第2节 矩阵可对角化的条件、实对称矩阵的对角化
线性代数—实对称矩阵的对角化PPT课件

向量的内积具有如下基本特性:
(1) ( , ) ( , )
(2) ( , ) (, ) ( , )
(3) (k , ) k( , ) (k 为实数)
(4) (, ) 0 ,(, ) 0 当且仅当 。 证略.
1 9
8 9
4 9
1 9
8 9
4 9
T
(2) 8 1 4 8 1 4
9 4
9
9 4
9
9 7
9
9 4
9
9 4
9
9 7
9
1 0 0
0 1 0 ,
0
0
1
所以它是正交矩阵.
17
第17页/共37页
练习 验证矩阵
1 2 1
P
2 1
2
0
是正交矩阵.
1 1 1
2 2 2
1 1 22
0
0
0
特征向量 2 (1 , 2 , 0)T , 3 (1 , 0 , 1)T ,
3
1
0
1
1 5
1
2
0
1 5
4 2 5
,
4
3 2 ,
5
24
第24页/共37页
2
1
4
1 1 , 2 2 , 3 2 ,
2
0
5
2
1
1 1 ,
3
1
3
1
1 0 .
2 1
1 , 2 , 3 即为所求 .
10
第10页/共37页
例5 已知1 (1, 1, 1)T ,求一组非零向量2 , 3 , 使 1, 2, 3 两两正交.
矩阵可以对角化的充分必要条件

矩阵可以对角化的充分必要条件矩阵的对角化是线性代数中一个重要的概念,它在许多领域中都有广泛的应用。
在矩阵的对角化中,有一个非常重要的定理,即矩阵可对角化的充分必要条件。
本文将从理论和实际应用两个方面,详细介绍矩阵可对角化的充分必要条件。
一、理论介绍我们来介绍矩阵的对角化。
对于一个n阶方阵A,如果存在一个可逆矩阵P,使得P^{-1}AP为对角矩阵D,即P^{-1}AP=D,那么我们称矩阵A可对角化,且D为A的一个对角化矩阵。
接下来,我们来介绍矩阵可对角化的充分必要条件。
对于一个n阶方阵A,A可对角化的充分必要条件是存在n个线性无关的特征向量。
为了更好地理解这个条件,我们来解释一下特征向量和特征值。
对于一个n阶方阵A和一个非零向量v,如果满足Av=λv,其中λ为一个常数,那么我们称v为A的一个特征向量,λ为对应的特征值。
特征向量和特征值的概念在线性代数中非常重要,它们可以描述矩阵的性质和变换。
而矩阵可对角化的充分必要条件即存在n个线性无关的特征向量,也就是说,对于一个可对角化的矩阵A,存在n 个不同的特征值和对应的特征向量。
二、实际应用矩阵的对角化在实际应用中有着广泛的应用。
以下我们将介绍两个常见的实际应用场景。
1. 线性变换在线性代数中,矩阵可以表示线性变换。
对于一个可对角化的矩阵A,它可以通过对角化得到一个对角矩阵D。
这样,原来的线性变换就变成了对角矩阵的线性变换。
对角矩阵的线性变换非常简单,只需要对每个坐标轴进行伸缩即可。
这种对角矩阵的线性变换在计算机图形学中有着广泛的应用,可以实现图像的缩放、旋转和平移等操作。
2. 特征值问题矩阵的特征值和特征向量在特征值问题中有着重要的应用。
特征值问题是求解形如Ax=λx的问题,其中A为一个已知矩阵,x为未知向量,λ为未知常数。
矩阵可对角化的充分必要条件即存在n个线性无关的特征向量。
对于特征值问题,我们可以通过对矩阵A进行对角化,得到特征值和特征向量。
特征值问题在物理学、工程学和计算机科学等领域中有着广泛的应用。
矩阵可对角化的充要条件

矩阵可对角化的充要条件矩阵可对角化的充要条件矩阵是线性代数中的重要概念,它是由一组数排成的矩形阵列。
在线性代数中,对于一个给定的方阵,我们希望能够找到一个相似矩阵,使得这个方阵可以被对角化。
那么什么样的矩阵可以被对角化呢?下面我们将从多个方面来探讨这个问题。
一、基本概念1. 矩阵相似如果存在一个可逆矩阵P,使得A = PBP^-1,则称A和B相似。
其中B是一个任意的方阵。
2. 特征值与特征向量设A是n阶方阵,如果存在一个非零向量x使得Ax = λx,则称λ是A的特征值,x是A对应于λ的特征向量。
