2015年湖南高考数学(文)试卷及参考答案

合集下载

2015年全国高考文科数学试题及答案-新课标2

2015年全国高考文科数学试题及答案-新课标2

绝密★启用前2015年普通高等学校招生全国统一考试文 科 数 学注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。

2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|12}A x x =-<<,{|03}B x x =<<,则AB =A .(1,3)-B .(1,0)-C .(0,2)D .(2,3) 2.若a 为实数,且231ai i i+=++,则a =A .-4B .-3C .3D .43.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A .逐年比较,2008年减少二氧化硫排放量的效果最显着B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 4.向量(1,1)=-a ,(1,2)=-b ,则(2)+⋅=a b a A .-1 B .0 C .1 D .35.设S n 等差数列{}n a 的前n 项和。

若a 1 + a 3 + a 5 = 3,则S 5 =A .5B .7C .9D .116.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为 A .18B .17C .16D .157.已知三点(1,0)A,B,C ,则ΔABC 外接圆的圆心到原点的距离为A .53 BCD .432004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年8.右边程序框图的算法思路源于我国古代数学名着《九章算术》中的“更相减损术”。

2015年普通高等学校招生全国统一考试文科数学(湖南卷)(含答案全解析)

2015年普通高等学校招生全国统一考试文科数学(湖南卷)(含答案全解析)

