第一章数值计算方法与误差分析
第一章数值计算方法与误差分析

0.4900 − 0.484 1 1 −1 = 0.012397 < 0.0125 = ×10 = ×10−(2−1) 0.484 2× 4 2× 4
第四节 数值运算中误差的传播
要分析数值运算中误差的传播,首先就要估 计数值运算中的误差。数值运算的误差估计情况 较复杂, 通常利用微分来估计误差。
一、利用微分估计误差
特别注意
近似值后面的零不能随便省去, 如 例2中4.27和4.270,前者精确到4.27,有效 数字为3位,取4位,x3*=4.270,有效数字 为4位。可见,它们的近似程度完全不同, 与准确值的最大误差也完全不同。
有效数字和绝对误差的关系
定义3换一种说法就是:设x的近似值 x*= ±0.a1a2… an … ×10p 若其绝对误差 |ε(x)|=|x-x*| ≤0.5 ×10p-n - 则称近似数x*具有n 位有效数字。这里p为整数,a1 , a2 , … , an 是0 到9中的一个数字且a1≠0 。 例如,若x*=0.23156×10-2是x 的具有五位有效数字的近似 值,则绝对误差是 |x-x*| ≤0.5 ×10-2-5 = 0.5 ×10-7 - 定义3或式 |ε(x)|=|x-x*| ≤0.5 ×10p-n - 建立了绝对误差(限)和有效数字之间的关系。由于n 越大,10p-n 的值越小,所以有效数字位越多,则绝对误差(限)越小。 有效数字位越多,
1. 一元函数 设 y=f(x)为一元函数,则计算函数值的 误差为
ε(y)=y-y*=f(x)-f(x* )
≈dy=f '(x)dx ≈ f '(x)ε(x) 解的相对误差
εr(y) ≈dy/y
一元函数的误差估计举例
例 正方形的边长约为100cm, 怎样测量才能使其 面积误差不超过1cm2。 解 设正方形的边长为xcm, 测量值为x*cm, 面积 y=f(x)=x2 f′(x)=2x
误差分析与数值计算的基本方法

误差分析与数值计算的基本方法在日常生活中,我们不断地进行着数值计算,比如计算家庭的开销、工作中的数据分析等。
然而,在数值计算中,我们经常会遇到误差的问题。
误差不仅会影响计算结果的准确性,还可能导致实际应用中的误判或失败。
因此,正确的误差分析和数值计算方法具有非常重要的意义。
本文将从几个方面来介绍误差分析和数值计算的基本方法。
误差的类型误差是指实际值与真实值之间的差异,而误差可以分为绝对误差和相对误差。
绝对误差是指实际值与真实值之间的差异,通常以绝对值来表示。
相对误差是指绝对误差与真实值之比的绝对值,通常以百分数的形式来表示。
在计算机数值计算中,由于计算机内部表示数字的方式是有限制的,因此还会出现舍入误差。
所谓舍入误差,就是因为数字的位数限制而被截掉的数值,造成的误差。
误差的来源在数值计算中,误差来自多个方面,如输入数据、计算过程、输出结果等。
不同来源的误差,可能导致误差类型不同,进而影响正确性和可靠性。
输入数据的误差是指在实际输入数据时可能出现的误差,包括仪器误差、测量误差、观测误差等。
这些误差通常是由于工具或人的精度不同而产生的。
计算过程的误差是指计算中可能发生的误差,包括算法误差、步长误差、舍入误差等。
由于计算机的运算只有0和1两种状态,因此可能出现舍入误差。
输出结果的误差是指计算结果与最终目标之间的差异,包括截断误差、舍入误差等。
输出结果误差可能会影响后续的数值计算和实际结果的可靠性。
误差的刻画和控制误差的刻画和控制是数值计算中非常重要的内容,它们决定了数值计算的正确性和可靠性。
误差的刻画包括误差界的估计和误差分布的描述。
误差界是指计算结果可能存在的误差上限和下限,误差分布是指误差可能呈现的分布状态。
通过误差界和误差分布,我们可以判断计算结果的可靠性,制定正确的数值计算策略。
误差的控制包括提高输入数据的准确性、选择适当的算法和参数、严格的校验和测试、合适的舍入方式等方法。
通过合适的误差控制方法,我们可以提高数值计算的正确性和稳定性。
计算方法(1)-数值计算中的误差

* r
(
x)
1)乘方运算结果的相对误差增大为原值 x的p倍,降低精度.
