数值分析第1章(0)
数值分析课件 第一章 绪论

1 e 0 1 x n e 0 d I n x 1 e 0 1 x n e 1 d x e 1 1 ( ) I n n n 1 1
公式一:I n 1 e [ x n e x 1 0 n 0 1 x n 1 e x d x ] 1 n I n 1
I01 e 01exdx11 e0.63212 记为0I5 0* 6 此公式精确成
初始的小扰动 |E 0|0.51 0 8迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: I n 1 n I n 1 I n 1 n 1 ( 1 I n )
方法:先估计一个IN ,再反推要求的In ( n << N )。 注 意在e此理(N 公论1 式上1)与等公价IN 式。一N 1 1
)
0 .0 6 6 8 7 0 2 2 0
I
12
1 (1 13
I
13
)
0 .0 7 1 7 7 9 2 1 4
I
11
1 (1 12
I
12
)
0 .0 7 7 3 5 1 7 3 2
I
10
1 11
(1
I
11
)
0 .0 8 3 8 7 7 1 1 5
I
1
1 2
(1
I
2
)
0 .3 6 7 8 7 9 4 4
0
2! 3! 4!
11/1e111 e1 x 2d1x11 1 3 2! 50 3! 7 4! 9
取 01ex2dxS4 ,
S4
R4 /* Remainder */
则 R 44 1 !1 9 由 留5 1 !下1 部1 分1 称为截断误差 /* Truncation Error */
数值分析第五版1-3章

* r
1 2a1
10(n1)
反之,若x*的相对误差限
* r
1 2(a1 1)10(n1) Nhomakorabea则x*至少具有n位有效数字.
2020/2/10
6 第1章 数值分析与科学计算引论
研究对象 作用特点
数值计算 误差
误差分析 避免危害
数值计算 算法设计
数学软件
3 数值运算的误差估计
1. x1*与x2*为两近似数, 误差限为 ( x1* ), ( x2* ), 则 : ( x1* x2* ) ( x1* ) ( x2* ); ( x1* x2* ) x2* ( x1* ) x1* ( x2* );
3.多元函数误差限(多元函数Taylor展式) A f (x1,L , xn )
( A*)
n k 1
f ( xk
)*
(xk* ),
2020/2/10
r ( A*)
n k 1
( f )* xk
(xk* )
A*
7 第1章 数值分析与科学计算引论
研究对象 作用特点
数值计算 误差
误差分析 避免危害
数值计算 算法设计
数学软件
1.3 误差定性分析及避免误差危害
概率分析法 向后误差分析法 区间分析法
1. 病态问题与条件数 病态问题 输入(微小的扰动)
输出(相对误差很大)
条件数 C p
对于f (x), x有微小的扰动x x x*
er* ( f (x* ))
第1章 数值分析与科学计算引论
数值分析研究对象、作用与特点 数值计算的误差 误差定性分析与避免误差危害 数值计算中算法设计的技术 数学软件
数值分析讲义

第1章数值分析中的误差一、重点内容误差设精确值x* 的近似值x,差e=x-x* 称为近似值x 的误差(绝对误差)。
误差限近似值x 的误差限 是误差e 的一个上界,即|e|=|x-x*|≤ε。
相对误差e r是误差e 与精确值x* 的比值,。
常用计算。
相对误差限是相对误差的最大限度,,常用计算相对误差限。
绝对误差的运算:ε(x1±x2)=ε(x1)+ε(x2)ε(x1x2)≈|x1|ε(x2)+|x2|ε(x1)有效数字如果近似值x 的误差限ε 是它某一个数位的半个单位,我们就说x 准确到该位。
从这一位起到前面第一个非0 数字为止的所有数字称为x 的有效数字。
关于有效数字:(1) 设精确值x* 的近似值x,x=±0.a1a2…a n×10ma1,a2,…,a n是0~9 之中的自然数,且a1≠0,|x-x*|≤ε=0.5×10m-l,1≤l≤n则x 有l位有效数字.(2) 设近似值x=±0.a1a2…a n×10m有n 位有效数字,则其相对误差限(3) 设近似值x=±0.a1a2…a n×10m的相对误差限不大于则它至少有n 位有效数字。
(4) 要求精确到10-3,取该数的近似值应保留4 位小数。
一个近似值的相对误差是与准确数字有关系的,准确数字是从一个数的第一位有效数字一直数到它的绝对误差的第一位有效数字的前一位,例如具有绝对误差e=0.0926 的数x=20.7426 只有三位准确数字2,0,7。
一般粗略地说,具有一位准确数字,相对于其相对误差为10% 的量级;有二位准确数字,相对于其相对误差为1% 的量级;有三位准确数字,相对于其相对误差为0.1% 的量级。
二、实例例1 设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的误差是0.001526…,有|x-x*|=0.001526…≤0.5×101-3即l=3,故x=3.14 有 3 位有效数字。
上海大学-数值分析第一章导论