2015年普通高等学校招生全国统一考试湖南文科数学本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015湖南,文1)已知(1-i)2z=1+i(i为虚数单位),则复数z=()A.1+iB.1-iC.-1+iD.-1-i 答案:D解析:由已知得z=(1-i)2=-2i=-2i(1-i)(1+i)(1-i)=-2-2i=-1-i.2.(2015湖南,文2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3B.4C.5D.6答案:B解析:依题意,应将35名运动员的成绩由好到差排序后分为7组,每组5人.然后从每组中抽取1人,其中成绩在区间[139,151]上的运动员恰好是第2,3,4,5组,因此,成绩在该区间上的运动员人数是4.3.(2015湖南,文3)设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C解析:由x>1能推得x3>1,充分性成立.由x3>1得(x-1)(x2+x+1)>0,∵x2+x+1>0恒成立,∴x>1,∴“x>1”是“x3>1”的充要条件.故选C.4.(2015湖南,文4)若变量x,y满足约束条件x+y≥1,y-x≤1,x≤1,则z=2x-y的最小值为()A.-1B.0C.1D.2答案:A解析:画出满足约束条件的平面区域如图.作直线y=2x,平移直线y=2x,当x=0,y=1,即直线过点A(0,1)时,z取得最小值,此时z min=2×0-1=-1.故选A.5.(2015湖南,文5)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.67B.37C.89D.49答案:B解析:由题意得,输出的S 为数列1(2n -1)(2n +1)的前3项和,而1(2n -1)(2n +1)=112n -1-1,即S n =1 1-1=n .故当输入n=3时,S=S 3=3,故选B . 6.(2015湖南,文6)若双曲线x 2a 2−y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A. 73B.54C.43D.53答案:D解析:∵双曲线的渐近线方程为y=±b ax ,且过点(3,-4),∴-4=-b ×3,∴b a =43.∴离心率e= 1+ b 2= 1+ 4 =5,故选D .7.(2015湖南,文7)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( ) A. B.2C.2D.4答案:C解析:由已知1+2= ab ,可知a ,b 同号,且均大于0.由 =1a +2b ≥2 2ab,得ab ≥2 2.即当且仅当1=2,即b=2a 时等号成立,故选C .8.(2015湖南,文8)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数 答案:A解析:要使函数有意义,应满足 1+x >0,1-x >0,解得-1<x<1,即函数f (x )定义域为(-1,1),关于原点对称.此时f (-x )=ln(1-x )-ln(1+x )=-f (x ),所以f (x )为奇函数.又f (x )=ln 1+x 1-x=ln 21-x-1 ,由复合函数的单调性可知f (x )在(0,1)上是增函数.故选A .9.(2015湖南,文9)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则|PA +PB +PC|的最大值为( ) A.6 B.7 C.8 D.9 答案:B解析:设坐标原点为O ,则PA +PB +PC =PO +OA +PO +OB +PO +OC =3PO +OB +(OA +OC ),由于AB ⊥BC ,所以AC 是圆的直径,因此OA +OC =0,于是|PA +PB +PC |=|3PO +OB |= (3PO +OB )2= 9|PO |2+6PO ·OB +|OB |2= 9×22+12-6OP ·OB= 37-6|OP ||OB |cos ∠POB= 37-12cos ∠POB ,故当∠POB=π时,cos ∠POB 取最小值-1,此时|PA +PB +PC |取最大值7.10.(2015湖南,文10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率=新工件的体积原工件的体积()A.89πB.8 27πC.24(2-1)3D.8(2-1)3答案:A解析:由三视图可知该几何体是一个圆锥,其底面半径r=1,母线长l=3,所以其高h=l2-r2=32-12=22.故该圆锥的体积V=πr2h=π×12×22=22π.由题意可知,加工后的正方体是该圆锥的一个内接正方体,如图所示.正方体ABCD-EFGH的底面在圆锥的底面内,下底面中心与圆锥底面的圆心重合,上底面中心在圆锥的高线上,设正方体的棱长为x.在轴截面SMN中,由O1G∥ON可得,O1G=SO1,即22x=22-x22,x=22.所以正方体的体积为V1=2233=16227.所以该工件的利用率为V1=1622722π3=8.故选A.二、填空题:本大题共5小题,每小题5分,共25分.11.(2015湖南,文11)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=.答案:{1,2,3}解析:∁U B={2},A∪(∁U B)={1,2,3}.12.(2015湖南,文12)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,若曲线C的极坐标方程为ρ=2sin θ,则曲线C的直角坐标方程为.答案:x2+y2-2y=0解析:∵ρ=2sin θ,且ρ2=x2+y2,ρsin θ=y,∴ρ2=2ρsin θ,∴x2+y2=2y.∴曲线C的直线坐标方程为x2+y2-2y=0.13.(2015湖南,文13)若直线3x-4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°(O为坐标原点),则r=.答案:2解析:如图所示,由题意知,圆心O到直线3x-4y+5=0的距离|OC|=3+(-4)=1,故圆的半径r=1cos60°=2.14.(2015湖南,文14)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是. 答案:(0,2)解析:函数f(x)的零点个数即为函数g(x)=|2x-2|=2x-2,x≥1,2-2x,x<1的图象与直线y=b的交点个数.如图,分别作出函数y=g(x)与直线y=a的图象,由图可知,当0<a<2时,直线y=a与y=g(x)有两个交点.所以a 的取值范围为(0,2).15.(2015湖南,文15)已知ω>0,在函数y=2sin ωx与y=2cos ωx的图象的交点中,距离最短的两个交点的距离为23,则ω=.答案:π解析:如图所示,在同一直角坐标系中,作出函数y=2sin ωx与y=2cos ωx的图象.A,B为符合条件的两交点.则Aπ4ω,2,B-3π4ω,-2,由|AB|=23,得πω+(22)2=23,解得πω=2,即ω=π2.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)(2015湖南,文16)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果.(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.解:(1)所有可能的摸出结果是{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1},{B,b2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4种,所以中奖的概率为4=1,不中奖的概率为1-1=2>1.故这种说法不正确.17.(本小题满分12分)(2015湖南,文17)设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A.