2)开方运算结果的相对误差缩小为原值
x的1/q倍,精度得到提高.
三.算例的误差分析
x
3
2 2
1 1
24
§6 算法的数值稳定性
一.算法稳定性的概念
凡一种算法的计算结果受舍入误差的影 响小者称它为数值稳定的算法.
例4 解方程 x2 (109 1)x 109 0
方程精确解: x1 10 9 , x2 1
利用求根公式
x1,2
b
b2 4ac 2a
x1 10 9 , x2 0
25
当多个数在计算机中相加时,最好从
绝对值最小的数到绝对值最大的数依次相
加,可使和的误差减小.
二.算法的改进
2 2
1 1
3
计算结 果
2 7/5
2 17 /12
1 ( 2 1)6
2 6
0.0040960
5
6
0.00523278
5
12
2 99 70 2
1
1 0.16666667
6
3
6
1
5
6
0.00523278
12 6
计算方法
1
第一章 数值计算中的误差
§1 引言 §2 误差的种类及其来源 §3 绝对误差和相对误差 §4 有效数字及其与误差的关系 §5 误差的传播与估计 §6 算法的数值稳定性
数值分析(01) 数值计算与误差分析

克莱姆算法步骤
1. 2.
D for 2.1. 2.2.
( j1 jn )
t ( 1 ) a1 j1 a 2 j2 a nj n
i 1 n Di
( i1 i n ) t ( 1 ) a i1 1 bi2 j a in n
Di xi D
N=[(n2-1)n!+n]flop
每周有课外练习,两周交一次作业, 一学期完成 3 个综合程序课题设计。 考试评分: 平时作业+程序占总成绩的30%,
期末考试占总成绩的70%,开卷考试。
Matlab_zm@ 密码 123456
数值分析
数值分析
第二节 数值问题与数值算法
求数学问题的数值解称为数值问题.
数值方法:适合在计算机上,按确定顺序依次进行计算 的计算公式,也就是通常所说的数值计算方法。 数值算法:从给定的已知量出发,经过有限次四则运算
有递推公式
注意
计算量 N n flop
Pn ( x) x( x( x( x(an x an1 ) an2 ) a1 ) a0
数值分析
sn an sk xsk 1 ak P n ( x) s0
k n 1,,2,1,0
数值分析
例3 矩阵乘积AB的计算量分析
第一节 数值分析的研究对象和特点
我们把在电子计算机上进行的科学工作称为科学计算。 科学研究的方法: 科学理论,科学实验,科学计算 科学计算的核心内容是以现代化的计算机及数学软件 为工具,以数学模型为基础进行模拟研究。
数值分析
数值分析
第一节 数值分析的研究对象和特点
科学计算的步骤:实际问题→数学模型→数值方法 →程序设计→上机计算→分析结果。 1、建立数学模型(实际问题数学化) 2、设计计算方案(数学问题数值化)
第一章数值计算方法与误差分析分析

控制误差传播的例子
例10 计算积分 In=∫01 xn ex-1dx,n=0,1, 2, … , 9 利用分部积分法,可得 In= xn ex-1| 01 –∫01 ex-1dxn
=1– n∫01 xn-1 ex-1dx =1– nIn-1
从而有递推公式
I0= ∫01 ex-1dx= ex-1 | 01 = 1-e-1 ≈0.6321 In= 1– nIn-1 (n=0, 1, 2, … , 9)
所谓算法,是指对一些数据按某种规定的顺序 进行的运算序列。在实际计算中,对于同一问题我 们选用不同的算法, 所得结果的精度往往大不相同。 这是因为初始数据的误差或计算中的舍入误差在计 算过程中的传播,因算法不同而异,于是就产生了 算法的数值稳定性问题。一个算法, 如果计算结果 受误差的影响小,就称这个算法具有较好的数值稳 定性。否则,就称这个算法的数值稳定性不好。
简化计算步骤、减少运算次数、避免误差积累的例子
又如计算
1/(1*2)+1/(2*3)+…+1/(1000*1001)
的值。 若一项一项进行计算,不仅计算次数多,而 且误差积累也很大。若简化成 1-1/1001 进行计 算,则整个计算只要一次求倒数和一次减法。
(四)要避免绝对值小的数作除数
由式 ε(x1/x2)≈d(x1/x2)≈[x2ε(x1)-x1ε(x2)]/ x22 , (x2≠0) 可知,当除数x2接近于零时,商的绝对误差就可能很大。因此 , 在数值计算中要尽量避免绝对值小的数作除数, 避免的方法是把 算式变形或改变计算顺序。 例8 当x接近于0时 (1-cosx)/sinx 的分子、分母都接近0,为避免绝对值小的数作除数,可将原式 化为 (1-cosx)/sinx=sinx/(1+cosx) 例9 当x 很大时,可化 x/[(x+1)0.5-x0.5]=x[(x+1)0.5 + x0.5]
第一章 数值计算中的误差分析

时,则得 e ≈ 2.72, e ≈ 2.71828 。
不管取几位小数得到的近似数,其绝对误差都不超过末位数
的半个单位,即 e − 2.72 ≤ 1 ×10−2 , e − 2.71828 ≤ 1 ×10 −5.
