第8章 代数方程和常微分方程求解

合集下载

常微分方程的解法

常微分方程的解法

常微分方程的解法什么是常微分方程?在数学中,常微分方程是描述自变量与一个或多个函数的导数之间关系的方程。

常微分方程是许多科学和工程问题的数学模型的基础,因此对其解法的研究具有重要意义。

常微分方程的分类常微分方程可以根据阶数、线性性质、系数类型等进行分类,主要包括一阶常微分方程、二阶常微分方程、线性常微分方程、非线性常微分方程等。

不同类型的微分方程需要采用不同的解法进行求解。

常微分方程的解法1. 分离变量法当常微分方程可以化为变量分离后,可以采用分离变量法进行求解。

这种方法适用于一阶可分离变量的常微分方程,基本思想是将未知函数的导数与自变量分离到不同的方程两边,通过积分来求解。

2. 特征方程法特征方程法适用于线性常系数齐次微分方程,通过找到相应的特征方程并求得特征根,再根据特征根的不同情况得到通解形式。

特征方程法是解决二阶及以上线性齐次微分方程最常用的方法之一。

3. 变易参数法对于二阶非齐次线性微分方程,可以采用变易参数法求解。

该方法通过猜测一个特解形式,并代入原微分方程得到特解,再加上对应齐次线性微分方程的通解得到原非齐次微分方程的通解。

4. 拉普拉斯变换法拉普拉斯变换法主要适用于线性时不变系统稳态和暂态响应问题,通过将微分方程转化为代数方程,从而得到更容易求解的结果。

常微分方程的应用常微分方程广泛应用于物理、生物、经济、工程等领域。

例如,弹簧振动系统、放射性衰变过程、人口增长模型等都可以用常微分方程进行建模和求解,因此对常微分方程的深入理解及其解法的掌握对于实际问题具有重要意义。

总结通过本文简要介绍了常微分方程及其分类,并详细讨论了常微分方程的几种常用解法。

同时也指出了常微分方程在现实生活中的重要应用。

在实际问题中,掌握不同类型常微分方程的解法,并能灵活运用于实际问题中,对于深化对其理论和应用的理解具有重要意义。

希望本文对读者进一步理解和掌握常微分方程及其解法有所帮助。

常微分方程常见形式及解法

常微分方程常见形式及解法

常微分方程常依其阶数分类,阶数是指自变数导数的 最高阶数,最常见的二种为一阶微分方程及二阶微分 方程。例如以下的贝塞尔方程:
2021/10/10
(其中y为应变数)为二阶微分方程,其解为贝塞尔
函数。
常微分方程毕文彬
2
2021/10/10
常见例子
以下是常微分方程的一些例子,其中u为未知的函数,自变 数为x,c及ω均为常数。
2021/10/10
常微分方程毕文彬
4
简易微分方程的求解方法
01
一阶线性常微分方程
02
二阶常系数齐次常微分方程
2021/10/10
常微分方程毕文彬
5
01 一阶线性常微分方程
l对于一阶线性常微分方程,常用的方法是常数 变易法: l对于方程:
l可知其通解:
l然后将这个通解代回到原式中,即可求出C(x) 的值
2021/10/10
常微分方程毕文彬
6
02 二阶常系数齐次常微分方程
l对于二阶常系数齐次常微分方程,常用 方法是求出其特征方程的解 l对于方程: l可知其通解: l其特征方程: l根据其特征方程,判断根的分布情况, 然后得到方程的通解 l一般的通解形式为(在r1=r2的情况下):
l(在的r1≠r2情况下): l(在共轭复数根的情况下):
l 非齐次一阶常系数线性微分方程:
l 齐次二阶线性微分方程:
l 描述谐振子的齐次二阶常系数线性微分方程:
l 非齐次一阶非线性微分方程:
l 描述长度为L的单摆的二阶非线性微分方程:
常微分方程毕文彬
3
微分方程的解
l微分方程的解通常是一个函数表达式(含一个 或多个待定常数,由初始条件确定)。例如: ldy/dx=sinx, l的解是 ly=-cosx+C, l其中C是待定常数; l例如,如果知道 l y=f(π)=2, l则可推出 l C=1, l而可知 ly=-cosx+1,

