m010002000300040005000600070008000大气压强/kpa101.290.780.070.761.353.947.241.336.0 A.当海拔高度为2000m时,大气压强为70.7kpaB.随着海拔高度的增加,大气压强越来越大C.海拔高度每增加1000m,大气压强减小的值是变化的D.珠穆朗玛峰顶端(海拔高度为8848.86m)的大气压强约为45kpa8.(3分)某同学做了一个如图所示的风筝,其中∠EDH=∠FDH,ED=FD.则下列结论不一定正确的是()A.EH=FH B.∠DEH=∠DFHC.EF垂直平分DH D.点E与点F关于直线DH对称9.(3分)如图,折线A﹣B﹣C﹣D是一条灌溉水渠,水渠从A村沿北偏东65°方向到B 村,从B村沿北偏西35°方向到C村,若从C村修建的水渠CD与AB方向一致,则∠DCB的大小为()A.30°B.65°C.80°D.100°10.(3分)如图,在正方形ABCD中,点E,F,G,H分别是正方形各边的中点,则下列结论不正确的是()A.△ABF≌△BCG B.AF∥CHC.AR=DQ D.阴影部分面积为正方形ABCD面积的二、填空题(本大题共7小题,每小题3分,共21分.)11.(3分)计算:=.12.(3分)如图,△ABC≌△DEF,则x+y=.13.(3分)若a m=2,a n=8,则a m+n=.14.(3分)如图,假设可以随意在两个完全相同的正方形拼成的图案中取点,那么这个点取在阴影部分的概率是.15.(3分)把两个同样大小的含30°角的三角尺像如图所示那样放置,其中M是AD与BC 的交点,若CM=4,则点M到AB的距离为.16.(3分)七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,也被誉为“东方魔板”.如图把正方形ABCD木板分为7块,制作成七巧板,若正方形ABCD的边长为4,那么该七巧板中第④块图形的面积为.17.(3分)如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BD为△ABC的角平分线,过点C作CE⊥BD交BD的延长线于点E,若,则BD的长为.三、解答题(本大题共8小题,共69分.)18.(8分)计算:3a•a5+(2a2)3﹣a11÷a5.19.(8分)先化简,再求值:[(2x+y)2﹣(x﹣y)2]÷(﹣3x),其中x=2023,y=﹣1.20.(7分)某商场进行“6•18”促销活动,设计了如下两种摇奖方式:方式一:如图1,有一枚均匀的正二十面体形状的骰子,其中的1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.将这个骰子掷出后,“6”朝上则获奖;方式二:如图2,一个均匀的转盘被等分成12份,分别标有1,2,3,4,5,6,7,8,9,10,11,12这12个数字.转动转盘,当转盘停止后,指针指向的数字为3的倍数则获奖.(1)若采用方式一,骰子掷出后,“5”朝上的概率为;(2)若采用方式二,当转盘停止后,指针指向的数字为“5”的概率为;(3)小明想增加获奖机会,应选择哪种摇奖方式?请通过相关计算,应用概率相关知识说明理由.21.(6分)如图,△ABC的三个顶点都在每个小正方形的边长为1个单位长度的网格格点上,请用无刻度直尺作图,并保留作图痕迹.(1)请以直线l为对称轴,画出与△ABC成轴对称的图形;(2)请在直线l上画出一个点P,使得PA+PB的值最小;(3)请画出边AC的垂直平分线.22.(8分)周末,小明与小杰相约到市图书馆参加阅读活动.他们同时从同一地点出发,小明先骑自行车行完部分路程然后再步行,小杰一直步行,结果他们同时到达图书馆.已知他们所走的路程s(km)与时间t(h)之间的关系图象如图所示.根据图象,回答如下问题:(1)点A表示的实际意义是;(2)小明骑自行车的速度是km/h;(3)小杰步行的过程中,他所走的路程s(km)与时间t(h)之间的关系是;(4)小明步行的路程是km.23.(10分)如图1,l1∥l2,直线l3分别交直线l1,l2于点A,B,点C,D分别为直线l1,l2上的点,且AC=BD,E,F是直线l3上不与点A,B重合的点,连接CE,DF.(1)请在图1中画出一个你设计的图形,并添加一个适当的条件:,使得△ACE 与△BDF全等,并说明理由;(2)如图2,连接AD,若AC=AD,∠CAB=55°,则∠ADB=.24.(10分)在学习《完全平方公式》时,某数学学习小组发现:已知a+b=5,ab=3,可以在不求a、b的值的情况下,求出a2+b2的值.具体做法如下:a2+b2=a2+b2+2ab﹣2ab=(a+b)2﹣2ab=52﹣2×3=19.(1)若a+b=7,ab=6,则a2+b2=;(2)若m满足(8﹣m)(m﹣3)=3,求(8﹣m)2+(m﹣3)2的值,同样可以应用上述方法解决问题.具体操作如下:解:设8﹣m=a,m﹣3=b,则a+b=(8﹣m)+(m﹣3)=5,ab=(8﹣m)(m﹣3)=3,所以(8﹣m)2+(m﹣3)2=a2+b2=(a+b)2﹣2ab=52﹣2×3=19.请参照上述方法解决下列问题:若(3x﹣2)(10﹣3x)=6,求(3x﹣2)2+(10﹣3x)2的值;(3)如图,某校“园艺”社团在三面靠墙的空地上,用长12米的篱笆(不含墙AM,AD,DN)围成一个长方形花圃ABCD,花圃ABCD的面积为20平方米,其中墙AD足够长,墙AM⊥墙AD,墙DN⊥墙AD,AM=DN=1米.随着学校“园艺”社团成员的增加,学校在花圃ABCD旁分别以AB,CD边向外各扩建两个正方形花圃,以BC边向外扩建一个正方形花圃(如图所示虚线区域部分),请问新扩建花圃的总面积为_______平方米.25.(12分)【问题背景】△ABC中,∠ABC=90°,AB=BC,点D为直线BC上一点.【初步探究】(1)如图1,当点D在线段BC上时,连接AD,过点A作AE⊥AD于点A,且AD=AE,过点E作EH⊥AC于H点,交AB于F点.求证:EF=AC.请将证明过程补充完整:证明:∵AE⊥AD,∴∠EAD=90°即∠EAH+∠CAD=90°∵EH⊥AC,∴∠AHE=90°,∴∠EAH+∠AEH=90°(),∴∠AEH=().∵△ABC为等腰直角三角形,∠ABC=90°,∴∠BAC=∠ACB=45°.在Rt△AHF中,∠AFE=180°﹣∠AHF﹣∠HAF=180°﹣90°﹣45°=45°,∴∠AFE=∠DCA=45°.在△AEF与△DAC中,∴△AEF≌△DAC,∴EF=AC().【推广探究】(2)如图2,若点D为边BC延长线上一点,其他条件不变,则(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.【拓展应用】(3)若AC=6,AH=2,其它条件不变时,EH=.2022-2023学年广东省深圳市龙华区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的.)1.【分析】根据轴对称图形的定义(如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形)对四个选项进行分析.【解答】解:A、C、D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.【点评】本题主要考查了轴对称图形的定义,掌握定义是解答的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:0.000000014m=1.4×10﹣8m.