2
2
� “有效数字”的概念:若近似值 x* 的绝对误差限是某一位
的半个单位,就称其“准确”到这一位,且从该位直到 x* 的
� 数值计算主要过程:实际问题→建立数学模型→设计 高效、可靠的数值计算方法→程序设计→上机计算求 出结果。
数值计算方法不同于纯数学:它既具有数学的抽象性与严 格性,又具有应用的广泛性与实际试验的技术性,它是一门与计 算机紧密结合的实用性很强的有着自身研究方法与理论系统的 计算数学课程。
1
� 数值计算方法的特点:提供能让计算机直接处理的,切
例如,用毫米刻度的直尺去测量一长度为 x 的物体,测得其
近似值为 x* = 84mm ,由于直尺以毫米为刻度,所以其误差不超
过 0.5mm,即 x − 84 ≤ 0.5(mm) 。这样,虽然不能得出准确值 x 的
长度是多少,但从这个不等式可以知道 x 范围是
83.5mm ≤ x ≤ 84.5mm ,即 x 必在[83.5mm,84.5mm]内。
根据“数值计算”的特点,首先应注意掌握数值计算方法 的基本原理和思想,注意方法处理的技巧及其与计算机的密 切结合,重视误差分析、收敛性及稳定性的基本理论;其次 还要注意方法的使用条件,通过各种方法的比较,了解各种 方法的异同及优缺点。
2
§1.2 误差与数值计算的误差估计
一、误差的来源与分类 在数值计算过程中,估计计算结果的精确度是十分重要的工 作,而影响精确度的因素是各种各样的误差,它们可分为两大类: 一类称为“过失误差”,它一般是由人为造成的,这是可以避免 的,故在数值计算中我们不讨论它;而另一类称为“非过失误差”, 这在“数值计算”中往往是无法避免的,也是我们要研究的。 � 按照误差的来源,误差可分为四种:模型误差、观测误差、 截断误差、舍入误差。 1.模型误差 用数值计算方法解决实际问题时,首先必须建立数学模型. 由于实际问题的复杂性,在对实际问题进行抽象与简化时,往往 为了抓住主要因素而忽略了于次要因素,这就会使得建立起来的 数学模型只是复杂客观现象的一种近似描述,它与实际问题之间 总会存在一定的误差.我们把数学模型与实际问题之间出现的误 差称为模型误差。 2.观测误差 在数学模型中往往包含一些由观测或实验得来的物理量,由 于工具精度和测量手段的限制,它们与实际量大小之间必然存在 误差。 3.截断误差 由实际问题建立起来的数学模型,在很多情况下要得到准确 解是困难的,通常要用数值方法求出它的近似解。例如常用有限
数值计算方法第一章 误差

1 10n1 2a1
所以 1 10n1 是 x* 的相对误差限。
2a1
若
r
1
2a1
1
10n1,
由式(1-4)
21
绝对误差、相对误差和有效数字
e x* x*er x* 0.a1a2 L an L 10mr
a1
1
10m1
2
1 a1
1
10n1
1 10mn 2
由式(1-6),x* 至少有n位有效数字。
1.3.1 基本运算中的误差估计
本节中所讨论的基本运算是指四则运算与 一些常用函数的计算。
由微分学,当自变量改变量(误差)很小时, 函数的微分作为函数改变量的主要线性部分可以 近似函数的改变量, 故利用微分运算公式可导出 误差运算公式。
24
数值计算中误差的传播
设数值计算中求得的解与参量(原始数据)
由以上各式还可得出
ex1 x2 ex1 ex2 ex1 ex2 (1-14)
er x1x2 er x1 er x2 er x1 er x2 (1-15)
er
x1 x2
er x1 er x2
er x1
er x2
(1-16)
29
数值计算中误差的传播
因此,和、差的误差限不超过各数的误差限之 和,积、商的相对误差限不超过各数的相对误 差限之和。
定义: 若x的某一近似值 x* 的绝对误差限是某一位 的半个单位, 则称其“准确”到这一位,且从该位直到