第8章 代数方程和常微分方程求解

第8章 代数方程和常微分方程求解

8.2 常微分方程求解



求解微分方程必须事先对自变量的某些值规定出 函数或是导数的值。 若在自变量为零的点上,给出初始条件,称为初 值问题,最普遍的自变量是“时间”。例如,弹 性系统的自由振动,若以时间为零来限定位移和 速度,这是一个初值问题。 若在自变量为非零的点上,给出边界条件,称为 边值问题,最普遍的自变量是“位移”。例如, 描述梁弯曲变形的微分方程,边界条件总是规定 在梁的两端。
当 x 0 2 和 y 0 0 条件下的特解。 在此问题中,两个微分方程的MATLAB表达式为: e1:Dx+2*x-Dy=10*cos(t) e2:Dx+Dy+2*y=4*exp(-2*t) 初值条件表达式为: C1:x(0)=2 C2:y(0)=0

8.1 代数方程求解


8.1.1 代数方程图解法
符号绘图函数fplot()和ezplot()也可以用于图解 法求代数方程的根,它适用于求解维数较少的一 维方程或二维方程组。 对于一维方程图解,其解就是函数曲线与x轴交点 所对应的变量数值。如果有多个交点,则表示该 方程有多个解;如果没有交点,则表示该方程没 有解。 例如,在例5-3使用符号绘图函数绘制代数方程的 图形(图5-3左图)中可见,函数在区间[-5,5]内 与x轴有3个交点,因此该代数方程该区间内有3个 实根。



M文件运行结果: 采用矩阵左除或矩阵求逆求出线性方程组的解: xx (zx)= 1.0000 2.0000 3.0000 -1.0000 计算残量: r = 1.0e-014 * 0.0888 0.2220 -0.4441 0.1776 计算残量的模: R = 5.3475e-015

常微分方程解法总结

常微分方程解法总结

常微分方程解法总结引言在数学领域中,常微分方程是一类以函数与其导数之间关系为描述对象的方程。

它广泛应用于物理、化学、生物等自然科学的建模和解决问题中。

常微分方程的求解有许多方法,本文将对其中一些常见的解法进行总结和讨论。

一、分离变量法分离变量法是求解常微分方程中常用的一种方法。

它的基本思想是将方程中的变量分离,将含有未知函数的项移到方程的一侧,含有自变量的项移到方程的另一侧,然后对两边同时积分,从而得到最终的解析解。

例如,考虑一阶常微分方程dy/dx = f(x)g(y),可以将此方程改写为1/g(y)dy = f(x)dx,然后对两边同时积分得到∫1/g(y)dy =∫f(x)dx。