3. 对角矩阵如果一个n×n方阵只有主对角线上有非零元素,则称其为对角矩阵。
常用符号为D。
二、必要条件如果一个n×n方阵可以被对角化,则其必须满足以下条件:1. 线性无关所有特征向量必须线性无关。
2. 完备所有特征向量必须完备。
3. 重根如果有重根的特征值,则其对应的特征向量必须线性无关。
三、充分条件如果一个n×n方阵满足以下条件,则其可以被对角化:1. 存在n个线性无关的特征向量如果一个n×n方阵A有n个线性无关的特征向量,那么可以将它们组成一个矩阵P,使得A = PDP^-1,其中D是由A的特征值构成的对角矩阵。
2. 所有特征向量都是完备的如果所有特征向量都是完备的,则可以将它们组成一个矩阵P,使得A = PDP^-1,其中D是由A的特征值构成的对角矩阵。
3. 每个特征值都有足够数量的线性无关的特征向量如果每个特征值都有足够数量(等于其重数)的线性无关的特征向量,则可以将它们组成一个矩阵P,使得A = PDP^-1,其中D是由A的特征值构成的对角矩阵。
四、结论综上所述,当一个n×n方阵满足以上充分条件之一时,则该方阵可被对角化。
而当一个n×n方阵不满足以上必要条件之一时,则该方阵不可被对角化。
因此,在实际问题中,我们可以通过计算矩阵的特征值和特征向量来判断其是否能被对角化,并进一步求出对角矩阵。
5.3实对称矩阵的对角化

令x3 = 2, 得属于5的特征向量为 3 = (1, −2,2)T .
12
显然1 = (2,2,1)T , 2 = ( −2,1,2)T , 3 = (1, −2,2)T 正交.
(2) 求单位向量组. 1 = 2 = 3 = 3, 所以得单位正交向量组 T T T 2 2 1 2 1 2 1 2 2 1 = , , , 2 = , − , − , 3 = , − , . 3 3 3 3 3 3 3 3 3 (3) 求正交矩阵Q. 1 则 2 2 令 3 3 3 −1 0 0 2 1 2 −1 Q = ( 1 , 2 , 3 ) = − − , Q AQ = 0 2 0 = . 3 3 3 0 0 5 1 2 2 3 −3 3
T T T T 1 A = 11 , 1 A 2 = 11 2
T T 21 2 = 11 2 ,
T (2 − 1 )1 2 = 0
T 1 2 = 0
3
定理 若实对称矩阵A的特征值 的重数为k,则A 恰有k个对应于 的线性无关的特征向量. 定理 n阶实对称矩阵A一定有n个正交的特征向量. 设矩阵A的互不相同的特征值分别为 1 ( k1重) : 11 , 12 , , 1k1 , 正 11 , 12 , , 1k1 , 交 , , , , 2 k2 2 ( k2重) : 21 , 22 , , 2 k2 , 化 21 22 后 , , 得 m 1 , m 2 , , mkm , m ( km 重) : m 1 , m 2 , , mkm , 11 ,12 , ,1k1 , 1 单 其中,k1 + k2 + + km = n. 位 , , , , 21 22 2 k2 2 化 T ij ks = 0, i k . 后 , 得 m 1 ,m 2 , , mkm , m
第16课 实对称矩阵的对角化

1 1 p3 = , 单位化得 η 3 2 1 1 5 2 = − 5 0
1 2 1 = = 3 2 1
2 3 1 3 2 3
0−λ 0 − 1 例:A = 1 0 , | A − λE |= 1
性质1 性质1的意义
−1 = λ2 + 1 ∴ λ = ±i. 0−λ
为实数, 因为对称矩阵 A 的特征值 λi 为实数,所以齐次线性方程组 是实系数方程组。 ( A − λi E ) x = 0 是实系数方程组。 又因为 A − λi E = 0,可知该齐次线性方程组一定有实的 基础解系,从而对应的特征向量可以取实向量。 基础解系,从而对应的特征向量可以取实向量。
λ1 = 0, λ2 = 1, λ3 = 3,
1 1 1 η1 = 1 ,η2 = 0 ,η3 = −2 , 相应的特征向量是 1 −1 1 求矩阵 A.