(1)证明:sin B=cos A;(2)若sin C-sin A cos B=3,且B为钝角,求A,B,C.解:(1)由a=b tan A及正弦定理,得sin A=a=sin A,所以sin B=cos A.(2)因为sin C-sin A cos B=sin[180°-(A+B)]-sin A cos B=sin(A+B)-sin A cos B=sin A cos B+cos A sin B-sin A cos B=cos A sin B,所以cos A sin B=3.由(1)sin B=cos A,因此sin2B=3.又B为钝角,所以sin B=32,故B=120°.由cos A=sin B=3知A=30°.从而C=180°-(A+B)=30°.综上所述,A=30°,B=120°,C=30°.18.(本小题满分12分)(2015湖南,文18)如图,直三棱柱ABC-A 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.(1)证明:平面AEF ⊥平面B 1BCC 1;(2)若直线A 1C 与平面A 1ABB 1所成的角为45°,求三棱锥F-AEC 的体积. 解:(1)证明:如图,因为三棱柱ABC-A 1B 1C 1是直三棱柱,所以AE ⊥BB 1.又E 是正三角形ABC 的边BC 的中点,所以AE ⊥BC. 因此,AE ⊥平面B 1BCC 1.而AE ⊂平面AEF ,所以,平面AEF ⊥平面B 1BCC 1. (2)设AB 的中点为D ,连结A 1D ,CD. 因为△ABC 是正三角形,所以CD ⊥AB.又三棱柱ABC-A 1B 1C 1是直三棱柱,所以CD ⊥AA 1.因此CD ⊥平面A 1ABB 1,于是∠CA 1D 为直线A 1C 与平面A 1ABB 1所成的角.由题设,∠CA 1D=45°,所以A 1D=CD= 3AB= 3.在Rt △AA 1D 中,AA 1= A 1D 2-AD 2= 3-1= 2,所以FC=1AA 1=2.故三棱锥F-AEC 的体积V=1S △AEC ·FC=1×3×2=6.19.(本小题满分13分)(2015湖南,文19)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n+2=3S n -S n+1+3,n ∈N *. (1)证明:a n+2=3a n ; (2)求S n .解:(1)由条件,对任意n ∈N *,有a n+2=3S n -S n+1+3,因而对任意n ∈N *,n ≥2,有a n+1=3S n-1-S n +3.两式相减,得a n+2-a n+1=3a n -a n+1,即a n+2=3a n ,n ≥2. 又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n ∈N *,a n+2=3a n .(2)由(1)知,a n ≠0,所以an +2n=3,于是数列{a 2n-1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列.因此a 2n-1=3n-1,a 2n =2×3n-1.于是S 2n =a 1+a 2+…+a 2n =(a 1+a 3+…+a 2n-1)+(a 2+a 4+…+a 2n )=(1+3+…+3n-1)+2(1+3+…+3n-1)=3(1+3+…+3n-1)=3(3n -1), 从而S 2n-1=S 2n -a 2n =3(3n -1)-2×3n-1=3(5×3n-2-1). 综上所述,S n = 32(5×3n -22-1),当n 是奇数,3(3n2-1),当n 是偶数. 20.(本小题满分13分)(2015湖南,文20)已知抛物线C 1:x 2=4y 的焦点F 也是椭圆C 2:y 22+x 2b2=1(a>b>0)的一个焦点.C 1与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC 与BD同向. (1)求C 2的方程;(2)若|AC|=|BD|,求直线l 的斜率.解:(1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1).因为F 也是椭圆C 2的一个焦点,所以a 2-b 2=1. ① 又C 1与C 2的公共弦的长为2 6,C 1与C 2都关于y 轴对称,且C 1的方程为x 2=4y ,由此易知C 1与C 2的公共点的坐标为 ± 6,32,所以94a 2+6b2=1.②联立①,②得a 2=9,b 2=8,故C 2的方程为y 2+x 2=1. (2)如图,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4).因AC 与BD 同向,且|AC|=|BD|,所以AC =BD ,从而x 3-x 1=x 4-x 2,即x 1-x 2=x 3-x 4,于是(x 1+x 2)2-4x 1x 2=(x 3+x 4)2-4x 3x 4,③ 设直线l 的斜率为k ,则l 的方程为y=kx+1. 由 y =kx +1,x 2=4y ,得x 2-4kx-4=0,而x 1,x 2是这个方程的两根,所以x 1+x 2=4k ,x 1x 2=-4. ④由 y =kx +1,x 2+y 2=1得(9+8k 2)x 2+16kx-64=0,而x 3,x 4是这个方程的两根, 所以x 3+x 4=-16k9+8k2,x 3x 4=-649+8k2.⑤将④,⑤代入③,得16(k 2+1)=162k2(9+8k 2)2+4×649×8k2,即16(k 2+1)=162×9(k 2+1)(9+8k 2)2,所以(9+8k 2)2=16×9,解得k=± 6,即直线l 的斜率为± 64.21.(本小题满分13分)(2015湖南,文21)已知a>0,函数f (x )=a e x cos x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点.(1)证明:数列{f (x n )}是等比数列;(2)若对一切n ∈N *,x n ≤|f (x n )|恒成立,求a 的取值范围. 解:(1)f'(x )=a e x cos x-a e x sin x= 2a e x cos x +π4.令f'(x )=0,由x ≥0,得x+π=m π-π, 即x=m π-3π,m ∈N *.而对于cos x +π4 ,当k ∈Z 时,若2k π-π2<x+π4<2k π+π2,即2k π-3π4<x<2k π+π4,则cos x +π4>0;若2k π+π2<x+π4<2k π+3π2,即2k π+π4<x<2k π+5π4,则cos x +π4<0.因此,在区间 (m -1)π,mπ-3π 与 mπ-3π,mπ+π 上,f'(x )的符号总相反,于是当x=m π-3π(m ∈N *)时,f (x )取得极值,所以x n =n π-3π(n ∈N *).此时,f (x n )=a e nπ-34πcos nπ-3π =(-1)n+1 2a e nπ-34π.易知f (x n )≠0,而f (x n +1)n )=(-1)n +2 2a 2e (n +1)π-34π(-1)n +1 22a enπ-34π=-e π是常数,故数列{f (x n )}是首项为f (x 1)=2a e π4,公比为-e π的等比数列.(2)对一切n ∈N *,x n ≤|f (x n )|恒成立,即n π-3π4≤2a 2enπ-34π恒成立,亦即2a≤enπ-34πnπ-3π4恒成立(因为a>0).设g (t )=e t (t>0),则g'(t )=e t (t -1)t 2.令g'(t )=0得t=1.当0<t<1时,g'(t )<0,所以g (t )在区间(0,1)上单调递减.当t>1时,g'(t )>0,所以g (t )在区间(1,+∞)上单调递增.因为x 1∈(0,1),且当n ≥2时,x n ∈(1,+∞),x n <x n+1,所以[g (x n )]min =min{g (x 1),g (x 2)}=min g π ,g 5π =g π =4e π4,因此,x n ≤{f (x n )}恒成立,当且仅当 2≤4e π4.解得a ≥2πe -π4,故a 的取值范围是2πe -π4,+∞ .。