在对两边积分后,通过求解不定积分得到y的解析表达式。

二、常系数线性齐次微分方程常系数线性齐次微分方程是另一类常见的常微分方程。

它具有形如dy/dx + ay = 0的标准形式,其中a为常数。

这类方程的解法基于线性代数中的特征值和特征向量理论。

对于形如dy/dx + ay = 0的一阶常微分方程,可以假设其解具有形式y = e^(rx),其中r为待定常数。

带入方程,解得a的值为r,于是解的通解即为y = Ce^(rx),其中C为任意常数。

通过特定的初值条件,可以确定常数C的值,得到方程的特解。

三、变量分离法变量分离法是一种适用于某些特殊形式常微分方程的解法。

其基本思想是将方程中的变量进行适当的变换,从而将方程化为分离变量的形式。

例如,考虑一阶非齐次线性微分方程dy/dx = f(x)/g(y),其中f(x)和g(y)为已知函数。

通常情况下,变量分离法需要对方程变形,将含有未知函数和自变量的项进行合并处理。

假设存在一个新的变量z(x) = g(y),则dy/dx = (dy/dz)*(dz/dx) = (1/g'(y))*(dz/dx)。

将dy/dx和f(x)分别代入原方程,进而可以求得dz/dx。

对dz/dx进行积分后,可以得到z(x)的解析表达式。

微分方程求解方法

微分方程求解方法

微分方程求解方法微分方程是数学中的一个重要概念,广泛应用于物理学、工程学、经济学等领域。

微分方程求解是通过已知条件找到满足方程的未知函数的过程。

根据方程的类型和性质,有多种解法可供选择。

一、可分离变量的微分方程可分离变量的微分方程形式为dy/dx = f(x)g(y),可以通过变量的分离和积分的方法进行求解。

具体步骤如下:1. 将方程变形为dy/g(y) = f(x)dx。

2. 对两边同时积分,得到∫(1/g(y))dy = ∫f(x)dx。

3.求出积分的表达式,然后求解原方程。

二、一阶线性微分方程一阶线性微分方程的一般形式为dy/dx + P(x)y = Q(x),可通过线性变换和积分的方法进行求解。

具体步骤如下:1. 通过线性变换将方程变为dy/dx + yP(x) = Q(x)P(x)。

2. 确定积分因子μ(x) = e∫P(x)dx。

3. 将原方程两边同时乘以μ(x),并进行化简得到d(yμ(x))/dx = Q(x)μ(x)。

4. 对等式两边同时积分得到∫d(yμ(x))/dx dx = ∫Q(x)μ(x)dx。

5.求出积分的表达式,然后求解原方程。

三、二阶线性齐次微分方程二阶线性齐次微分方程的一般形式为d²y/dx² + p(x)dy/dx + q(x)y = 0,可以通过特征根法求解。

具体步骤如下:1. 假设解的形式为y = e^(mx)。

2. 将形式代入原方程,得到特征方程m² + pm + q = 0。

3.求解特征方程得到特征根m₁和m₂。

4.根据特征根的情况,得到相应的通解。

四、二阶线性非齐次微分方程二阶线性非齐次微分方程的一般形式为d²y/dx² + p(x)dy/dx +q(x)y = f(x),可以通过常数变易法求解。

具体步骤如下:1.假设原方程的特解为y=u(x),将其代入原方程,得到关于u和它的导数的代数方程。

2.根据原方程的非齐次项f(x)的形式,设定特解的形式。

微分方程几种求解方法

微分方程几种求解方法

微分方程几种求解方法微分方程是数学中重要的概念之一,用于描述变量之间的函数关系。

求解微分方程是数学和工程中的常见问题。

根据问题的性质和条件,有多种方法可以用来求解微分方程,下面将介绍几种常见的求解方法。

1.变量分离法:变量分离法是求解一阶常微分方程的常用方法。

它的基本思想是将微分方程中的变量分离,然后进行积分。

具体步骤是将微分方程写成形式dy/dx=f(x)g(y),然后将方程变换为g(y)dy=f(x)dx,再两边同时积分,即可得到方程的解。

这种方法适用于一阶常微分方程,如y'=f(x)。

2.齐次方程方法:齐次方程是指微分方程中不包含任意常数项的方程。

对于齐次方程可以使用变量代换法进行求解。

具体的步骤是将微分方程中y的函数形式换成u,然后进行代换,将微分方程变为可分离变量的形式。

然后用变量分离法来求解,最后再进行反代还原,得到原方程的解。

这种方法适用于一阶齐次常微分方程,如dy/dx=f(y/x)。

3.线性方程方法:线性微分方程是指微分方程中只有一阶导数,并且函数关系是线性的。

线性方程可以使用常数变易法或者待定系数法来进行求解。

常数变易法的基本思想是假设方程的解具有特定的形式,然后将其带入方程,通过确定待定的常数来求解。

待定系数法的基本思想是假设方程的解是一组形式已知的函数的线性组合,然后通过确定待定系数来求解。

这些方法适用于一阶线性常微分方程,如dy/dx+a(x)y=b(x)。

4.积分因子法:积分因子法是一种用于求解一阶非齐次线性常微分方程的方法。

它的基本思想是通过引入一个合适的因子,将一阶非齐次线性微分方程转化为恰当微分方程,从而利用变量分离法来求解。

具体步骤是先将非齐次方程写成标准形式dy/dx+p(x)y=q(x),然后通过选择合适的积分因子μ(x)来将方程转为恰当微分方程(即满足(dμ(x)/dx)y+p(x)μ(x)=q(x)),再对该恰当微分方程进行积分,即可得到原方程的解。