维向量, 阶方阵。 解:因为特征向量是3维向量,所以矩阵 A 是3 阶方阵。 因为特征向量是 维向量 个不同的特征值, 可以对角化。 因为 A 有 3 个不同的特征值,所以 A 可以对角化。 即存在可逆矩阵 P , 使得 P −1 AP = Λ
η1 ,η2 ,L ,ηn
4. 以η1 ,η 2 ,L ,η n 为列向量构成正交矩阵 T = (η1 ,η 2 ,L ,η n ) 有 T −1 AT = Λ
λ1 O λ1 即 T −1 ⋅ AT = Λ = O λr O λr
−2 2 0
2 x1 = 2 x3 即 p1 = −2 . 得基础解系 x 2 = −2 x 3 1 当 λ2 = 1 时,由 ( A − E ) x = 0,
实对称矩阵的对角化

例4.1
设
A
0 1
1
1 0 1
011 . 求正交阵 P 使P1AP为对角阵.
方阵P为正交阵的充分必要条件
方阵P为正交阵 ÛPTPE PPTE P1PT P的列向量都是两两正交的单位向量. P的行向量都是两两正交的单位向量.
上页 下页 返回
例4.1
设
A
0 1
1
1 0 1
将2 3正交化、单位化得
p2
1 (1, 2
1,
0)T p3
1 (1, 6
1,
2)T .
2
于是P(p1
p2
p3)为正交阵
并且P1AP
1
.
1
上页 下页 返回
二、利用正交矩阵把实对称矩阵化为对称阵的方法
v实对称矩阵对角化的步骤
(1)求出A的全部互不相等的特征值1 2 s
它们的重数依次为k1 k2 ks(k1k2 ksn).
§4.4 实对称矩阵的对角化
一个n阶方阵可以对角化是有条件的, 比如有n个线性无关的特征向量 . 也就是说并非所有n阶方阵都能对角化 但任何实对称矩阵都是可以对角化的.
§4.4 实对称矩阵的对角化
一、实对称矩阵的性质 二、利用正交矩阵
把实对称矩阵化为对角阵的方法
一、实对称矩阵的性质
v定理4.1 实对称阵的特征值为实数.
设1 2是实对称阵A的两个特征值 p1 p2是对应的特 征向量. 若12 则p1与p2正交.
v定理4.3
设A为n阶实对称阵 是A的特征方程的k重根 则对应特 征值恰有k个线性无关的特征向量.
v定理4.4 设A为n阶实对称阵 则必有正交阵P 使P1APPTAP
实对称矩阵对角化

b a
1 1
0
1
解 A~ ,
1 1 1
4
a 2 trA tr 5, a 3,
| A | | | 0
1b1 1 b 1
A b 3 1 b 3 1 (1 b)2 0
1 1 1 0 1b 0
b 1,
A的特征值:1 0 , 2 1 , 3 4
35
第35页,本讲稿共61页
1 1 1
A 1 3 1 , 1 0 , 2 1 , 3 4 .
1 1 1
求1 0的特征向量:
1
1I A 1
1
1 3 1
1 1 1 0 1 0
0 1 0
1 0 0
1 1, 0, 1 T,
同样可得 2 1的特征向量为:2 1, 1, 1T
3 4 的特征向量为:3 1, 2, 1T .
令i
i i
,i 1,2,3.
得
2 3
1 2 3 ,
2 3 2 1 3 ,
1 3
2 3
1 3 3 2 3 .
2 3
17
第17页,本讲稿共61页
1 4, 2 1, 3 2.
得
2 3
2 3
1 2 3 , 2 1 3 ,
1 3
使C 1 AC CT AC 为对角阵
8
第8页,本讲稿共61页
三、实对称矩阵的相似对角化
定理3 对任一实n阶对称矩阵 A , 都存在一个
n阶正交矩阵C , 使
1
C T AC
C 1 AC
2
n
其中 , 1, 2 , , n 是矩阵 A的特征值.