2015年高考语文湖南卷(附答案)

2015年高考语文湖南卷(附答案)

语文试卷 第1页(共10页)语文试卷 第2页(共10页)绝密★启用前2015年普通高等学校招生全国统一考试(湖南卷)语文本试卷满分150分,考试时间150分钟。

考生注意:1. 答卷前,请务必将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试卷及答题卡的规定位置。

2. 请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

一、语言文字运用(12分。

每小题3分)梦想是一个民族保持生机、激发活力的源泉。

没有梦想的民族是可悲的,对美好梦想没有_________和矢志不渝精神的民族同样没有前途。

_________、坚韧不拔是中华民族固有的精神基因。

回望历史,面对列强的坚船利炮,中华民族奋起抗争;面对新中国成立之初的_________,中国人民_________;面对现代化征程中的困难与挑战,中华儿女怀揣中国梦,一路高歌前行。

梦想的太阳,已经在东方地平线上喷薄而出,灿烂的朝霞正光耀在我们的眼前…… 1. 下列成语依次填入语段中画横线处,最恰当的一组是( )A. 坚贞不屈 自强不息 百废俱兴 奋起直追B. 坚定不移 自强不息 百废待兴 奋发图强C. 坚贞不屈 生生不息 百废待兴 奋发图强D. 坚定不移 生生不息 百废俱兴 奋起直追 2. 下列选项对语段主要运用的修辞手法的判断,正确的一组是( )A. 比喻 排比B. 对偶 比喻C. 排比 夸张D. 夸张 对偶说着,进入石洞来。

只见佳木茏葱,奇花 灼.,一带清流,从花木深处曲.折泻于石隙之下。

__________________,皆隐于山坳.树杪之间。

俯而视之,则清溪泻雪,石磴.穿云,白石为栏,环抱池沿,石桥三港,兽面衔吐。

桥上有亭。

3. 语段中加点的字,读音全都正确的一组是( )A. 灼.(shuò) 曲.(q ŭ)折 山坳.(ào ) 石磴.(chén g ) B. 灼.(shu ò) 曲.(q ū)折 山坳.(y òu ) 石磴.(d èn g ) C. 灼.(zhuó) 曲.(q ŭ)折 山坳.(yòu) 石磴.(chén g ) D. 灼.(zhu ó) 曲.(q ū)折 山坳.(ào ) 石磴.(d èn g ) 4. 下列语句填入语段中画横线处,衔接最恰当的一项是( )A. 再进数步,渐向北边,两边飞楼插空,平坦宽豁,雕甍绣槛B. 渐向北边,再进数步,雕甍绣槛,两边飞楼插空,平坦宽豁C. 再进数步,渐向北边,平坦宽豁,两边飞楼插空,雕甍绣槛D. 渐向北边,雕甍绣槛,再进数步,平坦宽豁,两边飞楼插空二、文言文阅读(22分。