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据概率的意义,即可解答.【解答】解:某气象台预报“本市明天下雨的概率为90%”,意思是:明天下雨的可能性比较大,故选:D.【点评】本题考查了概率的意义,熟练掌握概率的意义是解题的关键.4.【分析】利用正方形的面积求解方法证得即可.【解答】解:∵3b=b+b+b,∴(3b)2可看作是边长为3b的正方形的面积.故选:A.【点评】此题考查了积的乘方的实际意义.此题比较新颖,注意抓住面积的不同表示方法是解题的关键.5.【分析】已知两边和夹角相等,利用SAS可证两个三角形全等.【解答】解:在△OAB与△OCD中,,∴△OAB≌△ODC(SAS).故选:A.【点评】本题考查了三角形全等的应用;根据题目给出的条件,观察图中有哪些相等的边和角,然后判断所选方法是解决问题的关键.6.【分析】由平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,即可判断.【解答】解:A、∠2=∠3,由内错角相等,两直线平行,能判定AB∥CD,故A不符合题意;B、∠1=∠2,不能判定AB∥CD,故B符合题意;C、∠4=∠1+∠3,由同位角相等,两直线平行,能判定AB∥CD,故C不符合题意;D、∠ABC+∠BCD=180°,由同旁内角互补,两直线平行,能判定AB∥CD,故D不符合题意.故选:B.【点评】本题考查平行线的判定,关键是掌握平行线的判定方法.7.【分析】根据表格中数据分别判断即可得出答案.【解答】解:A、当海拔高度为2000m时,大气压强为80.0kpa,故A选项不符合题意;B、随着海拔高度的增加,大气压强越来越小,故B选项不符合题意;C、海拔高度每增加1000m,大气压强减小的值是变化的,故C选项符合题意;D、珠穆朗玛峰顶端(海拔高度为8848.86m)的大气压强应该低于36.0kpa,故D选项不符合题意;故选:C.【点评】本题主要考查了函数的表示方法,以及正确读表,正确理解表中的变量的意义是解题的关键.8.【分析】证△DEH≌△DFH(SAS),得EH=FH,∠DEH=∠DFH,再由等腰三角形的性质得DH垂直平分EF,则点E与点F关于直线DH对称,即可得出结论.【解答】解:在△DEH和△DFH中,,∴△DEH≌△DFH(SAS),∴EH=FH,∠DEH=∠DFH,故选项A、B不符合题意;∵ED=FD,∠EDH=∠FDH,∴DH垂直平分EF,∴点E与点F关于直线DH对称,故选项C符合题意,选项D不符合题意;故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质以及轴对称等知识,熟练掌握全等三角形的判定与性质是解题的关键.9.【分析】根据方向角的定义以及平行线的性质进行计算即可.【解答】解:如图,由题意可知AB∥CD,AE∥BF,∴∠EAB+∠ABF=180°,∠DCB=∠ABC,∴∠DCB=∠ABC=180°﹣65°﹣35°=80°,故选:C.【点评】本题考查方向角,理解方向角的定义以及平行线的性质是正确解答的前提.10.【分析】根据正方形的性质得到AB=BC=CD=AD,∠BAD=∠ABC=∠ADC=∠BCD =90°,根据全等三角形的判定定理得到△ABF≌△BCG(SAS),故A正确;根据平行四边形的性质得到AF∥CH,故B正确;根据全等三角形的性质得到∠AED=∠DHC,得到∠DQH=90°,同理∠ARE=90°,∠EAR=∠HDQ,根据全等三角形的性质得到AR=DQ,故C正确,根据全等三角形的判定定理得到Rt△ADR≌Rt△DCQ(HL),求得DR=CQ,同理DQ=CP,得到QR=PQ,推出四边形ROPQ是正方形,设RQ=AR =DQ=a,得到DR=2a,根据勾股定理得到AD=a,根据正方形的面积公式得到阴影部分面积为正方形ABCD面积的,故D错误.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠BAD=∠ABC=∠ADC=∠BCD=90°,∵点E,F,G,H分别是正方形各边的中点,∴,∴BF=CG,∴△ABF≌△BCG(SAS),故A正确;∵,∴AH=CF,∴四边形AFCH是平行四边形,∴AF∥CH,故B正确;∵点E,F,G,H分别是正方形各边的中点,∴AE=DH,∴△ADE≌△DCH(SAS),∴∠AED=∠DHC,∵∠AED+∠ADE=90°,∴∠DEC+∠ADE=90°,∴∠DQH=90°,同理∠ARE=90°,∠EAR=∠HDQ,∴△AER≌△DHQ(AAS),∴AR=DQ,故C正确,∴Rt△ADR≌Rt△DCQ(HL),∴DR=CQ,同理DQ=CP,∴QR=PQ,∵OR∥PQ,RQ∥OP,∴四边形ROPQ是正方形,设RQ=AR=DQ=a,∴DR=2a,∴AD=a,∴正方形ABCD的面积为5a2,正方形ROPQ的面积为a2,∴阴影部分面积为正方形ABCD面积的,故D错误,故选:D.【点评】本题考查了中点四边形,正方形的判定和性质,全等三角形的判定和性质,平行四边形的判定和性质,正确地识别图形是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分.)11.【分析】先计算零指数幂、负整数指数幂,然后计算加法.【解答】解:=1+2=3.故答案为:3.【点评】本题主要考查了零指数幂、负整数指数幂,属于基础题,熟记运算法则即可.12.【分析】由全等三角形的性质,得到x=5,y=4,即可求出x+y的值.【解答】解:∵△ABC≌△DEF,∴BC=FE=5,DF=AC=4,∴x=5,y=4,∴x+y=5+4=9.故答案为:9.【点评】本题考查全等三角形的性质,关键是掌握全等三角形的性质:全等三角形的对应边相等.13.【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=8,∴a m+n=a m•a n=16,故答案为:16【点评】此题考查了同底数幂的乘法,熟练掌握乘法法则是解本题的关键.14.【分析】先设小正方形边长为a,求出阴影部分面积,再根据几何概率的求法即可得出答案.【解答】解:设小正方形边长为a,则阴影部分面积为2a2,图案总面积8a2﹣a2=7a2,因此这个点取在阴影部分的概率是=.故答案为:.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.15.【分析】先利用直角三角板性质求得∠CAM=∠DAB,根据角平分线性质可得点M到AB的距离等于点M到AC的距离,则可得结果.【解答】解:∵∠CAM=∠CAB﹣∠BAD=60°﹣30°,∴∠CAM=∠DAB=30°,∴点M到AB的距离等于点M到AC的距离,即点M到AB的距离等于CM的长为4.故答案为:4.【点评】此题主要是考查了角平分线的性质,能够熟练掌握角平分线上的点到角的两边距离相等是解答此题的关键.16.【分析】连接EH并延长交AB于L,延长FJ交AD于K,连接LK交AI于M,连接MJ、FI、IL、CG,则正方形ABCD被分成16个大小相等的等腰直角三角形,每个等腰直角三角形的面积为1,即得答案.【解答】解:如图:连接EH并延长交AB于L,延长FJ交AD于K,连接LK交AI于M,连接MJ、FI、IL、CG,则正方形ABCD被分成16个大小相等的等腰直角三角形,每个等腰直角三角形的面积为S正方形ABCD=×42=1,∴④块图形之一的正方形面积为2cm2.故答案为:2.【点评】本题考查了正方形的性质,将正方形分成16个面积相等的等腰直角三角形是解题的关键.17.【分析】延长CE交BA的延长线于点F,证△BAD≌△CAF(ASA),得BD=CF,再证∠BFC=∠BCF,得BC=BF,然后由等腰三角形的性质得FE=CE=,即可得出结论.