证明略
9
第9页,本讲稿共61页
实对称阵可对角化的几种证明及其推广

实对称阵可对⾓化的⼏种证明及其推⼴实对称阵是⼀类常见的矩阵, 它与实⼆次型和实内积空间上的⾃伴随算⼦有着密切的联系. 任⼀实对称阵 A 均正交相似于对⾓阵, 即存在正交阵 P , 使得P ′AP =diag{λ1,λ2,⋯,λn }.实对称阵的这条重要性质, 通常在内积空间的框架中加以证明 (参考复旦⾼代教材第 9.5 节). 事实上, 这⼀性质既可以在引⼊矩阵可对⾓化的定义和判定准则后直接加以证明, 也可以利⽤ Jordan 标准型理论加以证明. 下⾯我们将给出实对称阵可对⾓化的⼏种证明, 为此先来证明三个简单的引理.引理 1 实对称阵的特征值都是实数.证明 设 A 为 n 阶实对称阵, λ0∈C 是 A 的任⼀特征值, α=(a 1,a 2,⋯,a n )′∈C n 是对应的特征向量, 即 A α=λ0α. 上式两边同时左乘 ¯α′, 则有 ¯α′A α=λ0¯α′α. 注意到 α 是⾮零向量, 故 ¯α′α=n∑i =1|a i |2>0. 注意到 A 为实对称阵, 故 ¯(¯α′A α)′=¯α′A α, 即 ¯α′A α 是⼀个实数, 从⽽λ0=¯α′A α¯α′α也是实数. ◻引理 2 设 A 为 n 阶实对称阵, 则 r (A )=r (A 2)=r (A 3)=⋯.证明 由⾼代⽩⽪书的例 3.72 可知 r (A )=r (A ′A )=r (A 2), 从⽽ r (A )=r (A 2m) (m ≥1). 再由矩阵相乘秩相等或变⼩的性质以及夹逼法可知 r (A )=r (A k )(k ≥1). ◻引理 3 设 A 为 n 阶实对称阵, 则 Ker A ∩Im A =0 并且 Ker A =Ker A 2=Ker A 3=⋯.证明 由引理 2 以及线性映射的维数公式即得. ◻定理 1 实对称阵可实对⾓化.证法 1 (有完全的特征向量系) 由引理 1 可设 A 的全体实特征值为 λ1,λ2,⋯,λn , 我们对特征值 λ1 来证明其代数重数等于其⼏何重数. 不失⼀般性, 可设 λ1=⋯=λm , 但 λj ≠λ1(m <j ≤n ), 即 λ1 的代数重数为 m . 由复旦⾼代教材的定理 6.1.2 及其后的注可知, 存在⾮异实矩阵 P , 使得 P −1AP =B C 0D, 其中 B 是主对⾓元为 λ1 的 m 阶上三⾓阵, D 是主对⾓元分别为 λm +1,⋯,λn 的上三⾓阵, 于是P −1(A−λ1I n )P =B −λ1I mC 0D −λ1I n −m.注意到 B −λ1I m 是主对⾓元全为零的上三⾓阵, 这是⼀个幂零阵, 故 (B −λ1I m )m =0, 从⽽P −1(A−λ1I n )m P=B −λ1I mC 0D −λ1I n −mm=0∗0(D −λ1I n −m )m.注意到 (D −λ1I n −m )m 是⼀个主对⾓元全不为零的上三⾓阵, 从⽽是⾮异阵, 于是 r ((A −λ1I n )m )=n −m . 注意到 A −λ1I n 为实对称阵, 再由引理2 可知, λ1 的⼏何重数为n −r (A −λ1I n )=n −r ((A −λ1I n )m )=n −(n −m )=m ,即⼏何重数等于代数重数.证法 2 (全空间等于特征⼦空间的直和) 任取 A 的实特征值 λ0, 由引理 3 可知Ker(A −λ0I n )=Ker(A −λ0I n )2=⋯,再由⾼代⽩⽪书的例 7.13 的证法 1 完全相同的讨论即得结论. 