x* 的第一位非零数字共有q位,则称近似值 x* 有q
位有效数字。
16
绝对误差、相对误差和有效数字
例如, 2 的近似值1.414准确到小数点后第3位, 它具有4位有效数字。
第1章 误差分析

第1章误差分析利用计算机进行数值计算几乎全都是近似计算:计算机所能表示的数的个数是有限的,我们需要用到的数的个数是无限的,所以在绝大多数情况下,计算机不可能进行绝对精确的计算。
定义:设x *为某个量的真值,x为x *的近似值,称x *- x为近似值x的误差,通常记为e(x),以表明它是与x有关的量。
与误差作斗争是时计算方法研究的永恒的主体,由于时间和经验的关系,我们仅对这方面的只是做一个最基本的介绍。
1.1 误差的来源误差的来源是多方面的,但主要来源为:描述误差,观测误差,截断误差和舍入误差。
1描述误差为了便于数学分析和数值计算,人们对实际问题的数学描述通常只反映出主要因素之间的数量关系,而忽略次要因素的作用,由此产生的误差称为描述误差。
对实际问题进行数学描述通常称为是建立数学模型,所以描述误差也称为是模型误差。
2观测误差描述实际问题或实际系统的数学模型中的某些参数往往是通过实验观测得到的。
由试验得到的数据与实际数据之间的误差称为观测误差。
比如我们用仪表测量电压、电流、压力、温度时,指针通常会落在两个刻度之间,读数的最后一位只能是估计值,从而也产生了观测误差。
3.舍入误差几乎所有的计算工具,当然也包括电子计算机,都只能用一定数位的小数来近似地表示数位较多或无限的小数,由此产生的误差称为舍入误差。
4.截断误差假如真值x*为近似值系列{x n}的极限,由于计算机只能执行有限步的计算过程,所以我们只能选取某个x N作为x*的近似值,由此产生的误差称为截断误差。
我们可以通过函数的泰勒展式来理解截断误差:设f(x)可以在x=x0处展开为泰勒级数,记f N(x)为前N+1项的和,R N(x)为余项,如果用f N(x)近似表示f(x),则R N(x)就是截断误差。
提示:在我们的课程中,重点是考虑尽可能减小截断误差,尽可能消除舍入误差的副作用。
1.2 误差基本概念1.绝对误差与相对误差定义:设x*为某个量的真值,x为x*的近似值,我们称|x*- x|为近似值x的绝对误差;称|x *- x|/|x*|为近似值x的相对误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工具求出数学问题的数值解,并对算 法的收敛性、稳定性和误差进行分析 计算的全过程。
构建一个完整的数值算法,包含着以下环节: 1. 提出数值问题(即对对象建立数学模型) 2 .构思处理数值问题的基本思想(即提出理论) 3 .列出计算公式 4 .设计程序框图
5 .编制源程序并调试
I0=
∫01
ex-1dx=
ex-1|
1 0
=
1-e-1
≈0.6321
In= 1– nIn-1 (n=1, 2, … , 9)
用四位小数计算依次得到:
0.6321, 0.3679, 0.2642, 0.2074, 0.1704
0.1480, 0.1120, 0.2160, -0.7280, 7.5520
• 定义3 若近似值x*的绝对误差限是 某一位上的半个单位,该位到x*的第一 位非零数字一共有n位,则称近似值x*有 n位有效数字,或说x*精确到该位。
• 准确数本身有无穷多位有效数字, 即从第一位非零数字以后的所有数字都 是有效数字。
有效数字举例
• 如例1中的x*1,x*2 ,x*3,分别有1,3,5位有效数字。 • 实际上,用四舍五入法取准确值x 的前n位(不
• 为了既能表示近似数的大小,又能 表示近似数的精确程度,我们下面介绍 有效数字的概念(注意:有效数字既能 表示近似数的大小,又能表示近似数的 精确程度)。
半个单位的概念
•
我们知道,当x有很多位数字时,常常按照