【解答】解:如图,延长CE交BA的延长线于点F,∵∠BAC=90°,CE⊥BD,∴∠BAC=∠DEC,∵∠ADB=∠CDE,∴∠ABD=∠ACF,在△BAD和△CAF中,,∴△BAD≌△CAF(ASA),∴BD=CF,∵CE⊥DB,∴∠BEF=∠BEC=90°,∵BD平分∠ABC,∴∠FBE=∠CBE,∴∠BFC=∠BCF,∴BC=BF,∴FE=CE=,∴BD=CF=2CE=,故答案为:.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.三、解答题(本大题共8小题,共69分.)18.【分析】先算单项式乘单项式,积的乘方,同底数幂的除法,再合并同类项即可.【解答】解:3a•a5+(2a2)3﹣a11÷a5=3a6+8a6﹣a6=10a6.【点评】本题主要考查单项式乘单项式,积的乘方,同底数幂的除法,解答的关键是对相应的运算法则的掌握.19.【分析】先利用完全平方公式计算括号里,再算括号外,然后把x,y的值代入化简后的式子进行计算,即可解答.【解答】解:[(2x+y)2﹣(x﹣y)2]÷(﹣3x)=(4x2+4xy+y2﹣x2+2xy﹣y2)÷(﹣3x)=(3x2+6xy)÷(﹣3x)=﹣x﹣2y,当x=2023,y=﹣1时,原式=﹣2023﹣2×(﹣1)=﹣2023+2=﹣2021.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.20.【分析】(1)用数字5的面的个数除以总个数即可得;(2)根据概率公式即可得到结论;(3)分别计算两种方式获奖的概率,然后通过比较概率的大小进行判断.【解答】解:(1)“5”朝上的概率是;故答案为:;(2)指针指向的数字为“5”的概率为,故答案为:;(3)选择摇奖方式二.理由如下:标有数字5和6的都有5个面,面最多,选择摇奖方式一获奖的概率为,选择摇奖方式二获奖的概率为=,因为>,所以摇奖方式二获奖的机会大,选择摇奖方式二.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数21.【分析】(1)根据轴对称变换的性质找出对应点即可求解;(2)连接AB'交直线l于点P,则点P即为所求;(3)根据线段垂直平分线的性质结合网格,连接BD,则直线BD即为所求.【解答】解:(1)如图所示,△A'B'C即为所求;(2)如图所示,点P即为所求;(3)如图所示,直线BD即为所求.【点评】本题考查了轴对称变换的性质,线段垂直平分线的性质,熟练掌握轴对称变换的性质,线段垂直平分线的性质是解题的关键.22.【分析】(1)结合图象可得点A表示的实际意义;(2)根据小明骑自行车行0.2小时行驶3km可得答案;(3)根据小杰0.2小时步行1.2km可得答案;(4)根据“路程=速度×时间”可得答案.【解答】解:(1)由题意得,点A表示的实际意义是小明先骑自行车行行驶了0.2小时,路程为3千米.故答案为:小明先骑自行车行行驶了0.2小时,路程为3千米;(2)小明骑自行车的速度是:3÷0.2=15(km/h),故答案为:15;(3)小杰步行的速度为:1.2÷0.2=6(km/h),所以小杰步行的过程中,他所走的路程s(km)与时间t(h)之间的关系是s=6x(0<x ≤0.8),故答案为:s=6x(0<x≤0.8);(4)0.8×6﹣3=1.8(km),即小明步行的路程是1.8km.故答案为:1.8.【点评】本题考查了函数的图象,掌握数形结合的方法是解答本题的关键.23.【分析】(1)根据平行线的性质得到∠CAE=∠DBF,根据全等三角形的判定定理即可得到结论;(2)如图2,连接BC,根据平行四边形的判定和性质以及菱形的判定和性质定理即可得到结论.【解答】解:(1)添加一个适当的条件:AE=BF,理由:如图1,∵l1∥l2,∴∠CAE=∠DBF,在△ACE与△BDF中,,∴△ACE≌△BDF(SAS);故答案为:AE=BF;(2)如图2,连接BC,∵l1∥l2,即AC∥BD,∵AC=BD,∴四边形ACBD是平行四边形,∵AC=AD,∴四边形ACBD是菱形,∴∠DAB=∠CAB=∠ABD=55°,∴∠ADB=180°﹣55°﹣55°=70°.解法2:∵l1∥l2,∴∠CAB=∠ABD,∠CAD+∠BDA=180°,∵AC=BD,AC=AD,∴BD=AD,∴∠DAB=∠ABD,∵∠CAB=55°,∴∠ABD=∠BAD=55°,∴∠ADB=180°﹣110°=70°,故答案为:70°.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.24.【分析】(1)利用完全平方公式进行转化后代入计算可求解;(2)仿照题目中的例子利用完全平方公式计算可求解;(3)设BM=m米,则AB=(m+1)米,BC=(12﹣2m)米,结合长方形ABCD的面积可求出(2m+2)(12﹣2m)=40平方米,由(2m+2)+(12﹣2m)=14米,根据题干中的解决方法计算可求解.【解答】解:(1)∵a+b=7,ab=6,∴(a+b)2=49,∴a2+b2=(a+b)2﹣2ab=49﹣2×6=37,故答案为:37;(2)设3x﹣2=a,10﹣3x=b,则a+b=(3x﹣2)+(10﹣3x)=8,ab=(3x﹣2)(10﹣3x)=6,所以(3x﹣2)2+(10﹣3x)2=a2+b2=(a+b)2﹣2ab=82﹣2×6=52;(3)设BM=m米,则AB=(m+1)米,BC=(12﹣2m)米,=AB•BC=(m+1)(12﹣2m)=20平方米,∵S长方形ABCD∴(2m+2)(12﹣2m)=40平方米,∵(2m+2)+(12﹣2m)=14米,∴新扩建花圃的总面积为:4AB2+BC2=4(m+1)2+(12﹣2m)2=(2m+2)2+(12﹣2m)2=[(2m+2)+(12﹣2m)]2﹣2(2m+2)(12﹣2m)=142﹣2×40=116(平方米),故答案为:116.【点评】本题主要考查因式分解的应用,完全平方公式的几何背景,整式的运算,理解题目中的解题方法是解题的关键.25.【分析】【初步探究】(1)由直角三角形的性质及全等三角形的性质可得出结论;【推广探究】(2)证明△AEF≌△DAC(AAS),由全等三角形的性质得出EF=AC;【拓展应用】(3)分三种情况,由等腰直角三角形的性质可得出答案.【解答】解:【初步探究】(1)∵AE⊥AD,即∠EAH+∠CAD=90°,∵EH⊥AC,∴∠AHE=90°,∴∠EAH+∠AEH=90°(直角三角形的两锐角互余),∴∠AEH=∠CAD(同角的余角相等),∵△ABC为等腰直角三角形,∠ABC=90°,∴∠BAC=∠ACB=45°,在Rt△AHF中,∠AFE=180°﹣∠AHF﹣∠HAF=180°﹣90°﹣45°=45°,∴∠AFE=∠DCA=45°,在△AEF与△DAC中,,∴△AEF≌△DAC(AAS),∴EF=AC(全等三角形的对应边相等);故答案为:直角三角形的两锐角互余;∠CAD;同角的余角相等;AD=AE;全等三角形的对应边相等;【推广探究】(2)(1)中的结论仍然成立,证明如下:∵AE⊥AD,∴∠EAD=90°,∴∠EAH+∠CAD=90°,∵EH⊥AC,∴∠AHE=90°,∴∠EAH+∠AEH=90°,∴∠AEH=∠CAD,∵△ABC为等腰直角三角形,∠ABC=90°,∴∠BAC=∠ACB=45°,∴∠ACD=180°﹣∠ACB=180°﹣45°=135°,∵∠HAF=∠BAC=45°,∴∠AFE=∠H+∠HAF=90°+45°=135°,∴∠AFE=∠DCA=135°,在△AEF与△DAC 中,,∴△AEF≌△DAC(AAS),∴EF=AC.(3)当点D在线段BC上时,∵△ABC为等腰直角三角形,且EH⊥AC,∠HAF=∠HFA=45°,∴FH=AH=2,∵EF=AC=6,∴EH=EF﹣HF=6﹣2=4;当点D为边CB延长线上一点时,∵△AHF为等腰直角三角形,∴FH=AH=2,∵EF=AC=6,∴EH=EF﹣HF=6﹣2=4;当点D为边BC延长线上一点时,∵△AHF为等腰直角三角形,∴FH=AH=2,∵EF=AC=6,∴EH=EF+HF=6+2=8;故答案为:4或8.【点评】本题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定与性质是解本题的关键。