另外, 由 Ker(A −λ0I n )=Ker(A −λ0I n )n 可知, λ0 的⼏何重数 dimKer(A −λ0I n )等于其代数重数 dimKer(A −λ0I n )n , 即 A 有完全的特征向量系, 这⼀⽅法⽐证法 1 更加简洁.证法 3 (极⼩多项式⽆重根) 任取 A 的实特征值 λ0, 由引理 3 可知Ker(A −λ0I n )=Ker(A −λ0I n )2=⋯,()()()()再由⾼代⽩⽪书的例 7.13 的证法 2 完全相同的讨论即得结论.证法 4 (Jordan 标准型之⼀) 任取A的实特征值λ0, 由引理 3 可知Ker(A−λ0I n)∩Im(A−λ0I n)=0,再由⾼代⽩⽪书的例 7.13 的证法 3 完全相同的讨论即得结论.证法 5 (Jordan 标准型之⼆) 任取A的实特征值λ0, 由引理 2 可知r(A−λ0I n)=r((A−λ0)2), 再由⾼代⽩⽪书的例 7.14 的证法 2 完全相同的讨论即得结论.证法 6 (Jordan 标准型之三) 设P为⾮异实矩阵, 使得P−1AP=J=diag{J r1(λ1),⋯,J rk(λk)}.⽤反证法, 若A不可对⾓化, 则不妨设r1>1. 设P′P=(b ij), 则b12=b21并且b11是P的第⼀列元素的平⽅和, 由P的⾮异性可知b11>0. 注意到P′AP=P′PJ为对称阵, 但P′PJ的第 (1,2) 元为b11+λ1b12, 第 (2,1) 元为λ1b21, 这两者不相等, ⽭盾.证法 7 (内积空间理论) 参考复旦⾼代教材的定理 9.5.2 和推论 9.5.2. ◻事实上, 我们也可以这样来看. 由上⾯的讨论可知, 对任⼀n阶实对称阵A, 全空间 R n等于A的所有特征⼦空间的直和. 容易证明: 在 R n的标准内积下, A的属于不同特征值的特征向量必正交, 属于同⼀特征值的特征向量可以利⽤ Gram-Schmidt 正交化⽅法化成两两正交的单位特征向量. 因此我们可以找到A的n个两两正交的单位特征向量, 将这些向量拼成矩阵P, 则P是⼀个n阶正交阵, 使得P′AP=diag{λ1,λ2,⋯,λn}.这就是A的正交相似标准型, 它对于深⼊探讨实对称阵的正定性和半正定性有着重要的作⽤.注 1 本题是 15 级⾼代 II 每周⼀题第 10 题第 1 ⼩问以及 16 级⾼代 II 每周⼀题第 6 题. 给出上述证法的复旦数学学院学⽣为: 章俊鑫 (证法 1),何陶然 (类似证法 1), 徐钰伦 (证法 2), 杨锦⽂ (证法 2), 杨钊杰 (证法 2), 蒋亦凡 (证法 3), 胡晓波 (证法 5), 杨彦婷 (证法 5), 沈伊南 (类似证法 6).下⾯将实对称阵可对⾓化的⼏种证法进⾏适当地推⼴, 从⽽不利⽤⾣相似标准型理论也可以直接证明: 实反对称阵, Hermite 阵, 斜 Hermite 阵,正交阵, ⾣阵, 以及更⼀般的复正规阵均可复对⾓化. 这是 15 级⾼代 II 每周⼀题第 10 题第 2 ⼩问以及 17 级⾼代 II 每周⼀题第 7 题第 2 ⼩问.我们先给出前三个引理的推⼴.引理 4 Hermite 阵的特征值都是实数. 特别地, 斜 Hermite 阵 (实反对称阵) 的特征值都是 0 或纯虚数.证明 Hermite 阵情形的证明完全类似于实对称阵情形的证明 (参考引理 1). 设A为斜 Hermite 阵, 则 i A为 Hermite 阵, 从⽽ i A的特征值都是实数, 于是A的特征值都是 0 或纯虚数. 实反对称阵是⼀种特殊的斜 Hermite 阵, 故结论也成⽴. ◻引理 5 设A为n阶复正规阵, 则r(A)=r(A2)=r(A3)=⋯.证明由⾼代⽩⽪书的例 3.72 对应的复版本可知: 对任意的m×n阶复矩阵A, 有r(A)=r(¯A ′A)=r(A¯A′).