2015年湖南省高考数学试卷答案与解析

2015年湖南省高考数学试卷答案与解析

2015年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题,共10小题,每小题5分,共50分1.(5分)(2015•湖南)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法法则,求得z的值.解答:解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.点评:本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.2.(5分)(2015•湖南)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:集合;简易逻辑.分析:直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.解答:解:A、B是两个集合,则“A∩B=A”可得“A⊆B”,“A⊆B”,可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A”是“A⊆B”的充要条件.故选:C.点评:本题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.3.(5分)(2015•湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.考点:程序框图.分析:列出循环过程中S与i的数值,满足判断框的条件即可结束循环.解答:解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B点评:本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力4.(5分)(2015•湖南)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7B.﹣1C.1D.2考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.解答:解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,﹣1).由解得A(﹣2,1),由,解得B(1,1)∴z=3x﹣y的最小值为3×(﹣2)﹣1=﹣7.故选:A.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B点.5.(5分)(2015•湖南)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.解答:解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.点评:本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.(5分)(2015•湖南)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6D.﹣6考点:二项式定理的应用.专题:二项式定理.分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为求得r,再代入系数求出结果.解答:解:根据所给的二项式写出展开式的通项,T r+1==;展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.点评:本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.(5分)(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=.p(μ﹣2σ<X≤μ+2σ)=.A.2386B.2718C.3413D.4772考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:求出P(0<X≤1)=×=,即可得出结论.解答:解:由题意P(0<X≤1)=×=,∴落入阴影部分点的个数的估计值为10000×=3413,故选:C.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.8.(5分)(2015•湖南)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6B.7C.8D.9考点:圆的切线方程.专题:计算题;直线与圆.分析:由题意,AC为直径,所以||=|2+|=|4+|.B为(﹣1,0)时,|4+|≤7,即可得出结论.解答:解:由题意,AC为直径,所以||=|2+|=|4+|.所以B为(﹣1,0)时,|4+|≤7.所以||的最大值为7.故选:B.点评:本题考查向量知识的运用,考查学生分析解决问题的能力,比较基础.9.(5分)(2015•湖南)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.解答:解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.故选:D.点评:本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答.10.(5分)(2015•湖南)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()考点:简单空间图形的三视图.专题:创新题型;空间位置关系与距离;概率与统计.分析:根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=(1﹣),0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.解答:解:根据三视图可判断其为圆锥,∵底面半径为1,高为2,∴V=×2=∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=(1﹣),0<x<2,∴长方体的体积Ω=2(1﹣)2x,Ω′=x2﹣4x+2,∵,Ω′=x2﹣4x+2=0,x=,x=2,∴可判断(0,)单调递增,(,2)单调递减,Ω最大值=2(1﹣)2×=,∴原工件材料的利用率为=×=,故选:A点评:本题很是新颖,知识点融合的很好,把立体几何,导数,概率都相应的考查了,综合性强,属于难题.二、填空题,共5小题,每小题5分,共25分11.(5分)(2015•湖南)(x﹣1)dx= 0 .考点:定积分.专题:导数的概念及应用.分析:求出被积函数的原函数,代入上限和下限求值.解答:解:(x﹣1)dx=(﹣x)|=0;故答案为:0.点评:本题考查了定积分的计算;关键是求出被积函数的原函数.12.(5分)(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是4 .考点:茎叶图.专题:概率与统计.分析:根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.解答:解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×=4(人).点评:本题考查了茎叶图的应用问题,也考查了系统抽样方法的应用问题,是基础题目.13.(5分)(2015•湖南)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到.解答:解:设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将点(﹣c,2b)代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.点评:本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查中点坐标公式的运用,属于中档题.14.(5分)(2015•湖南)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= 3n﹣1.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:利用已知条件列出方程求出公比,然后求解等比数列的通项公式.解答:解:设等比数列的公比为q,S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,可得4S2=S3+3S1,a1=1,即4(1+q)=1+q+q2+3,q=3.∴a n=3n﹣1.点评:本题考查等差数列以及等比数列的应用,基本知识的考查.15.(5分)(2015•湖南)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是{a|a<0或a>1} .考点:函数的零点.专题:计算题;创新题型;函数的性质及应用.分析:由g(x)=f(x)﹣b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围解答:解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.点评:三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)(2015•湖南)如图,在⊙O中,相较于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相较于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.考点:相似三角形的判定.专题:选作题;推理和证明.分析:(1)证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°(2)证明△FEM∽△FON,即可证明FE•FN=FM•FO.解答:证明:(1)∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°(2)在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.点评:本题考查垂径定理,考查三角形相似的判定与应用,考查学生分析解决问题的能力,比较基础.选修4-4:坐标系与方程17.(6分)(2015•湖南)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:选作题;坐标系和参数方程.分析:(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.解答:解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.选修4-5:不等式选讲18.(2015•湖南)设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.考点:不等式的证明.专题:不等式的解法及应用.分析:(ⅰ)由a>0,b>0,结合条件可得ab=1,再由基本不等式,即可得证;(ⅱ)运用反证法证明.假设a2+a<2与b2+b<2可能同时成立.结合条件a>0,b >0,以及二次不等式的解法,可得0<a<1,且0<b<1,这与ab=1矛盾,即可得证.解答:证明:(ⅰ)由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,当且仅当a=b取得等号.则a+b≥2;(ⅱ)假设a2+a<2与b2+b<2可能同时成立.由a2+a<2及a>0,可得0<a<1,由b2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.点评:本题考查不等式的证明,主要考查基本不等式的运用和反证法证明不等式的方法,属于中档题.19.(2015•湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.考点:正弦定理.专题:解三角形.分析:(Ⅰ)由题意和正弦定理可得sinB=cosA,由角的范围和诱导公式可得;(Ⅱ)由题意可得A∈(0,),可得0<sinA<,化简可得sinA+sinC=﹣2(sinA ﹣)2+,由二次函数区间的最值可得.解答:解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]点评:本题考查正弦定理和三角函数公式的应用,涉及二次函数区间的最值,属基础题.20.(2015•湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.解答:解:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)==,P(B2)=P()+P()=+==,故所求概率为:P(C)=P(B1+B2)=P(B1)+P(B2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为:X 0 1 2 3PE(X)=3×=.点评:期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(2015•湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.考点:二面角的平面角及求法;直线与平面垂直的性质.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)首先以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,求出一些点的坐标,Q在棱BC上,从而可设Q(6,y1,0),只需求即可;(2)设P(0,y2,z2),根据P在棱DD1上,从而由即可得到z2=12﹣2y2,从而表示点P坐标为P(0,y2,12﹣2y2).由PQ∥平面ABB1A1便知道与平面ABB1A1的法向量垂直,从而得出y1=y2,从而Q点坐标变成Q(6,y2,0),设平面PQD的法向量为,根据即可表示,平面AQD 的一个法向量为,从而由即可求出y2,从而得出P点坐标,从而求出三棱锥P﹣AQD的高,而四面体ADPQ的体积等于三棱锥P﹣AQD的体积,从而求出四面体的体积.解答:解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z 轴,建立如图所示空间直角坐标系,则:A(0,0,0),B(6,0,0),D(0,6,0),A1(0,0,6),B1(3,0,6),D1(0,3,6);Q在棱BC上,设Q(6,y1,0),0≤y1≤6;∴(1)证明:若P是DD1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;(2)设P(0,y2,z2),y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴(0,y2﹣6,z2)=λ(0,﹣3,6);∴;∴z2=12﹣2y2;∴P(0,y2,12﹣2y2);∴;平面ABB1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6(y1﹣y2)=0;∴y1=y2;∴Q(6,y2,0);设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD的一个法向量为;又二面角P﹣QD﹣A的余弦值为;∴;解得y2=4,或y2=8(舍去);∴P(0,4,4);∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ=V三棱锥P﹣ADQ=.点评:考查建立空间直角坐标系,利用空间向量解决异面直线垂直及线面角问题的方法,共线向量基本定理,直线和平面平行时,直线和平面法向量的关系,平面法向量的概念,以及两平面法向量的夹角和平面二面角大小的关系,三棱锥的体积公式.22.(13分)(2015•湖南)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(ⅰ)若|AC|=|BD|,求直线l的斜率;(ⅱ)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(Ⅰ)根据两个曲线的焦点相同,得到a2﹣b2=1,再根据C1与C2的公共弦长为2,得到=1,解得即可求出;(Ⅱ)设出点的坐标,(ⅰ)根据向量的关系,得到(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的方程,分别与C1,C2构成方程组,利用韦达定理,分别代入得到关于k的方程,解得即可;(ⅱ)根据导数的几何意义得到C1在点A处的切线方程,求出点M的坐标,利用向量的乘积∠AFM是锐角,问题得以证明.解答:解:(Ⅰ)抛物线C1:x2=4y的焦点F的坐标为(0,1),因为F也是椭圆C2的一个焦点,∴a2﹣b2=1,①,又C1与C2的公共弦长为2,C1与C2的都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为(±,),联立①②得a2=9,b2=8,故C2的方程为+=1.(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),A(x4,y4),(ⅰ)因为与同向,且|AC|=|BD|,所以=,从而x3﹣x1=x4﹣x2,即x1﹣x2=x3﹣x4,于是(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,③设直线的斜率为k,则l的方程为y=kx+1,由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得(9+8k2)x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x3+x4=,x3x4=﹣,⑤将④⑤代入③,得16(k2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±.(ⅱ)由x2=4y得y′=x,所以C1在点A处的切线方程为y﹣y1=x1(x﹣x1),即y=x1x﹣x12,令y=0,得x=x1,M(x1,0),1而=(x1,y1﹣1),于是•=x12﹣y1+1=x12+1>0,因此∠AFM是锐角,从而∠MFD=180°﹣∠AFM是钝角,故直线l绕点F旋转时,△MFD总是钝角三角形.点评:本题考查了圆锥曲线的和直线的位置与关系,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于k的方程,计算量大,属于难题.23.(13分)(2015•湖南)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.考点:利用导数研究函数的极值;导数在最大值、最小值问题中的应用.专题:创新题型;导数的综合应用;等差数列与等比数列;不等式的解法及应用.分析:(Ⅰ)求出导数,运用两角和的正弦公式化简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证;(Ⅱ)由sinφ=,可得对一切n∈N*,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),求出导数,求得最小值,由恒成立思想即可得证.解答:证明:(Ⅰ)f′(x)=e ax(asinx+cosx)=•e ax sin(x+φ),tanφ=,0<φ<,令f′(x)=0,由x≥0,x+φ=mπ,即x=mπ﹣φ,m∈N*,对k∈N,若(2k+1)π<x+φ<(2k+2)π,即(2k+1)π﹣φ<x<(2k+2)π﹣φ,则f′(x)<0,因此在((m﹣1)π,mπ﹣φ)和(mπ﹣φ,mπ)上f′(x)符号总相反.于是当x=nπ﹣φ,n∈N*,f(x)取得极值,所以x n=nπ﹣φ,n∈N*,此时f(x n)=e a(nπ﹣φ)sin(nπ﹣φ)=(﹣1)n+1e a(nπ﹣φ)sinφ,易知f(x n)≠0,而==﹣e aπ是常数,故数列{f(x n)}是首项为f(x1)=e a(π﹣φ)sinφ,公比为﹣e aπ的等比数列;(Ⅱ)由sinφ=,可得对一切n∈N*,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),g′(t)=,当0<t<1时,g′(t)<0,g(t)递减,当t>1时,g′(t)>0,g(t)递增.t=1时,g(t)取得最小值,且为e.因此要使①恒成立,只需<g(1)=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n≥2时,nπ﹣φ≥2π﹣φ>>,因此对n∈N*,ax n=≠1,即有g(ax n)>g(1)=e=,故①亦恒成立.综上可得,若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.点评:本题考查导数的运用:求极值和单调区间,主要考查三角函数的导数和求值,同时考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的证明,属于难题.。

