江苏省宜兴市苏科版2017届九年级上第一次月考数学试题含答案

合集下载

苏教版九年级数学上册第一次月考试卷及答案【精选】

苏教版九年级数学上册第一次月考试卷及答案【精选】

苏教版九年级数学上册第一次月考试卷及答案【精选】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.2C.2 D.43.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人4.若x取整数,则使分式6321xx+-的值为整数的x值有()A.3个B.4个C.6个D.8个5.如果分式||11xx-+的值为0,那么x的值为()A.-1 B.1 C.-1或1 D.1或06.如果关于x的一元二次方程2310kx x-+=有两个实数根,那么k的取值范围是()A.94k B.94k-且0k≠C.94k且0k≠D.94k-7.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0) D .(-32,0) 二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________. 2.分解因式:34x x -=________.31x -x 的取值范围是__________. 4.如图,ABC ∆中,D 为BC 的中点,E 是AD 上一点,连接BE 并延长交AC 于F ,BE AC =,且9BF =,6CF =,那么AF 的长度为__________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解方程: 22142xx x +=--2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADEC ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A :篮球 B :乒乓球C :羽毛球 D :足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)6.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、B5、B6、C7、C8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、x(x+2)(x﹣2).3、1x≥4、3 2;5、706、5三、解答题(本大题共6小题,共72分)1、x=-32、3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)理由见详解;(2)2BD=1,理由见详解.5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.。

苏科版九年级上册数学第一次月考试卷及答案

苏科版九年级上册数学第一次月考试卷及答案

苏科版九年级上册数学第一次月考试题一、选择题。

(每小题只有一个正确答案)1.下列方程是一元二次方程的是( )A .2x 2-5x+3B .2x 2-y+1=0C .x 2=0D .21x + x=2 2.方程2350x x --=的两根之和是( )A .0B .3C .-3D .63.已知⊙O 的半径是5,直线l 是⊙O 的切线,P 是l 上的任一点,那么( )A .0<OP <5B .OP =5C .OP >5D .OP≥5 4.下列命题正确的个数有( )①等弧所对的圆周角相等;②相等的圆周角所对的弧相等;③圆中两条平行弦所夹的弧相等;④三点确定一个圆;⑤在同圆或等圆中,同弦或等弦所对的圆周角相等.A .2B .3C .4D .55.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是( )A .①B .②C .③D .均不可能 6.我校三年规划提出:为了绿化校园,计划经过两年时间,绿地面积增加40%.设平均每年绿地面积增长率为x ,则方程可列为( )A .2(1)40%x +=B .2(1)(1)40%x x +++=C .2(1)140%x +=+D .2(1)(1)140%x x +++=+7.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .若BAC 25∠=,则DCA ∠的度数是( )A .030B .035C .040D .0458.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)二、填空题9.方程x 2=4x 的解 __. 10.若关于x 的一元二次方程(m ﹣1)x 2+5x +m 2﹣3m +2=0的常数项为0,则m 的值等于_____. 11.如图,AB 、AC 是⊙O 的切线,且∠A=54°,则∠BDC=__________.12.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上,用一个圆面去覆盖△ABC ,能够完全覆盖这个三角形的最小圆面的半径是____.13.如图,AB 为⊙O 的直径,弦CD 与AB 交于点E ,连接AD .若∠C=80°,∠CEA=30°,则∠CDA=_____________°.14.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心O分别作AB、BC、AC 的垂线,垂足为E、F、G,连接EF.若OG=2,则EF为_________.15.在平面直角坐标系中,以点(3,-5)为圆心,r为半径的圆上有且仅有....两点到x轴所在直线的距离等于1,则圆的半径r的取值范围是______________.16.如图所示,已知A点从点(1,0)出发,以每秒1个单位长的速度沿着x轴的正方向运动,经过t秒后,以O、A为顶点作菱形OABC,使B、C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在直线相切,则t=_________.三、解答题17.解下列方程:(1)x2+6x+5=0;(2)2(x−1)2=3x−3;18.如果一元二次方程ax2+bx+c=0(a≠0)的两根是x1、x2,那么利用公式法写出两个根x1、x2,通过计算可以得出:x1+x2=ba-,x1x2=ca.由此可见,一元二次方程两个根的和与积是由方程的系数决定的.这就是一元二次方程根与系数的关系.请利用上述知识解决下列问题:(1)若方程2x2-4x-1=0的两根是x1、x2,则x1+x2=__________,x1x2=__________.(2)已知方程x2-4x+c=0的一个根是2 ,请求出该方程的另一个根和c的值.19.已知关于x的方程3x2–(a–3)x–a=0(a>0).(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根大于2,求a的取值范围.20.如图,△ABC中,AB=AC=BC=8.(1)动手操作:利用尺规作以AC为直径的圆O,并标圆O与AB的交点D,与BC的交点E,连接DE、CE(保留作图痕迹,不写作法)(2)综合应用:在你所作的图中,①求证:DE=CE;②求DC的长21.在⊙O中,AB为直径,C为⊙O上一点.(1)如图1,过点C作⊙O的切线,与AB延长线相交于点P,若∠CAB=27°,求∠P的度数;(2)如图2,D为弧AB上一点,OD⊥AC,垂足为E,连接DC并延长,与AB的延长线交于点P,若∠CAB=10°,求∠P的大小.22.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?23.如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.(1)求∠POA的度数;(2)计算弦AB的长.24.已知AB是⊙O的直径,CD是⊙O的弦,AB与CD交于E,CE=DE,过B作BF∥CD,交AC的延长线于点F,求证:BF是⊙O的切线.25.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M 的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.参考答案1.C2.B3.D4.A5.A6.C7.C8.C9.x=0或x=410.211.63°1213.201415.4<r<616.17.(1)x1=-1,x2=-5;(2)x1=1,x2=2.518.(1)2 -0.5 (2)c=119.(1)证明见解析(2)a>620.(1)见解析;(2).21.(1)∠P =36°;(2)∠P=30°.22.(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.23.(1)60°(2)24.证明见解析25.(1)B(﹣3,0),C(1,0);(2)矩形,M的坐标为(﹣2;(3)在旋转过程中∠MQG的大小不变,始终等于120°.。