特别地, 若A是 Hermite 阵, 则r(A)=r(A2), 再仿照引理 2 的证明即得结论. 若A是复正规阵, 即A ¯A′=¯A′A, 注意到A¯A′是 Hermite 阵, 故有r(A2)=r(A2¯A2′)=r(AA¯A′¯A′)=r(A¯A′A¯A′)=r((A¯A′)2)=r(A¯A′)=r(A),再仿照引理 2 的证明即得结论. ◻引理 6 设A为n阶复正规阵, 则 Ker A∩Im A=0 并且 Ker A=Ker A2=Ker A3=⋯.证明由引理 5 以及线性映射的维数公式即得. ◻定理 2 复正规阵可对⾓化. 特别地, 实反对称阵, Hermite 阵, 斜 Hermite 阵, 正交阵, ⾣阵均可复对⾓化.证明定理 1 的证法 1--证法 5 可完全平⾏地改写⽤于证明定理 2; 定理 1 的证法 6 适当地修改之后可以证明: 实反对称阵, Hermite 阵,斜 Hermite 阵均可复对⾓化; 我们把具体的证明过程留给感兴趣的读者⾃⾏完成. 证法 7 可参考复旦⾼代教材的定理 9.6.2 和定理 9.6.3. ◻注 2 本⽂中的相关思想可推⼴为⼀般的可对⾓化判定准则, 具体的内容请参考教学博⽂ [3].参考⽂献[1] ⾼代教材: 姚慕⽣, 吴泉⽔, 谢启鸿编著, ⾼等代数学 (第三版), 复旦⼤学出版社, 2014.[2] ⾼代⽩⽪书: 姚慕⽣, 谢启鸿编著, 学习⽅法指导书: ⾼等代数 (第三版), 复旦⼤学出版社, 2015.Processing math: 100%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
T
ቤተ መጻሕፍቲ ባይዱ
T
由于 是非零复向量,必有
x1 x1 x 2 x2
故
T
x n xn 0
.
R.
注 (1)对称矩阵的特征值未必是实数.
(2)特征值皆为实数的实矩阵未必是实对称矩阵. (3)反对称实数矩阵的特征值是零或纯虚数.
§2 矩阵可对角化的条件、实对称矩阵的对角化
第五章 矩阵的特征值与特征向量
§1 特征值与特征向量、相似矩阵
§2 矩阵可对角化的条件、实对称 矩阵的对角化
§2 矩阵可对角化的条件、实对称矩阵的对角化
§2 矩阵可对角化的条件、实对称矩阵的对角化 一、矩阵可对角化的条件
二、实对称矩阵的对角化
§2 矩阵可对角化的条件、实对称矩阵的对角化
一、矩阵可对角化的条件
即 故
(1 2 ) 0.
T 1 2
1T 2 [1 , 2 ] 0.
即1 与 2正交.
§2 矩阵可对角化的条件、实对称矩阵的对角化
定理3:对n 阶实对称矩阵A,总有正交矩阵T,使
T 1 AT diag(1 , 2 ,
其中 1 , 2 ,
, n )
2 2 E A 2 2 4 2 4 2
1
2 7
2
得A的特征值是2,2,-7 .
§2 矩阵可对角化的条件、实对称矩阵的对角化
对于特征值2,求出齐次线性方程组
1 2 2 x1 0 2 4 4 x 2 0 2 4 4 x 0 3
二、实对称矩阵的对角化
性质1 设A是实对称矩阵,则A的特征值都是实数.
证:设 是A的任意一个特征值,则有非零向量
x1 x2 x n
满足
A .
§2 矩阵可对角化的条件、实对称矩阵的对角化
令
x1 x2 , xn
其重数 n1 , n2 ,
, nm 必满足
ni n ; i 1
, iki ( i 1,2, , m)
m
, m R,
(ii) 对每个 i ,解齐次线性方程组 (i E A) x 0
i1 , i 2 , 求出它的一个基础解系:
它是A的属于特征值 i 的特征向量.