1.2 数值计算的误差与有效数字
1.2.1 误差来源与分类:
按来源分,分为固有误差和计算误差。
固有误差:建立模型时已存在。 •模型误差:建立数学模型时所引起的误差; •观测误差:测量工具的限制或在数据的获取时 随机因素所引起的物理量的误差。
•截断误差:用数值方法求解数学模型时,用简单 代替复杂,或者用有限过程代替无限过程所引起的 误差; •舍入误差:计算机表示的数的位数有限,通常用 四舍五入的办法取近似值,由此引起的误差。
如果存在一适当小的正数ε r(
x * ),使得
e( x ) (x ) er ( x ) r (x ) x x
则称ε r( x * )为相对误差限。
例:x=15,
ε (x *) =2, ε r(x)=2/15=13.33%; y=1000, ε (y *)=5 , ε r(y)=5/1000=0.5%; v=3*105km/s,ε (v *) =0.9,ε r(v *)= 0.0003%; v1=0.34km/s, ε (v1 *)=0.9 , ε r(v 1*)=265 %; v1的测量误差无法容忍!
能在这个地区看到,这种彗星每隔 76年才能看见一次。
命令所有士兵着野战服在操场上集合,我将向他们解释 这一罕见的现象。如果下雨的话,就在礼堂集合,我为 他们放一部有关彗星的影片。 值班军官对连长: 根据营长的命令,明晚8点76年才能
一见的哈雷彗星将在操场上空出现。如果下雨的话,就让 士兵穿着野战服列队前往礼堂,这一罕见的现象将在那里 出现。
计算误差:计算过程中出现的误差。
例:平面二连杆机械手
x l1 cos l2 cos y l1 sin l2 sin
数值分析第一章作业

数值分析第一章作业1. 数值计算方法设计的基本手段是().(A )近似 (B ) 插值 (C ) 拟合 (D ) 迭代2. 为了在有限时间内得到结果,用有限过程取代无限过程所产生的近似解与精 确解之间的误差称为().(A )舍入误差 (B ) 截断误差 (C ) 测量误差 (D ) 绝对误差3. 由于计算机的字长有限,原始数据在机器内的表示以及进行算术运算所产生 的误差统称为().(A )舍入误差 (B ) 截断误差 (C )相对误差 (D ) 绝对误差 4. 数值计算方法研究的核心问题可以概括为()对计算结果的影响. (A )算法的稳定性(B ) 算法的收敛性 (C )算法的复杂性 (D ) 近似 N dx5. 当N 充分大时,利用下列各式计算I 二 半,等式()得到的结果最好. •N 1 +x(A ) I =arcta n (N 1)-arcta n (N ) (B )I 二 arcta n (N 2 N 1) 6.计算(、、2-1)6,取;2 1.4,利用下列哪个公式得到的结果最好 ?为什么?7. 计算球体的体积,已知半径的相对误差限不超过 3 10”,则计算所得体积的相 对误差限如何估计?8. 设x 0,近似值x 的相对误差限为:,试估计In x 的误差限.9. 计算圆柱体的体积,已知底面半径r 及圆柱高h 的相对误差限均不超过、:,则 计算所得体积的相对误差限如何估计?.10. 用秦九韶算法求f (x ) = 4x 3「3x 2 • x 「1在x = 2处的值.111. 已知近似值 X =1.0000 的误差限;(x )=1 10,, f (x )二丄 X 2,求;(f (x )),并16说明X”及f (X”)的各有几位有效数字.(C)I = arcta n( 2 N 2 N 1) (D)(A) 1(;2 1)6 (B) (3-2运3 (C) 1(3 - 2 ・(D) 99 - 70、212. 设a为非零常数,已知y0的近似值y0,由递推式y n =ay n斗计算序列{y n}的近似值,分析该算法的稳定性.。
数值分析第二版(丁丽娟)答案