常微分方程的常见解法

常微分方程的常见解法

实例解析
实例1
求解一阶线性常微分方程 $y' + p(x)y = q(x)$,通过引入参数 $lambda$,可以将方程转化为 $lambda y = q(x)$,从而简化求解过程。
实例2
求解二阶常微分方程 $y'' + y' + y = 0$,通过引入参数 $lambda$,可以将方程转化为 $lambda^2 + lambda + 1 = 0$,从而求解出 $lambda$ 的值,进一步得到原方程的解。
当 (M(x)) 和 (N(x)) 均为非零函数时,该方法适用。
实例解析
1. 确定积分因子
选择积分因子为 (e^x)
5. 解出原方程
将 (e^x y = frac{1}{3} e^{3x} + C) 代入 原方程,解得 (y = frac{1}{3} x^2 + Ce^{-x})
4. 解方程
对两边积分,得到 (e^x y = frac{1}{3} e^{3x} + C)
04 积分因子法
定义与特点
定义
积分因子法是一种通过引入一个因子来简化微分方程的方法。
特点
通过乘以一个适当的因子,可以将微分方程转化为可分离变量的形式,从而简化求解过程。
适用范围
适用于形如 (M(x)y' + N(x)y = f(x)) 的线性微分方程,其中 (M(x)) 和 (N(x)) 是 已知函数,(f(x)) 是给定的函数。
实例2
考虑一阶常微分方程 (dy/dx = xy),其中 (x > 0) 且 (y > 0)。通过分离变量法, 我们可以得到 (dy/y = xdx),进一步求解得到 (ln|y| = frac{1}{2}x^2 + C),其 中 (C) 是积分常数。

数学常微分方程的定解问题求解

数学常微分方程的定解问题求解

数学常微分方程的定解问题求解数学常微分方程是数学中非常重要的一个分支,它涉及到许多实际问题的建模与求解。

在解常微分方程的过程中,我们常常遇到定解问题,即在给定初始条件和边界条件下,求解出满足条件的函数解。

本文将探讨常微分方程的定解问题求解方法及其应用。

一、常微分方程的定义和分类常微分方程是指未知函数的导数与它本身之间的关系式。

一般形式为:其中 x 是自变量, y 是未知函数, f 是已知函数。

常微分方程可以分为一阶常微分方程和高阶常微分方程两类。

一阶常微分方程涉及到未知函数 y 的一阶导数,高阶常微分方程涉及到多阶导数。

二、常微分方程的定解问题常微分方程的定解问题是指在给定初始条件和边界条件下,求解出函数 y 满足方程,并满足给定条件。

常微分方程的初值问题是其中一种常见的定解问题,给定初始条件 y(x0) = y0 和导数条件 y'(x0) = y'0,求解出满足条件的函数 y。

三、常微分方程的求解方法常微分方程的求解方法有很多种,常见的方法有分离变量法、齐次方程法、一阶线性方程法、常数变易法等。

1. 分离变量法对于可分离变量的一阶常微分方程,变量可以通过代数方法分离,然后分别求解。

例如对于方程 dy/dx = f(x)g(y),我们可以将 f(x) 和 g(y) 分别移到方程的两边,然后对两边分别积分得到解。

2. 齐次方程法对于一阶齐次方程 dy/dx = f(y/x),我们可以通过变量替换得到一个新的常微分方程 u' = f(u)-1/u,并且可以通过变量分离法等方法进一步求解。

3. 一阶线性方程法对于一阶线性方程 dy/dx + P(x)y = Q(x),我们可以通过积分因子的方法将其转化为可解的形式。

通过选择适当的积分因子,可以将原方程变换为(e^∫P(x)dx)y' + (e^∫P(x)dx)P(x)y = (e^∫P(x)dx)Q(x),然后可以通过变量分离法等方法求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



8.1.3 线性方程组的数值解
最简便方法是使用矩阵左除或是矩阵求逆的方法, 求解线性方程组AX=b。 X= A\b X=inv(A)*b 其中,A是方程组的系数矩阵,b是常数向量,X是 解析解。 例8-3 求线性方程组的数值解 x1 x 2 x 3 x 4 5 x 2 x x 4 x 2 1 2 3 4 2 x1 3 x 2 x 3 5 x 4 2 3 x1 x 2 2 x 3 11 x 4 0