广东省深圳市龙华2019-2020学年七年级(下)期末数学复习试卷解析版

广东省深圳市龙华2019-2020学年七年级(下)期末数学复习试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)代数式(2a2)3的计算结果是()A.2a6B.6a5C.8a5D.8a62.(3分)下列图形中,是轴对称图形的是()A.B.C.D.3.(3分)下列式子中,一定是二次根式的是()A.B.C.D.4.(3分)如图所示,AB是一条直线,若∠1=∠2,则∠3=∠4,其理由是()A.内错角相等B.等角的补角相等C.同角的补角相等D.等量代换5.(3分)下列事件中,属于必然事件的是()A.明天的最高气温将达35℃B.任意购买一张动车票,座位刚好挨着窗口C.掷两次质地均匀的骰子,其中有一次正面朝上D.对顶角相等6.(3分)设三角形三边之长分别为3,8,2a,则a的取值范围为()A.1.5<a<4.5B.2.5<a<5.5C.3.5<a<6.5D.4.5<a<7.5 7.(3分)将一根长为10cm的铁丝制作成一个长方形,则这个长方形的长y(cm)与宽x(cm)之间的关系式为()A.y=﹣x+5B.y=x+5C.y=﹣x+10D.y=x+108.(3分)如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSS B.ASA C.AAS D.SAS9.(3分)已知a+b=﹣5,ab=﹣4,则a2﹣3ab+b2的值是()A.49B.37C.45D.3310.(3分)若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(2,﹣3))=()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)11.(3分)甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示.给出下列说法:(1)他们都骑行了20km;(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个12.(3分)已知:如图①,长方形ABCD中,E是边AD上一点,且AE=6cm,AB=8cm,点P从B出发,沿折线BE﹣ED﹣DC匀速运动,运动到点C停止.P的运动速度为2cm/s,运动时间为t(s),△BPC的面积为y(cm2),y与t的函数关系图象如图②,则下列结论正确的有()①a=7 ②b=10③当t=3s时△PCD为等腰三角形④当t=10s时,y=12cm2A.1个B.2个C.3个D.4个二.填空题(共4小题,满分12分,每小题3分)13.(3分)等腰三角形有一外角为100°,则它的底角为.14.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)15.(3分)如图,在△ABC中,AD是边BC上的高,BE平分∠ABC交AC于点E,∠BAC =60°,∠EBC=25°,则∠DAC=°.16.(3分)已知长方形ABCD,E点和F点分别在AB和BC边上,如图将△BEF沿着EF 折叠以后得到△B′EF,B′E与AD相交于点M,B′F与AD相交于点G,则∠1与∠2的数量关系为.三.解答题(本大题有7题,其中17题12分,18题6分,19题6分,20题6分,21题7分,22题7分,23题8分,共52分)17.计算:(1)(﹣)﹣2+(2018﹣π)0﹣|﹣4|(2)[a(a2b2﹣ab)﹣b(﹣a3b﹣a2)]÷a2b18.先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=.19.如图,现有一个均匀的转盘被平均分成6等份,分别标有数字2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.求:(1)转动转盘,转出的数字大于3的概率是多少;(2)现有两张分别写有3和4的卡片,要随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.①这三条线段能构成三角形的概率是多少?②这三条线段能构成等腰三角形的概率是多少?20.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.21.如图,∠A=∠B,AE=BE,∠1=∠2,点D在AC边上.(1)求证:△AEC≌△BED.(2)若∠1=40°,求∠BDE的度数.22.阅读:若x满足(80﹣x)(x﹣60)=30,求(80﹣x)2+(x﹣60)2的值.解:设(80﹣x)=a,(x﹣60)=b,则(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20所以(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=202﹣2×30=340请仿照上例解决下面的问题:(1)若x满足(30﹣x)(x﹣20)=﹣10,求(30﹣x)2+(x﹣20)2的值.(2)若x满足(2019﹣x)2+(2018﹣x)2=2017,求(2019﹣x)(2018﹣x)的值.(3)如图,正方形ABCD的边长为x,AE=10,CG=25,长方形EFGD的面积是500,四边形NGDH和MEDQ都是正方形,PQDH是长方形,求图中阴影部分的面积(结果必须是一个具体数值).23.如图,已知正方形ABCD(四边相等,四个角都是直角),点E为边AB上异于点A、B 的一动点,EF∥AC,交BC于点F,点G为DA延长线上一定点,满足AG=AD,GE的延长线与DF交于点H,连接BH.(1)判断△BEF是三角形.(2)求证:△AGE≌△CDF.(3)探究∠EHB是否为定值?如果是定值,请说明理由,并求出该定值;如果不是定值,请说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:原式=23•(a2)3=8a6,故选:D.2.解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.3.解:A、当x<﹣1即x+1<0时,它不是二次根式,故本选项不符合题意.B、由于﹣5<0,则它无意义,故本选项不符合题意.C、由于x2+1>0,所以它符合二次根式的定义,故本选项符合题意.D、当x2﹣1<0时,它无意义,故本选项不符合题意.故选:C.4.解:∵∠1=∠2,∴∠3=∠4(等角的补角相等).故选:B.5.解:“对顶角相等”是真命题,发生的可能性为100%,故选:D.6.解:由题意,得8﹣3<2a<8+3,即5<2a<11,解得:2.5<a<5.5.故选:B.7.解:由题意得:这个长方形的长y(cm)与宽x(cm)之间的关系式为:y=﹣x+5,故选:A.8.