7 10922.5000 23483.0000 23483.5000
8 43690.5000 80827.0000 80827.5000
21.000000000000000 17.000000000000000 16.238095238095237 16.058823529411764 16.014662756598241 16.003663003663004 16.000915583226515
3、 用规范化幂法求
按模最大的特征值和对应的特征向量,取初值
。当特征值有3位小数稳定时停止。
4、 用反幂法求矩阵
练习五
,迭代7次。
的最接近于6 的特征值和对应的特征向量,取初值
例1 令
求
的一次插值多项式,并估计插值误差。
例2 已知函数
的如下函数值表,
x
0.0
0.1
0.2
0.3
0.4
0.5
f (x)
1.00
16.007498295841852 16.002385008517887
16.002177786576915 16.00069286350589
则开根号得 4.000114446266071 4.000272214059553 4.000086607000640
,对应的特征向量为
,
第五章答案
2. 解: 正则方程组为
38.000
19.5000
18.199999999999999 16.636363636363637
16.578947368421051 16.179487179487179
16.120879120879120 16.038251366120218
数值分析 第1章 插值方法讲解

f (n1) ( )
(n 1)!
n k 0
(x
xk ),
ξ [a,b]
第1章 插值方法
例题1: 令x0=0, x1=1. 写出y=f(x)=e-x的一次插值多项式 P1(x), 并估计误差.
解: x0=0, y0=1; x1=1, y1=e-1.
P1(x) y0l0 (x) y1l1(x)
0, j k lk (x j ) 1, j k
lk (x)
n j 0
x xj xk x j
jk
插值基函数
Pn (x)
n k 0
yklk (x)
n k 0
n
yk (
j0
x xj ) xk x j
jk
第1章 插值方法
§3 插值余项
1.拉格朗日余项定理
l0 (x)
(x ( x0
x1)(x x2 ) x1)(x0 x2 )( x1
x0 )(x x2 ) x0 )(x1 x2 )
;
l2 (x)
(x ( x2
x0 )(x x1) x0 )(x2 x1)
.
插值基函数
第1章 插值方法
3.一般情形 问题的解(插值公式):
第1章 插值方法
f (x) Pn (x)
f
'
' (
2
)
(
x
x0
)(x
x1
)
1 e- (x 0)(x 1), ξ [0,1] 2
max
0 x1
f (x) Pn (x)
1 max e- 2 0x1
数值分析第一章

21024(2-2-52) ≈10308 The smallest normalized positive machine number: 2-1024(1+2-52) ≈10-308
If ︱x︱< 10-308 , then result in underflow, fl(x) is set to zero; If ︱x︱>10308, then result in overflow, the computation will halt.
计算机数系
(Collection of machine numbers)
reference books
误差及其运算
(Errors and Operations)
▲
什么是算法和计算量? 什么是算法和计算量? (Algorithm and Calculated Quantities )
▲
Calculated Quantities
A
cij = ∑ a ik b kj i = 1,
k =1
n
,m; j = 1,
B
( ((anx + an−1)x + an−2)x + + a1)x + a0
The Number of Operations of AB is
N= (m ×n ×s )flop
计算机数系(Collection of machine numbers)
Basic Concepts in Numeric Analysis 算法与计算量
(Algorithm and Calculated Quantities)
2.<应用计算方法教程>, 张晓丹,郑连存等编,机械出版 社,2008,6 3. 《科学和工程计算基础》,施妙根、顾丽珍 编著,清华大学 出版社。1999