“四舍五入”原则取前几位数字作为x的近似值x*。
• 例1 设 x = π = 3.1415926 …
一元二次方程 X2+2pX +q=0的求解方法
根据根与系数的关系可知
所以
x1x2=q=1
x2=1/x1 因此,如果仍用上述方法算出x1,然后用
x2=1/x1 计算x2,可得
x1=100000.00,x2=0.00001000 该结果是非常好的。这就说明这种算法有较好的数值稳
定性。
一般说来,当|p|>>|q|时,用公式x1= –p–sign(p)•(p2–q)0.5 ,
在实际计算中, 由于ε(x)与x都不能准
确地求得,因此相对误差 εr(x)也不可能准确
地得到, 我们只能估计它的大小范围。即指 定一个适当小的正数η,使
|εr(x)|= |ε(x)|/| x* | ≤η
称η为近似值x*的相对误差限。
当|εr(x)|较小时,可以用下式来计算η:
η=ξ/|x*|
有效数字
数值计算中的误差
1、误差的种类和来源
① 模型误差
② 观测误差
③ 截断误差
④ 舍入误差
真
2、误差的有关概念:
值
近似值
① 绝对误差: (x) x x
② 绝对误差限: (x) x x* 1
③ 相对误差:
r (x)
(x)
x
x x x
x x x
④ 相对误差限: r (x) 2
相对误差限的概念
取x1*=3作为π的近似值,则|ε1(x)|=0.1415 … ≤0.5×100; 取x2*=3.14,则|ε2(x)|=0.00159 … ≤0.5×10-2; 取x3*=3.1416, 则|ε3(x)|=0.0000074 … ≤0.5×10-4 。
它们的误差都不超过末位数字的半个单位。
有效数字的概念
x2=q/x1来求解方程 X2+2pX+q=0 是数值稳定的。 从而可知,算法数值稳定性的讨论甚为重要。
二、设计算法的若干原则
为防止误差使计算结果失真(失常)现 象发生,要选用数值稳定的计算公式,以 保证算法的数值稳定性。下面我们给出设 计算法的若干原则,并给出改善算法的例 子,这些原则有助于鉴别算法的可靠性并 防止误差危害的现象产生。
包括第一位非零数字前面的零)作为它的近似 值x*时,x*有n位有效数字。 • 例2 设 x = 4.26972,则按四舍五入法,取2位, x1*=4.3有效数字为2位,取3位,x2*=4.27,有效数 字为3位,取4位,x3*=4.270,有效数字为4位。
特别注意
近似值后面的零不能随便省去, 如 例2中4.27和4.270,前者精确到4.27,有效 数字为3位,取4位,x3*=4.270,有效数字 为4位。可见,它们的近似程度完全不同, 与准确值的最大误差也完全不同。
解的相对误差
εr(y) ≈dy/y =Σ∂f (x1,x2 )/∂xi*xi/ f (x1,x2 )*εr(xi) (i=1,2)
利用这两式可得到两数和、差、积、商的误差估 计。
算法的数值稳定性
一、算法的数值稳定性概念
所谓算法,是指对一些数据按某种规定的顺序
进行的运算序列。在实际计算中,对于同一问题我 们选用不同的算法, 所得结果的精度往往大不相同。 这是因为初始数据的误差或计算中的舍入误差在计 算过程中的传播,因算法不同而异,于是就产生了 算法的数值稳定性问题。一个算法, 如果计算结果
由此看到I8为负值、 I9 >1,显然与一切0<In<1
(由于 e-1/(n+1)= min(ex-1)∫01xndx<In (0≤x≤1)
<max (ex-1)∫01xndx=1/(n+1)
且误差积累也很大。若简化成 1-1/1001 进行计 算,则整个计算只要一次求倒数和一次减法。
(四)要避免绝对值小的数作除数
由式 ε(x1/x2)≈d(x1/x2)≈[x2ε(x1)-x1ε(x2)]/ x22 , (x2≠0) 可知,当除数x2接近于零时,商的绝对误差就可能很大。因此 , 在数值计算中要尽量避免绝对值小的数作除数, 避免的方法是把 算式变形或改变计算顺序。 例8 当x接近于0时