解:观察图形发现:AC=DC,BC=BC,∠ACB=∠DCB,所以利用了三角形全等中的SAS,故选:D.9.解:∵a+b=﹣5,ab=﹣4,∴a2﹣3ab+b2=(a+b)2﹣5ab=52﹣5×(﹣4)=25+20=45,故选:C.10.解:根据定义,f(2,﹣3)=(﹣2,﹣3),所以,g(f(2,﹣3))=g(﹣2,﹣3)=(﹣2,3).故选:B.11.解:由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选:B.12.解:当P点运动到E点时,△BPC面积最大,结合函数图象可知当t=5时,△BPC面积最大为40,∴BE=5×2=10.∵•BC•AB=40,∴BC=10.则ED=10﹣6=4.当P点从E点到D点时,所用时间为4÷2=2s,∴a=5+2=7.故①正确;P点运动完整个过程需要时间t=(10+4+8)÷2=11s,即b=11,②错误;当t=3时,BP=AE=6,∵S△BPC=S△EAB=24,∴CP=AB=8,∴CP=CD=8,∴△PCD是等腰三角形,故③正确;当t=10时,P点运动的路程为10×2=20cm,此时PC=22﹣20=2,△BPC面积为×10×2=10cm2,④错误.∴正确的结论有①③.故选:B.二.填空题(共4小题,满分12分,每小题3分)13.解:∵等腰三角形的一个外角等于100°,∴等腰三角形的一个内角为80°,①当80°为顶角时,其他两角都为50°、50°,②当80°为底角时,其他两角为80°、20°,所以等腰三角形的底角可以是50°,也可以是80°答案为:80°或50°.14.解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)15.解:∵BE平分∠ABC,∠EBC=25°,∴∠ABC=2∠EBC=50°,∵∠BAC+∠ABC+∠C=180°,∠BAC=60°,∴∠C=180°﹣60°﹣50°=70°,又∵AD是边BC上的高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=90°﹣70°=20°,故答案为:2016.解:由折叠可得,∠B=∠B'=90°,∠BEB'=2∠2,∴∠BFE+∠BEB'=180°,∵AD∥BC,∴∠1=∠GFC,又∵∠BFE+∠GFC=180°,∴∠BFE+∠1=180°,∴∠BEB'=∠1,即2∠2=∠1,故答案为:∠1=2∠2.三.解答题(本大题有7题,其中17题12分,18题6分,19题6分,20题6分,21题7分,22题7分,23题8分,共52分17.解:(1))(﹣)﹣2+(2018﹣π)0﹣|﹣4|=4+1﹣4=1;(2)[a(a2b2﹣ab)﹣b(﹣a3b﹣a2)]÷a2b=(a3b2﹣a2b+a3b2+a2b)÷a2b=2a3b2÷a2b=2ab.18.解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2,∵a=,∴原式=1+2=3.19.解:(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,∴转出的数字大于3的概率是=;(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,∴这三条线段能构成三角形的概率是;②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,∴这三条线段能构成等腰三角形的概率是=.20.解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;(4)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月利润为5000元时,每月乘车人数为4500人,故答案为4500.21.(1)证明:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,∴∠AEC=∠BED,在△AEC和△BED中∴△AEC≌△BED(ASA);(2)∵△AEC≌△BED,∴ED=EC,∠ACE=∠BDE,∴∠ECD=∠EDC,∵∠1=40°,∴∠ECD=∠EDC=70°,∴∠ECA=70°,∴∠BDE=70°,即∠BDE是70°.22.解:(1)设30﹣x=a,x﹣20=b,作为ab=﹣10,a+b=10,原式=a2+b2=(a+b)2﹣2ab=102﹣2×(﹣10)=120.(2)设2019﹣x=m,2018﹣x=n,则m2+n2=2017,m﹣n=1,∵(m﹣n)2=m2﹣2mn+n2,∴1=2017﹣2mn,∴mn=1008,即(2019﹣x)(2018﹣x)=1008.(3)由题意DE=x﹣10,DG=x﹣25,则(x﹣10)(x﹣25)=500,设a=x﹣10,b=x﹣25,则a﹣b=15,ab=500,∴S阴=(a+b)2=(a﹣b)2+4ab=152+4×500=2225.23.解:(1)△BEF是等腰直角三角形,∵正方形ABCD中,AB=BC,∠ABC=90°,∴△ABC是等腰直角三角形,∵AC∥EF,∴△BEF是等腰直角三角形;故答案为:等腰直角;(2)证明:如图1,∵△ABC和△BEF为等腰直角三角形,∴AB=BC,BE=BF,∴AB﹣BE=BC﹣BF,即是AE=FC,∵四边形ABCD为正方形,∴AD=CD=AG,∠GAE=∠DCF=90°,∴△AGE≌△CDF(SAS),(3)∠EHB=45°.如图2,在GE上截取ME=HF,∵△AGE≌△CDF,∴∠AEG=∠DFC∴180﹣∠AEG=180﹣∠DFC即是∠MEB=∠HFB,∵△BEF为等腰直角三角形,∴BE=BF,∵BE=BF,ME=HF,∠MEB=∠HFB,∴△MEB≌△HFB(SAS),∴∠MBE=∠HBF,MB=BH,∵∠HBF+∠EBH=90°,∴∠MBE+∠EBH=90°即是∠MBH=90°∴△MBH为等腰直角三角形,∴∠EHB=45°.。
2021-2022学年广东省深圳市龙华区七年级(下)期末数学试卷及答案解析

2021-2022学年广东省深圳市龙华区七年级(下)期末数学试卷一、选择题(本大题共有10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的。
)1.(3分)北京2022年冬奥会的举办,再次点亮了北京这座千年古都.在下列北京建筑的简笔画图案中,是轴对称图形的是()A.国家体育场B.国家游泳中心C.天安门D.国家大剧院2.(3分)空气的密度是1.293×10﹣3g/cm3,这个数1.293×10﹣3用小数表示为()A.0.1293B.0.01293C.0.001293D.12933.(3分)下列运算中正确的是()A.a2⋅a3=a6B.(a3b)2=a6b2C.2(a﹣1)=2a﹣1D.a6÷a2=a34.(3分)如图所示,下列条件中能说明a∥b的是()A.∠1=∠2B.∠3=∠4C.∠2+∠4=180°D.∠1+∠4=180°5.(3分)如图,这是一个平分角的仪器,AB=AD,BC=DC,将点A放在一个角的顶点,使AB、AD分别与这个角的两边重合,可证△ADC≌△ABC,从而得到AC就是这个角的平分线.其中证明△ADC≌△ABC的数学依据是()A.SSS B.ASA C.SAS D.AAS6.(3分)下列说法中,正确的是()A.成语“心想事成”描述的事件为必然事件B.某彩票的中奖概率是3%,那么如果买100张彩票一定会有3张中奖C.小明做3次掷图钉的试验,发现有2次钉尖朝上,由此他说钉尖朝上的概率是D.