2015年湖南省高考数学试卷(理科)答案与解析

2015年湖南省高考数学试卷(理科)答案与解析

2015年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题,共10小题,每小题5分,共50分1.(5分)(2015•湖南)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)(2015•湖南)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)(2015•湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.4.(5分)(2015•湖南)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7 B.﹣1 C.1D.25.(5分)(2015•湖南)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数6.(5分)(2015•湖南)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6D.﹣67.(5分)(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386 B.2718 C.3413 D.47728.(5分)(2015•湖南)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6B.7C.8D.99.(5分)(2015•湖南)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A.B.C.D.10.(5分)(2015•湖南)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A.B.C.D.二、填空题,共5小题,每小题5分,共25分11.(5分)(2015•湖南)(x﹣1)dx=.12.(5分)(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是.13.(5分)(2015•湖南)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.14.(5分)(2015•湖南)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=.15.(5分)(2015•湖南)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)(2015•湖南)如图,在⊙O中,相较于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相较于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.选修4-4:坐标系与方程17.(6分)(2015•湖南)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.选修4-5:不等式选讲18.(2015•湖南)设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.19.(2015•湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.20.(2015•湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.21.(2015•湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.22.(13分)(2015•湖南)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b >0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(ⅰ)若|AC|=|BD|,求直线l的斜率;(ⅱ)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.23.(13分)(2015•湖南)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.答案:1、解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.2、解:A、B是两个集合,则“A∩B=A”可得“A⊆B”,“A⊆B”,可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A”是“A⊆B”的充要条件.故选:C.3、解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B4解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,﹣1).由解得A(﹣2,1),由,解得B(1,1)∴z=3x﹣y的最小值为3×(﹣2)﹣1=﹣7.故选:A.5、解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f (0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.6、解:根据所给的二项式写出展开式的通项,T r+1==;展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.7、解:由题意P(0<X≤1)=×0.6826=0.3413,∴落入阴影部分点的个数的估计值为10000×0.3413=3413,故选:C.8、解:由题意,AC为直径,所以||=|2+|=|4+|.所以B为(﹣1,0)时,|4+|≤7.所以||的最大值为7.故选:B.9、解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.故选:D.10、解:根据三视图可判断其为圆锥,∵底面半径为1,高为2,∴V=×2=∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=(1﹣),0<x<2,∴长方体的体积Ω=2(1﹣)2x,Ω′=x2﹣4x+2,∵,Ω′=x2﹣4x+2=0,x=,x=2,∴可判断(0,)单调递增,(,2)单调递减,Ω最大值=2(1﹣)2×=,∴原工件材料的利用率为=×=,故选:A11、解:(x﹣1)dx=(﹣x)|=0;故答案为:0.12、解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×=4(人).故答案为:4.13、解:设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将点(﹣c,2b)代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.14、解:设等比数列的公比为q,S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,可得4S2=S3+3S1,a1=1,即4(1+q)=1+q+q2+3,q=3.∴a n=3n﹣1.故答案为:3n﹣1.15、解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}16、证明:(1)∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°(2)在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.17、解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.18、证明:(ⅰ)由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,当且仅当a=b取得等号.则a+b≥2;(ⅱ)假设a2+a<2与b2+b<2可能同时成立.由a2+a<2及a>0,可得0<a<1,由b2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.19、解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]20、解:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)==,P(B2)=P()+P()=+==,故所求概率为:P(C)=P(B1+B2)=P(B1)+P(B2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为:X 0 1 2 3PE(X)=3×=.21、解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(0,0,0),B(6,0,0),D(0,6,0),A1(0,0,6),B1(3,0,6),D1(0,3,6);Q在棱BC上,设Q(6,y1,0),0≤y1≤6;∴(1)证明:若P是DD1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;(2)设P(0,y2,z2),y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴(0,y2﹣6,z2)=λ(0,﹣3,6);∴;∴z2=12﹣2y2;∴P(0,y2,12﹣2y2);∴;平面ABB1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6(y1﹣y2)=0;∴y1=y2;∴Q(6,y2,0);设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD的一个法向量为;又二面角P﹣QD﹣A的余弦值为;∴;解得y2=4,或y2=8(舍去);∴P(0,4,4);∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ=V三棱锥P﹣ADQ=.22、解:(Ⅰ)抛物线C1:x2=4y的焦点F的坐标为(0,1),因为F也是椭圆C2的一个焦点,∴a2﹣b2=1,①,又C1与C2的公共弦长为2,C1与C2的都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为(±,),所以=1,②,联立①②得a2=9,b2=8,故C2的方程为+=1.(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),A(x4,y4),(ⅰ)因为与同向,且|AC|=|BD|,所以=,从而x3﹣x1=x4﹣x2,即x1﹣x2=x3﹣x4,于是(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,③设直线的斜率为k,则l的方程为y=kx+1,由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得(9+8k2)x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x3+x4=,x3x4=﹣,⑤将④⑤代入③,得16(k2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±.(ⅱ)由x2=4y得y′=x,所以C1在点A处的切线方程为y﹣y1=x1(x﹣x1),即y=x1x﹣x12,令y=0,得x=x1,M(x1,0),所以=(x1,﹣1),而=(x1,y1﹣1),于是•=x12﹣y1+1=x12+1>0,因此∠AFM是锐角,从而∠MFD=180°﹣∠AFM是钝角,故直线l绕点F旋转时,△MFD总是钝角三角形.23、证明:(Ⅰ)f′(x)=e ax(asinx+cosx)=•e ax sin(x+φ),tanφ=,0<φ<,令f′(x)=0,由x≥0,x+φ=mπ,即x=mπ﹣φ,m∈N*,对k∈N,若(2k+1)π<x+φ<(2k+2)π,即(2k+1)π﹣φ<x<(2k+2)π﹣φ,则f′(x)<0,因此在((m﹣1)π,mπ﹣φ)和(mπ﹣φ,mπ)上f′(x)符号总相反.于是当x=nπ﹣φ,n∈N*,f(x)取得极值,所以x n=nπ﹣φ,n∈N*,此时f(x n)=e a(nπ﹣φ)sin(nπ﹣φ)=(﹣1)n+1e a(nπ﹣φ)sinφ,易知f(x n)≠0,而==﹣e aπ是常数,故数列{f(x n)}是首项为f(x1)=e a(π﹣φ)sinφ,公比为﹣e aπ的等比数列;(Ⅱ)由sinφ=,可得对一切n∈N*,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),g′(t)=,当0<t<1时,g′(t)<0,g(t)递减,当t>1时,g′(t)>0,g(t)递增.t=1时,g(t)取得最小值,且为e.因此要使①恒成立,只需<g(1)=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n≥2时,nπ﹣φ≥2π﹣φ>>,因此对n∈N*,ax n=≠1,即有g(ax n)>g(1)=e=,故①亦恒成立.综上可得,若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.。