对于二维方程组图解,其解就是两条函数曲线的 交点所对应的坐标数值。如果只有1个交点(或切 点),则表示该方程组有1个解;如果有2个交点, 则表示该方程组有2个解;如果没有交点,则表示 该方程没有解。 例8-1 用图解法求解二维联立方程。 a=-2;b=2; % 定义横轴区间 ezplot('x^2+y^2-1.69',[a,b]); axis 'equal'; % 控制坐标轴比例相等 hold on;grid on; ezplot('2.4*x^3-y+1.5',[a,b]); line([a,b],[0,0]);line([0,0],[b,a]); xlabel('\bf x');ylabel('\bf y'); title('\bf 二维代数方程组的图解法')










x 例8-4 求解一维非线性方程f x a r c t a n x e 0 % 求解单变量x非线性方程 x0=0.1; % 解的初值 [xz,fz,flag]=fzero('atan(x)+exp(x)',x0); disp(' 求解成功性判断参数:'), flag disp(' 非线性方程的解:'),xz disp(' 非线性方程解的函数值:'),fz M文件运行结果: 求解成功性判断参数: flag = 1 非线性方程的解: xz = -0.6066 非线性方程解的函数值: fz = -1.1102e-016




% 线性方程组的数值解 AA=[1,1,1,1;1,2,-1,4;2,-3,-1,-5;3,1,2,11]; bb=[5;-2;-2;0]; % 线性方程组常数向量 disp(' 采用矩阵左除求出线性方程组的解:') xx=AA\bb disp(' 采用矩阵求逆求出线性方程组的解:') zx=inv(AA)*bb disp(' 计算残量:') r=AA*zx-bb disp(' 计算残量的模:') R=norm(r)
8.1 代数方程求解


8.1.1 代数方程图解法
符号绘图函数fplot()和ezplot()也可以用于图解 法求代数方程的根,它适用于求解维数较少的一 维方程或二维方程组。 对于一维方程图解,其解就是函数曲线与x轴交点 所对应的变量数值。如果有多个交点,则表示该 方程有多个解;如果没有交点,则表示该方程没 有解。 例如,在例5-3使用符号绘图函数绘制代数方程的 图形(图5-3左图)中可见,函数在区间[-5,5]内 与x轴有3个交点,因此该代数方程该区间内有3个 实根。
Biblioteka x xy a 0 2 y xy b 0
2




% 二维非线性方程组的解析解 syms a b x y; f1='x^2-x*y-a'; f2='y^2-x*y+b'; disp(' 二维非线性方程组的解析解:') [X,Y]=solve(f1,f2,'x,y') M文件运行结果: 二维非线性方程组的解析解: x = a/(a-b)^(1/2) -a/(a-b)^(1/2) Y = 1/(a-b)^(1/2)*b -1/(a-b)^(1/2)*b



M文件运行结果: 采用矩阵左除或矩阵求逆求出线性方程组的解: xx (zx)= 1.0000 2.0000 3.0000 -1.0000 计算残量: r = 1.0e-014 * 0.0888 0.2220 -0.4441 0.1776 计算残量的模: R = 5.3475e-015
第8章 代数方程和常微分方程求解



代数方程是未知数和常数进行有限次代数运算所 组成的方程,它包括有理方程和无理方程。代数 方程 f 0的解称为 fX 0的根或零点, X 其求解一般是通过代数几何来进行。 微分方程是含有一个或是多个导数的方程。只有 一个自变量及其导数的微分方程称为常微分方程; 包含两个以上自变量及其偏导数的微分方程称为 偏微分方程。 工程上许多物理规律,设计过程的模拟和评价, 凡是涉及质量和能量运动设计分析的问题,都最 终归结到微分方程。


8.1.4 非线性方程的数值解
1、一维非线性方程 对于一维非线性方程求解,可以看作是单变量的 极小化问题,通过不断缩小搜索区间来逼近一维 问题的真解。因此,可以使用一维非线性方程优 化解函数来求解。其调用格式是: [x,fx,flag]=fzero(fun,x0) 其中,输入参数中:fun是非线性方程的函数表达 式;x0是根的初值; 输出参数中:x是非线性方程的数值解;fx是数值 解的函数值;返回参数flag>0时,表示求解成功, 否则求解出现问题。 函数fzero所使用的算法为二分法、secant法和逆 二次插值法的组合。


gtext('\bf f_1=x^2+y^2-1.3^2'); gtext('\bf f_2=2.4x^3-y+1.5');


8.1.2 代数方程的解析解
求非线性方程或方程组解析解的函数调用格式: X=solve(fun,x) 其中,fun是符号方程的函数表达式,x是自变量, X是解析解。 应当指出,函数solve(fun,x)也可以用于求线性 方组的解析解。 例8-2 求非线性解方程组解析解
相关文档
最新文档