小乐做了3次掷均匀硬币的试验,结果有1次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是7.(3分)如图3,已知AB∥CD,现将一直角△PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.若∠PFD=32°,则∠BEP的度数为()A.58°B.68°C.32°D.60°8.(3分)下列说法中,正确的是()A.同位角相等B.三角形的三条高线交于一点C.两边及一角分别相等的两个三角形全等D.线段的垂直平分线上的点到这条线段两个端点的距离相等9.(3分)聪聪周末从家出发,步行去公园游玩的行程如图所示,记他所行走的路程为s米,离开家的时间为t分钟.下列图象中,能近似刻画s与t之间关系的是()A.B.C.D.10.(3分)如图,在△ABC中,AB=AC,D、E分别为边AB、AC上的点,BE与CD相交于点F,∠ADC=∠AEB,则下列结论:①△ABE≌△ACD;②BF=CF;③连接AF,则AF所在的直线为△ABC的对称轴:④若AD=BD,则四边形ADFE的面积与△BCF 的面积相等.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(本大题共7小题,每小题4分,共28分。
【3套打包】深圳市最新七年级下册数学期末考试试题(含答案)(5)

最新七年级下册数学期末考试题【含答案】一、选择题:(本大题有10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应的位置上)1.下列运算中,正确的是( )A .33a a a ⋅=B .632a a a ÷=C .22(2)4a a -=- D .2(3)(2)6a a a a -+=-- 2.若a b >,则下列判断中错误的是( )A .22a b +>+B . 22ac bc <C . 33a b -<-D .44a b > 3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( )4.已知21x y =⎧⎨=-⎩是二元一次方程21x my +=的一个解,则m 的值为( )A .3B .-5C .-3D .55.下列命题中真命题...的是( ) A .同旁内角互补 B .三角形的一个外角等于两个内角的和 C .若22a b =,则a b = D .同角的余角相等6.如图,已知ADB ADC ∠=∠,添加条件后,可得ABD ACD ∆≅∆,则在下列条件中,不能添加的是( )A .BAD CAD ∠=∠B .BC ∠=∠ C . BD CD = D .AB AC = 7.若311393m ⨯=,则m 的值为( )A . 2B . 3C . 4D . 5 8.若2216x mx ++是一个完全平方式,则m 的值为( ) A .±4 B .±2 C . 4 D .-4 9.若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为( ) A . 8 B . 6 C .5 D . 4 10.若(1)(5)M x x =--,(2)(4)N x x =--,则M 与N 的关系为( )A. M N =B. M N >C. M N <D. M 与N 的大小由x 的取值而定 A . 3个 B . 2个 C . 1个 D . 0个二、填空题:(本大题有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在答题卡对应的横线上)11.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm .12.若4,9n n x y ==,则()nxy = .13.已知25x y -=,若用含x 的代数式表示y ,则y = . 14.若2x y +=,则代数式224x y y -+的值等于 .15.如图,//a b ,将三角尺的直角顶点落在直线a 上,若160∠=︒, 250∠=︒最新七年级下册数学期末考试题【含答案】一、选择题:(本大题有10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应的位置上)1.下列运算中,正确的是( )A .33a a a ⋅=B .632a a a ÷=C .22(2)4a a -=- D .2(3)(2)6a a a a -+=-- 2.若a b >,则下列判断中错误的是( )A .22a b +>+B . 22ac bc <C . 33a b -<-D .44a b > 3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( )4.已知21x y =⎧⎨=-⎩是二元一次方程21x my +=的一个解,则m 的值为( )A .3B .-5C .-3D .55.下列命题中真命题...的是( ) A .同旁内角互补 B .三角形的一个外角等于两个内角的和 C .若22a b =,则a b = D .同角的余角相等6.如图,已知ADB ADC ∠=∠,添加条件后,可得ABD ACD ∆≅∆,则在下列条件中,不能添加的是( )A .BAD CAD ∠=∠B .BC ∠=∠ C . BD CD = D .AB AC = 7.若311393m ⨯=,则m 的值为( )A . 2B . 3C . 4D . 5 8.若2216x mx ++是一个完全平方式,则m 的值为( ) A .±4 B .±2 C . 4 D .-4 9.若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为( ) A . 8 B . 6 C .5 D . 4 10.若(1)(5)M x x =--,(2)(4)N x x =--,则M 与N 的关系为( )A. M N =B. M N >C. M N <D. M 与N 的大小由x 的取值而定 A . 3个 B . 2个 C . 1个 D . 0个二、填空题:(本大题有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在答题卡对应的横线上)11.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm . 12.若4,9n n x y ==,则()n xy = .13.已知25x y -=,若用含x 的代数式表示y ,则y = . 14.若2x y +=,则代数式224x y y -+的值等于 .15.如图,//a b ,将三角尺的直角顶点落在直线a 上,若160∠=︒, 250∠=︒最新七年级(下)期末考试数学试题【答案】一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.下列各数中是无理数的是( ) ABCD .3.14 2.已知x y >,下列变形正确的是( )A .11x y -<-B .2121x y +<+C .x y -<-D .22x y<3.下列调查中,适合抽样调查的是( )A. 了解某班学生的身高情况B. 检测十堰城区的空气质量C. 选出某校短跑最快的学生参加全市比赛D. 全国人口普查4.含30°角的直角三角板与直线a ,b 的位置关系如图所示,已知a ∥b ,∠1=40°,则∠ADC 的度数是( )A .40°B .45°C .50°D .60° 5.下列命题属于真命题的是( )A .同旁内角相等,两直线平行B .相等的角是对顶角C .