苏教版九年级数学上册第一次月考考试卷(及参考答案)

苏教版九年级数学上册第一次月考考试卷(及参考答案)

苏教版九年级数学上册第一次月考考试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( )A .12B .10C .8或10D .63.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°9.如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交AB 于点D,以OC为半径的CE交OA于点E,则图中阴影部分的面积是()A.12π+183B.12π+363C.6π+183D.6π+363 10.如图,在矩形ABCD中,AB=10,4=AD,点E从点D向C以每秒1个单位长度的速度运动,以AE为一边在AE的左上方作正方形AEFG,同时垂直于CD 的直线MN也从点C向点D以每秒2个单位长度的速度运动,当点F落在直线MN上,设运动的时间为t,则t的值为()A.103B.4 C.143D.163二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136_____________.2.因式分解:39a a-=_______.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.5.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为__________米.6.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是__________.三、解答题(本大题共6小题,共72分)1.解方程:21133x x x x =+++2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?5.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、B6、C7、D8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)12、a(a+3)(a-3)3、0或14、72°5、56、2三、解答题(本大题共6小题,共72分)1、32 x=-2、(1)3a2-ab+7;(2)12.3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)1.8(015)2.49(15)x xx x>≤≤⎧⎨-⎩(2)该用户二、三月份的用水量各是12m3、28m35、(1)补图见解析;50°;(2)3 5 .6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

九年级数学上学期第一次月考试题苏科版 (2)

九年级数学上学期第一次月考试题苏科版 (2)