2015年高考文科数学湖南卷(含详细答案)

2015年高考文科数学湖南卷(含详细答案)

绝密★启用前2015年普通高等学校招生全国统一考试(湖南卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知2(1i)1i z-=+(i 为虚数单位),在复数z = ( )A .1i +B .1i -C .1i -+D .1i --2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )A .3B .4C .5D .6 3.设x ∈R ,则“1x >”是“31x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若变量x ,y 满足约束条件1,1,1,x y y x x +⎧⎪-⎨⎪⎩≥≤≤则2z x y =-的最小值为( )A .1-B .0C .1D .25.执行如图所示的程序框图.如果输入3n =,则输出的S =( )A .67B .37C .89D .496.若双曲线22221x y a b -=的一条渐近线经过点(3,4)-,则此双曲线的离心率为( )AB .54C .43D .537.若实数a ,b满足12a b+=则ab 的最小值为 ( )AB .2 C.D .48.设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数9.已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥.若点P 的坐标为(2,0),则||PA PB PC ++的最大值为( )A .6B .7C .8D .910.某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为=⎛⎫ ⎪⎝⎭新工件的体积材料利用率原工件的体积 ( ) A .89π B .827πCD第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在题中的横线上. 11.已知集合{1,2,3,4}U =,{1,3}A =,{1,3,4}B =,则()U A B =ð . 12.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为 .13.若直线3450x y -+=与圆222(0)x y r r +=>相交于A ,B 两点,且120(AOB O ∠=为坐标原点),则r = .14.若函数()22||x f x b =--有两个零点,则实数b 的取值范围是 .15.已知0ω>,在函数2sin y x ω=与2cos y x ω=的图象的交点中,距离最短的两个交点的距离为,则ω= .三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球1A ,2A 和1个白球B 的甲箱与装有2个红球1a ,2a 和2个白球1b ,2b 的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖. (Ⅰ)用球的标号列出所有可能的摸出结果;(Ⅱ)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________17.(本小题满分12分)设ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =. (Ⅰ)证明:sin cos B A =; (Ⅱ)若3sin sin cos 4C A B -=,且B 为钝角,求A ,B ,C .18.(本小题满分12分)如图,直三棱柱111ABC A B C -的底面是边长为2的正三角形,E ,F 分别是BC ,1CC 的中点.(Ⅰ)证明:平面AEF ⊥平面11B BCC ;(Ⅱ)若直线1A C 与平面11A ABB 所成的角为45︒,求三棱锥F AEC -的体积.19.(本小题满分13分)设数列{}n a 的前n 项和为n S .已知11a =,22a =,且2133n n n a S S ++=-+,*n ∈Ν. (Ⅰ)证明:23n n a a +=;(Ⅱ)求n S .20.(本小题满分13分)已知抛物线1C :24x y =的焦点F 也是椭圆2C :22221(0)y x a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为26过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC 与BD 同向.(Ⅰ)求2C 的方程;(Ⅱ)若||||AC BD =,求直线l 的斜率.21.(本小题满分13分)已知0a >,函数()cos ([0,))x f x ae x x =∈+∞.记n x 为()f x 的从小到大的第*()n n ∈Ν个极值点.(Ⅰ)证明:数列{()}n f x 是等比数列;(Ⅱ)若对一切*n ∈Ν,|()|n n x f x ≤恒成立,求a 的取值范围.2015年普通高等学校招生全国统一考试(湖南卷)数学(文科)答案解析第Ⅰ卷z x y∴=-在点A处取得最小值为.故选A.z x y∴=-22数学试卷第10页(共36页)(22)x x x -≤第Ⅱ卷二、填空题11.【答案】{123},, 【解析】由题{}2U B =ð,所以(){123}UB A =,,ð. 【提示】首先求出集合B 的补集,然后再与集合A 取并集. 【考点】集合的运算. 12.【答案】22(1)1x y +-=【解析】曲线C 的极坐标方程为22sin 2sin ,ρθρρθ=∴=,它的直角坐标方程为222x y y +=, 22(1)1x y ∴+-=,故答案为22(1)1x y +-=【提示】直接利用极坐标与直角坐标互化,求解即可. 【考点】圆的极坐标方程. 13.【答案】2数学试卷 第16页(共36页)120,120,则△120的等腰三角形,顶点(圆心)到直线的距离数y b =的图像有两个交点,结合函数的图像可得,02b <<时符合条件,故答案为02b <<.所以平面AEF⊥平面11B BCC.3322121BC BB B=,推出数学试卷第22页(共36页)(Ⅱ)如图,设11223344()()()()A x yB x yC x yD x y,,,,,,,,uuu r uuu r u u ur u u ur数学试卷第28页(共36页)11 / 12数学试卷第34页(共36页)数学试卷第35页(共36页)数学试卷第36页(共36页)。