平行于同一条直线的两条直线平行D .同位角相等 6.若点P (a ,a -4)是第二象限的点,则a 必满足( )A .a <0 B. a <4 C. 0<a <4 D. a >47.某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个 8.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( )A. ⎪⎩⎪⎨⎧+=+=1215.4x y x yB.4.5112y x y x =-⎧⎪⎨=+⎪⎩ C. ⎪⎩⎪⎨⎧-=-=1215.4x y x y D. ⎪⎩⎪⎨⎧-=+=1215.4x y x y 9.如图,已知∠1=∠2,∠BAD =∠BCD ,下列结论:①AB ∥CD ,②AD ∥BC ,③∠B =∠D ,④∠D =∠ACB ,其中不.正确..的结论的个数为( )A .1个B .2个C .3个D .4个10.将正整数按如图所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示114的有序数对是( )A.(15,9) B. (9,15) C. (15,7) D. (7,15)(第4题) 第9题) (第10题) 二、填空题(每小题3分,共12分.请直接将答案填写在答题卡中,不写过程) 11.点P (3,-4)到 x 轴的距离是 .12.为了直观地表示我国体育健儿在最近六届夏季奥运会上获得奖牌总数的变化趋势,最适合使用的统计图是 .(从“扇形图”、“折线图”、“条形图”、“直方图”中选填)13. 如图,有一条平直的等宽纸带按图折叠时,则图中∠α= .14.对于有理数a ,b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,例如:min {1,-2}=-2.已知min ,a }min b }=b ,且a 和b 为两个连续正整数,则a -b 的平方根为 . 三、解答题(本题有10个小题,共78分) 15.(本题8分)计算下列各式的值:(1)1623483+---; (2)32-.16.(本题8分)解下列方程组:(1)13,33;x y x y =-⎧⎨-=⎩ (2)349,237.x y x y -=⎧⎨-=⎩17.(本题6分)解不等式组3(2)4,1413x x x x --≥⎧⎪+⎨>-⎪⎩,并把解集在数轴上表示出来.18.(本题8分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将获得的数据进行整理,绘制出两幅不完整的统计图,请根据统计图回答问题.(1)这次活动一共调查了________名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于________度;(4)若该学校有1000人,请你估计该学校选择乒乓球项目的学生人数约是________人.19.(本题7分)在平面直角坐标系xOy中,△ABC的三个顶点分别是A(-2,0),B(0,3),C(3,0).(1)在所给的图中,画出这个平面直角坐标系;(2)点A经过平移后对应点为D(3,-3),将△ABC作同样的平移得到△DEF,点B的对应点为点E,画出平移后的△DEF;(3)在(2)的条件下,点M在直线CD上,若DM=2CM,直接写出点M的坐标.20.(本题6分)在长为20 m、宽为16 m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,求每个小长方形花圃的面积.80405521.(本题8分)如图,点O 在直线AB 上,OC ⊥OD ,∠EDO 与∠1互余. (1)求证:ED //AB ;(2)OF 平分∠COD 交DE 于点F ,若∠OFD =65°,补全图形,并求∠1的度数.22.(本题5分)先阅读下列一段文字,再解答问题:已知在平面内有两点()111,P x y ,()222,P x y ,其两点间的距离公式为12PP =同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -.(1)已知点A (2,4),B (-2,1),则AB =__________;(2)已知点C ,D 在平行于y 轴的直线上,点C 的纵坐标为4,点D 的纵坐标为-2,则CD =__________;(3)已知点P (3,1)和(1)中的点A ,B ,判断线段PA ,PB ,AB 中哪两条线段的长是相等的?并说明理由. 23.(本题10分)某超市销售每台进价分别为200元、150元的甲、乙两种型号的电器,下⑴求A 、B 两种型号的电风扇的销售单价;⑵若超市准备用不多于5000元的金额再采购这两种型号的电风扇共30台,且按(1)中的销售单价全部售完利润不少于1850元,则有几种购货方案?⑶在⑵的条件下,超市销售完这30台电风扇哪种方案利润最大?最大利润是多少?请说明理由.24.(本题12分)已知:如图(1),如果AB∥CD∥EF. 那么∠BAC+∠ACE+∠CEF=360°.老师要求学生在完成这道教材上的题目后,尝试对图形进行变式,继续做拓展探究,看看有什么新发现?(1)小华首先完成了对这道题的证明,。
【3套打包】深圳宝安区龙华中英文实验学校七年级下册数学期末考试试题(含答案)

最新七年级(下)期末考试数学试题(含答案)人教版七年级下学期期末考试数学试题初一数学(一)一、选择题(每小题3分,共30分) 1、如图,∠ 1 和∠ 2 是对顶角的是( )A B C D 2、在平面直角坐标系中,点P (-2,3)在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3、下列实数中最小的是( )A 、1B 、17-C 、-4D 、0 4、下列各式计算正确的是( )A 、416=±B 、416±=C 、-327-3=D 、-44-2=)(5、若a<b,则下列各式不一定成立的是( ) A 、a-1<b-1 B 、33ba < C 、-a>-b D 、ac<bc 6、将点M 向左平移3个单位长度后的坐标是(-2,1),则点M 的坐标是( ) A 、(-2,4) B 、(-5,1) C (1,1) D 、(-2,-4) 7、已知⎩⎨⎧-==11y x 是方程2x-ay=3的一个解,那么a 的值为( )A.-1B.1C.2D.-2 8、如图,下列能判断AB//CD 的条件个数是( ) (1)BCD B ∠+∠=180° (2)21∠=∠(2)43∠=∠ (5)5∠=∠B9、如图,10相同的长方形墙砖拼成一个矩形,设长方形砖墙的长和宽分别为x cm 和y cm ,依题意列方程组正确的是( )⎩⎨⎧==+x y y x A 3752、 ⎩⎨⎧==+y x y x B 3752、 ⎩⎨⎧==-y x y x C 3752、 ⎩⎨⎧==+y x y x D 3752、 10、解关于x 的不等式组⎩⎨⎧≤-<-1270x a x 的整数解有5个,则a 的取值范围是( )A 、7<a<8B 、7≤a<8C 、7<a ≤8D 、7≤a ≤8 二、填空题(每小题3分,共12分)11、计算:=+23-2_________12、请把命题“对顶角相等”改为“如果...那么...”的形式__________________ 13、如图,将直角三角形ABC 沿着BC 方向平移3cm 得到直角三角形DEF ,AB=5cm ,DH=2cm ,那么图中阴影部分的面积为________cm 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年第二学期教学质量检测