江苏省宜兴市丁蜀镇陶都中学2017届九年级数学上学期第一次月考试题一、选择题:(每题3分)1、下列方程中,是关于x 的一元二次方程的是 ( ).A )1(21(2+=+x x )B 02112=-+xx C 02=++c bx ax D 222x x x =- 2、已知一元二次方程012=-+x x ,下列判断的是 ( )A .该方程有两个相等的实数根B .该方程有两不个相等的实数根C .该方程无实数根D .该方程根的情况不确定 3、用配方法解一元二次方程056x 2=+-x ,配方正确的是 ( ) A. (x - 3)2 = 5 , B. (x - 3)2 = -4 , C. (x - 3)2 = 4 , D. (x - 3)2 = 9 .4、一元二次方程9)2(2=-x 的两个根分别是 ( )A .5,121-==x xB .5,121-=-=x xC .5,121==x xD .5,121=-=x x5、三角形两边的长是3和4,第三边的长是方程035122=+-x x 的根,则该三角形的周长为A .14B .12C .12或14D .以上都不对 ( )6、某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的总产值为175亿元,若设平均每月的增长率为x ,根据题意可列方程 ( )A .50(1+x )2=175B .50+50(1+x )2=175C .50(1+x )+50(1+x )2 =175D .50+50(1+x )+50(1+x )2 =1757、关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 为( )A .1B .2C .1或2D .08、已知α,β是方程012015x 2=++x 的两个根,则)12016)(12016(22++++ββαα的值 A .1B . 2C .3D .4 ( ).二、填空题:(每题2分)9、一元二次方程3x 2-2x -5=0的一次项系数是_______。