定义1:矩阵A是一个 n 阶方阵,若存在可逆矩阵
P ,使 P 1 AP 为对角矩阵,即A与对角矩阵相似,则
称矩阵A可对角化. 定理1 :设矩阵A 是一个 n 阶方阵,则A可对角化
A 有 n 个线性无关的特征向量.
推论 若n阶矩阵A有n个不同特征值,则A可对角化.
§2 矩阵可对角化的条件、实对称矩阵的对角化
P 1 AP 就是对角矩阵,对角矩阵对角线上元素是A的
互不相等的特征值.
§2 矩阵可对角化的条件、实对称矩阵的对角化
例2. 问A是否可对角化?若可,求可逆矩阵P,使
1 2 2 P 1 AP 为对角矩阵. 这里 A 2 2 4 2 4 2
解: A的特征多项式为
, n 为 A 的全部特征值.
注: ①实对称矩阵一定可以对角化(与对角矩阵
相似),且正交相似于对角矩阵.
② 对于实对称矩阵A,使T 1 AT diag(1 , 2 , 成立的正交矩阵不是唯一的.
§2 矩阵可对角化的条件、实对称矩阵的对角化
, n )
实对称矩阵正交相似实对角矩阵步骤
1 , 2 , (i) 求出A的所有不同的特征值:
求一正交矩阵T,使 T 1 AT 为对角矩阵.
§2 矩阵可对角化的条件、实对称矩阵的对角化
例4.设
0 1 1 A 1 0 1 1 1 0
1)求一可逆矩阵P,使 P 1 AP 成对角形; 2) 求一正交矩阵T,使 T 1 AT 成对角形.
§2 矩阵可对角化的条件、实对称矩阵的对角化
把它们按 Schmidt 正交化过程化成两两正交的单位特
征向量 1 ,2 ,
,n .
§2 矩阵可对角化的条件、实对称矩阵的对角化
(iii)以1 ,2 ,
,n为列向量构成正交矩阵T,则有
T 1 AT 为对角形.
例3.设
2 2 0 A 2 1 2 0 2 0
的一个基础解系: 1 2,0,1 , 2 0,1,1
T
T
对于特征值-7,求出齐次方程组
8 2 2 x1 0 2 5 4 x2 0 2 4 5 x 0 3
的一个基础解系: 3 (1,2, 2)
性质2 实对称矩阵属于不同特征值的特征向量正交.
证:设 1 , 2 是A的两个不同特征值 ,
1 , 2分别是属于 1 , 2 的特征向量.
则
11T 2 (11 )T 2 ( A1 )T 2 1T AT 2
1T ( A 2 ) 1T (2 2 ) 21T 2
其中 x i 为 xi 的共轭复数,
又由A实对称,有 A A, AT A,
于是
T
A A A
T T T T T
A A A
( ) 0
§2 矩阵可对角化的条件、实对称矩阵的对角化
T
§2 矩阵可对角化的条件、实对称矩阵的对角化
所以A可对角化.
2 0 1 令 P 1 , 2 , 3 0 1 2 1 1 2 2 0 0 P 1 AP 0 2 0 0 0 7
则
§2 矩阵可对角化的条件、实对称矩阵的对角化
定理2 :设矩阵A 是一个 n 阶方阵,则A可对角化
属于A的每个特征值的线性无关特征向量的个数
等于该特征值的重数.
例 1. 设
0 0 1 A 1 1 a 1 0 0
问 a 为何值时,A可对角化?
§2 矩阵可对角化的条件、实对称矩阵的对角化
对角化的判断 步骤:
1°求出矩阵A的全部互不相等的特征值 1 , 2 , 2°对每一个特征值 i ,求出齐次线性方程组
, m .
i E A x 0,
的特征向量).
i 1,2,
,m
的一个基础解系(此即A的属于 i 的全部线性无关
§2 矩阵可对角化的条件、实对称矩阵的对角化
3°若全部基础解系所含向量个数之和等于n ,则
矩阵A可对角化;否则A不可对角化. 4°以这些解向量为列,作一个n阶方阵P,则P可逆,