受误差的影响小,就称这个算法具有较好的数值稳 定性。否则,就称这个算法的数值稳定性不好。
算法的数值稳定性概念举例
例1 一元二次方程
X2+2pX +q=0 的两个根分别是:
x1= –p+(p2–q)0.5,x2= –p–(p2–q)0.5 当p= –0.5×105,q=1时,方程的两个根取11位有效数字为:
法。 如改用下式计算 (((0.062 5x+0.425)x+1.215)x+1.912)x+2.129 6
则只需做四次乘法和四次加法。
简化计算步骤、减少运算次数、避免误差积累的例子
又如计算
1/(1*2)+1/(2*3)+…+1/(1000*1001)
的值。 若一项一项进行计算,不仅计算次数多,而
如果按从左到右的顺序进行加法运算,后三个数都在对阶过 程中被当作零,得出含有较大绝对误差的结果y=54321。要避免 这种大数“吃掉”小数的现象,可以调整计算顺序,采用先小数
后 大数的计算次序,即先将0.4,0.3,0.4加起来,然后再加上54321, 结果等于54322。
一般情况下,若干数相加,采用绝对值较小者先加的算法,
x1=99999.999990 , x2=0.000010000000001 在高精度的计算机(进制β=10,字长t=8,浮点阶码下限L= –50, 浮点阶码上限U=50)上直接用上述公式计算的结果为:
x1=100000.00, x2=0 可见,结果x1很好,而x2很不理想,这说明直接用上述公式 计算第二个根是不稳定的,其原因在于在计算x2时造成相近两数 相减,从而使有效数字严重损失。请看下面的求解方法。
例4 对于绝对值小的 x,可利用泰勒级数 ex–1= x+x2/2+x3/6+…
取前n项来计算。
(二)要防止大数“吃掉“小数,注意保护重要数据
在数值运算中,参加运算的数有时数量级相差很大,而计算 机位数有限,如不注意运算次序就可能出现大数“吃掉”小数的
现 象,影响计算结果的可靠性。
例5 在五位浮点十进制计算机上,计算 y=54321+0.4+0.3+0.4
二元函数 设数学问题的解y与变量x1 , x2有关, y=f(x1,x2)。若
x1,x2的近似值为x1*, x2*,相应解为y*,则当数据误差较 小时解的绝对误差
ε(y)=y-y*=f(x1,x2 )-f(x1*,x2* ) ≈dy=∂f (x1,x2 )/∂x1*ε(x1)+∂f (x1,x2 )/∂x2*ε(x2)
值,则绝对误差是
|x-x*| ≤0.5 ×10-2-5 = 0.5 ×10-7
定义3或式
|ε(x)|=|x-x*| ≤0.5 ×10p-n
建立了绝对误差(限)和有效数字之间的关系。由于n 越大,10p-n
的值越小,所以有效数字位越多,则绝对误差(限)越小。
有效数字与相对误差的关系
定理1 若近似数x*具有n位有效数字,则 其相对误差为
0.484
24
24
我们不能由此推出x*有两位有效数字,这是因为
x-x*=0.4900-0.484=0.0060>0.005
即可知近似值x*并不具有两位有效数字。
实际上, x*只有一位有效数字。
数值运算中误差的影响
要分析数值运算中误差的传播,首先就要估 计数值运算中的误差。数值运算的误差估计情况 较复杂, 通常利用微分来估计误差。
ε| r(x)| ≤1/(2×a1) ×10-(n-1)
其中a1≠0是x*的第一位有效数字。
定理1说明有效数字位越多,相对误差(限)越小。
定理2 形式如x*= ±0.a1a2… an … ×10p的近似数 x*,若其相对误差满足
ε| r(x)| ≤1/[2×(a1+1)] ×10-(n-1)
则x* 至少有n位有效数字。 由此可知,有效数字位数可刻画近似数的精