2015高考数学真题及答案

2015高考数学真题及答案

2015高考数学真题及答案高三数学 (文科)本试卷共5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项) (1)在复平面内,复数12i z =-对应的点的坐标为(A )(1,2) (B )(2,1) (C ) (1,2)- (D )(2,1)-(2)双曲线2214x y -=的渐近线方程为(A )12y x =±(B )y =(C )2y x =± (D )y =(3)记函数)(x f 的导函数为)(x f ',若()f x 对应的曲线在点))(,(00x f x 处的切线方程为1y x =-+,则(A )0()=2f x ' (B )0()=1f x ' (C )0)(0='x f(D )0()=1f x '-(4)已知命题p :直线a ,b 不相交,命题q :直线a ,b 为异面直线,则p 是q 的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(5)在区间[0,2]上随机取一个实数x ,则事件“310x -<”发生的概率为(A )12 (B )13(C )14(D )16(6)执行如图所示的程序框图,若输出的b 的值为4,则图中判断框内①处应填(A )2 (B )3(C )4 (D )5(7)设集合1,(,) 1.x y D x y x y ⎧⎫+≥⎧⎪⎪=⎨⎨⎬-≤,则下列命题中正确的是(A )(,)x y ∀D ∈,20x y -≤ (B )(,)x y ∀D ∈,22x y +≥- (C )(,)x y ∀D ∈,2x ≥(D )(,)x y ∃D ∈,1y ≤-(8)某学校餐厅每天供应500名学生用餐,每星期一有A ,B 两种菜可供选择.调查资料表明,凡是在星期一选A 种菜的学生,下星期一会有20%改选B 种菜;而选B 种菜的学生,下星期一会有30%改选A 种菜.用n a ,n b 分别表示在第n 个星期的星期一选A 种菜和选B 种菜的学生人数,若1300a =,则+1n a 与n a 的关系可以表示为 (A )111502n n a a +=+ (B )112003n n a a +=+ (C )113005n n a a +=+ (D )121805n n a a +=+第Ⅱ卷(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2015湖南卷高考数学试题及答案或解析下载_2015高考真题抢先版

2015湖南卷高考数学试题及答案或解析下载_2015高考真题抢先版

开始输入2015年高考将于6月6、7日举行,我们将在第一时间收录真题,现在就请先用这套权威预测解解渴吧市2015届高三四月调研考试数学(文史类)本试卷包括选择题、填空题和解答题三部分,共5页.时量120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2. 已知集合 A. B.C. D.3. 命题“若,则”的否命题是A .若,则B .若,则C .若,则D .若,则4. 已知焦点在轴上的椭圆的离心率为,它的长轴长等于圆的半径,则椭圆的标准方程是A . B.C. D.5. 当时,执行如右图所示的程序框图, 输出的值为A. 30B.14C. 8D.6 6. 设,则的大小关系是 A .B .C .D .7. 某几何体的三视图如图所示,则该几何体的体积是 A .B .C . D.8. 不等式组围成的区域为,能够把区域的周长和面积同时分为相等两部分的曲线为 A .B .a2aa正视图 左视图俯视图C.D.9. 已知函数,若恒成立,则的取值围是A. B. C. D.10. 如图,在△中,分别是的中点,若(),且点落在四边形(含边界),则的取值围是A.B.C. D.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上。

11. 在某市2015年“创建省文明卫生城市”知识竞赛中,考评组从中抽取份试卷进行分析,其分数的频率分布直方图如右图所示,则分数在区间上的人数大约有人.12. 如图所示,矩形长为3,宽为2,在矩形随机撒200颗黄豆,数得落在椭圆的黄豆数为160颗,依据此实验数据可以估计出椭圆的面积约为.(第10题图)分数(分)组距40 50 60 70 80频率O0.0313. 在极坐标系中,点A(2,)与曲线上的点的最短距离为.14. 将函数的图象向右平移个单位长度后得到函数的图象,若的图象的对称轴重合,则的值为.15. 点在直线上,记,若使取得最小值的点有无数个,则实数的取值是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)等差数列满足:,,其中为数列前n项和.(Ⅰ)求数列通项公式;(Ⅱ)若,且,,成等比数列,求的值.17.(本小题满分12分)某城市持续性的雾霾天气严重威胁着人们的身体健康,汽车的尾气排放是造成雾霾天气的重要因素之一,为此该城市实施了机动车尾号限行政策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档