七年级数学试卷(龙华区)
第一部分(选择题,共36分)
一、选择题(本题共有12小题,每小题3分,共36分。
)
1.计算4
2a a ⋅的结果是( ) A 、6a B 、62a C 、 8a D 、 82a
2.如果一个三角形的两边长分别为5,12,则第三边的长可以是( )
A 、18
B 、13
C 、7
D 、5
3.1张新版百元的人民币厚约为0.00009米,数据“0.00009”用科学记数法可表示为( )
A 、5109-⨯米
B 、4109-⨯米
C 、6109.0-⨯米
D 、3
1090-⨯米
4.下列汉字中,
∙∙是不轴对称图形的是( )
A .口
B .中
C .用
D .工
5.如图1,已知直线a ∥b ,∠1=50º,则∠2的度数为( )
A 、40º
B 、50º
C 、130º
D 、50º
6.小亮做掷质量均匀硬币的试验,掷了10次,发现有8次正面朝上,2次正面朝下,则
当他第11次掷这枚硬币时( )
A 、一定是正面朝上
B 、一定是正面朝下
C 、正面朝上的概率为0.8
D 、正面朝上的概率为0.5
7.如图2,已知AB=AD ,∠BAD=∠CAE ,则增加以下哪个条件仍不能判断
△BAC ≌△DAE 的是( )
A .AC=AE
B .BC=DE
C .∠B=∠
D D .∠C=∠E
8.通过计算比较图3-1、图3-2中阴影部分的面积,可以验证的计算式子是( )
A 、()ax ab x b a -=-
B 、()bx ab x a b -=-
C 、()()bx ax ab x b x a --=--
D 、()()2
x bx ax ab x b x a +--=-- 9.下列说法中正确的是( )
A 、同位角相等
B 、如果一个等腰三角形的两边长分别为3和6,那么该三角形的周长为12或15
C 、直线外一点与直线上各点连接的所有线段中,垂线段最短
D 、事件“打开电视机,正好播放足球比赛”是必然事件
10.已知2010=x ,85=x
,则x 2的值是( ) A 、52 B 、2
5 C 、12 D 、120 11.如图4-1,AB=2,P 是线段AB 上一点,分别以AP 、BP 为边作正
方形。
设AP=x ,这两个正方形的面积之和为S ,且S 与x 之间的关系
如图4-2所示,则下列说法中正确的是( )
A .在点P 由点A 向点
B 运动过程中,S 有最小值为2
B .在点P 由点A 向点B 运动过程中,S 的值不变
C .S 与x 之间的关系式为422
-=x S
D .当10<<x 时,S 的值越来越大
12.如图5,△ABC 中,D 、E 分别为AB 、AC 上两点,将△ABC 沿直线DE 折叠,使
得点A 落在△ABC 右侧的点1A 处,则∠A 、∠1、∠2之间满足的关系式是( ) A .∠A=∠1-∠2 B .∠A=2
1∠1-∠2 C .∠A=∠1-2∠2 D .2∠A=∠1-∠2
第二部分(非选择题,共64分)
二、填空题(每小题3分,共12分.).
13.计算:()()33-+x x 的结果是_________________。
14.有5张纸签,分别标有数字-1, 0, -0.5, 1, 2,从中随机的抽取一张,
则抽到标有的数字为正数的纸签的概率是______________。
15. 某公交车每月的利润y (元)与乘客人数x (人)之间的关系式为y=2.5x-6000,
该公交车为使每月不亏损,则每月乘客量至少需达到______________人。
16.如图6,已知△ABC 中,AB=AC ,AD 为高,BE 为中线,AD 与BE 相交于点O 。
若BC=6,AD=7,则△AOE 的面积为____________。
三、解答题(本题共7小题,共52分。
)
17.计算:(每小题5分,共10分)
()22017213)1(022---+⎪⎭
⎫ ⎝⎛-+--π ()[]()3
232624225)2(y x xy xy x ÷+⋅ 18.(本题5分)先化简,再求值:()()()()b a a b a b a b a ---+-+5222
,其中21=-=b a ,。
19.(本题5分)填空:把下面的推理过程补充完整,并在括号内注明理由。
已知:如图7,△ABC 中,D 、E 分别为AB 、AC 的中点,过点C 作CF ∥AB 交DE 的延长线于F 。
求证:AB=2CF 。
证明:∵CF ∥AB (已知)
∴∠ADE=∠F (_________________________)
∵E 为AC 的中点(已知)
∴AE=CE (中点的定义)
在△ADE 与△CFE 中
⎪⎩
⎪⎨⎧=∠=∠CE AE F ADE ______)_________________(____________
∴△ADE ≌△CFE (____________)
∴AD=CF (_________________________)
∵D 为AB 的中点
∴AB=2AD (中点的定义
∴AB=2CF (等量代换)
20.(本题8分)图8是一大一小的两个可以自由转动的转盘,甲盘被平均分成6等份,乙盘被平均分成4等份,每个转盘均被涂上红、黄、蓝三种颜色,转动转盘,当转盘停止后,指针指向的颜色即为转出的颜色。
小明与小颖参与游戏:小明转动甲盘,小颖转动乙盘。
(1)小明转出的颜色为红色的概率为_________;
(2)小明转出的颜色为黄色的概率为_________;
⑶小颖转出的颜色为黄色的概率为_________;
⑷两人均转动转盘,如果转出的颜色为红色,则胜出。
你认为
该游戏公平吗?为什么?
21.(本题7分)人的大脑所能记忆的内容是有限
的,随着时间的推移,记忆的东西会逐渐遗忘,
为提升记忆的效果,需要有计划的按时复习巩固。
图9中的实线部分是记忆保持量(%)与时间(天)
之间的关系图,请根据图回答下列问题:
(1)图中的自变量是___________,因变量是
___________;
(2)如果不复习,3天后记忆保持量约
为
______________;
(3)图中点A表示的意义是__________________;
(4)图中射线BC表示的意义是_________________;
⑸经过第1次复习与不进行复习,3天后记忆保持量相差约为___________;
⑹10天后,经过第2次复习与从来都没有复习的记忆保持量相差约为___________。
22.(本题共2小题,第⑴小题4分,第⑵小题5分,共9分)
⑴如图10,在△ABC中,AC=BC,∠ACB=90º,直线l过点C,分别过A、B两点作AD⊥l于点D,作BE⊥l于点E。
求证:DE=AD+BE。
⑵如图11,已知Rt△ABC,∠C=90º。
①用尺规作图法作出△ABC的角平分线AD;(不写作法,保留作图痕迹)
②若AB=10,CD=3,求△ABD的面积。
23.(本题8分)阅读下列材料,解答问题:
定义:线段AD 把等腰三角形ABC 分成△ABD 与△ACD (如图12-1),如果△ABD 与△ACD 均为等腰三角形,那么线段AD 叫做△ABC 的完美分割线。
⑴如图12-1,已知△ABC 中,AB=AC ,∠BAC=108º,AD 为△ABC 的完美分割线,且BD<CD ,
则∠B=_________,∠ADC=_________;
⑵如图12-2,已知已知△ABC 中,AB=AC ,∠A=36º,BE 为△ABC 的角平分线,求证:BE 为△ABC 的完美分割线;
⑶如图12-3,已知△ABC 是一等腰三角形纸片,AB=AC ,AD 是它的一条完美分割线,将△ABD 沿直线AD 折叠,点B 落在点1B 处,1AB 交CD 于点E 。
求证:EC DB 1。