苏科版九年级上第一次月考数学试题含答案初三数学

苏科版九年级上第一次月考数学试题含答案初三数学

九年级数学试题一、选择题(每题3分,共24分.每小题有四个选项,其中只有一个选项是正确的) 1.用配方法解方程2410x x ++=,配方后的方程是A .2(2)5x +=B .2(2)5x -=C .2(2)3x -=D .2(2)3x += 2.已知⊙O 的半径是6cm ,点O 到同一平面内直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是A .相交B .相切C .相离D .无法判断 3.若0a b c -+=,则关于x 的一元二次方程20(0)ax bx c a ++=≠必有一根为 A .1- B .0 C .1 D .1-或1 A .4个 B .3个 C .2个 D .1个5.已知m 、n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于A .5-B .5C .9-D .96. 如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,20CDB ∠=︒,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 等于A .40︒B .50︒C .60︒D .70︒7. 如图,在扇形OAB 中,110AOB ∠=︒,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,则AD 的度数为A .40︒B .50︒C .60︒D .70︒8.反比例函数4a y x+=的图像如图所示,P 、Q 为该图像上关于原点对称的两点,分别过点P 、Q 作y 轴的垂线,垂足分别为A 、B .若四边形AQBP 的面积大于12,则关于x 的方程21(1)04a x x --+=的根的情况是A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定 二、填空题 (每小题3分,共30分) 9.方程(1)0x x +=的解是 ▲ .10.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,设平均每次降价的百分率为x ,则可列方程为 ▲ .11.如图,△ABC 的外心的坐标是 ▲ .12.关于x 的方程220x x k --=有两个不相等的实数根,则k 的取值范围是 ▲ .13.一元二次方程的一个根为3-,另一个根x 满足13x <<.请写出满足题意的一个一元二次方程 ▲ .14.若2222()(2)8a b a b ++=-,则22a b += ▲ .15.如图,两边平行的刻度尺在圆上移动,当刻度尺的一边与直径为10cm 的圆相切时,另一边与圆两个交点处的读数恰好为“4”和“12”(单位:cm ),则刻度尺的宽为 ▲ cm .y AyA(第6题) y x B A QO P (第8题) C D B OA (第7题) ODC E B16.如图,⊙C 过原点,且与两坐标轴分别交于点A 、B ,点A 的坐标为(0,3),M 为第三象限内OB 上一点,120BMO ∠=︒,则⊙C 的半径为 ▲ .17.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ∠=︒,圆心O 到弦AD 的距离是 ▲ cm .18.如图,点A 从点(1,0)出发,以每秒1个单位长的速度沿着轴的正方向移动,经过t 秒后,以O 、A 为顶点作菱形OABC ,使B 、C 点都在第一象限内,且60AOC ∠=︒.若以点(0,4)P 为圆心,PC 为半径的圆恰好与OA 所在直线相切,则t = ▲ .三、解答题 (共96分,解答时应写明演算步骤、证明过程或必要的文字说明.) 19.(本题满分8分)解方程:(1)22990x x --=; (2)22320x x --=.20.(本题满分8分)先化简,再求值:222142442a a a a a a a a ---⎛⎫-÷ ⎪++++⎝⎭,其中a 满足22240a a +-=.21.(本题满分8分)如图,以点O 为圆心的两个同心圆中,大圆的弦AB 切小圆于点P .(1)P A 与PB 相等吗?请说明理由; (2)若8AB =,求圆环的面积.OP BA (第18题) xyC BA O P (第17题) CB OD A22.(本题满分8分)如图,⊙O 是△ABC 的内切圆,切点分别为D 、E 、F ,60B ∠=︒,70C ∠=︒. (1)求∠BOC 的度数; (2)求∠EDF 的度数.23.(本题满分10分)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?24.(本题满分10分)如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,交⊙O 于点P ,OA =5,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C . (1)求证:AB=AC ;(2)若PC =O 的半径.25. (本题满分10分) 已知关于x 的方程2(21)4(0.5)0x k x k -++-=(1)求证:不论k 取什么实数值,这个方程总有实数根;(2)若等腰三角形ABC 的一边长为4a =,另两边的长b 、c 恰好是这个方程的两个根,求△ABC 的周长.26.(本题满分10分)如图,在平面直角坐标系中,⊙P 经过x 轴上一点C ,与y 轴分别相交于A 、B 两点,连接AP 并延长分别交⊙P 、x 轴于点D 、点E ,连接DC 并延长交y 轴于点F .若点F 的坐标为(0,1),点D 的坐标为(6,1)-.(1)求证:DC =FC ;(2)判断⊙P 与x 轴的位置关系,并说明理由; (3)求⊙P 的半径.27.(本题满分12分)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)花圃的面积为 ▲ 2米(用含a 的式子表示);(2)如果通道所占面积是整个长方形空地面积的83,求出此时通道的宽;(3)已知某园林公司修建通道、花圃的造价1y (元)、2y (元)与修建面积x 2(m )之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价为105920元?28.(本题满分12分)在△ABC 中,5AB AC ==,6BC =.将△ABC绕点C 顺时针旋转,得到△A 1B 1C.(1)如图1,当点1B 恰好在线段BA 的延长线上时,①求证:BB 1∥CA 1; ②求△AB 1C 的面积;(2)如图2,点E 是BC 上的中点,点F 为线段AB 上的动点.在△ABC 绕点C 顺时针旋转过程中,点F 的对应点是1F .求线段1EF 长度的最大值与最小值的差.图1A 1B 1CBA图2F 1FEA 1B 1CBA x y 80012004800062000/元/m 2y 2y 1花圃通道O 花圃a 米a 米a 米a 米60米40米通道图1 图2九年级数学参考答案一、选择题(本大题共8小题,每小题3分,共24分)二、填空题(本大题共10小题,每题3分,共30分)9.120,1x x ==- 10.2150(1)96x -= 11.()2,1- 12.1k >- 13.(3)(2)0x x +-=(答案不唯一) 14. 4 15. 2 16. 319. (1)1211,9x x ==- ………4分 (2)1212,2x x ==- ………8分 20. 原式1(2)a a =+ 代入求值,原式124= ………8分21.(1)略………4分 (2)圆环的面积为16π ……8分 22.(1)115BOC ∠=︒……4分 (2)65EDF ∠=︒……8分23. 解:设衬衫的单价降了x 元.根据题意,得(202)(40)1250x x +-= 解得1215x x ==答:衬衫的单价降了15元. ……10分 24.解:(1)略 ……5分(2)设圆半径为r ,则5OP OB r PA r ===-,;2222222222225;(5);AB OA OB r AC PC AP r AB ACAB AC ∴=-=-=-=--=∴= ∴2222(5)5r r --=-∴3r = ……10分25. (1)证明:∵224[(21)]414(0.5)b ac k k -=-+-⨯⨯-2=(23)0k -≥∴不论k 取什么实数值,这个方程总有实数根……5分(2)解:当4a =为腰时,52k =,△ABC 的周长为44210++= 当4a =为底时,32k =,△ABC 的三边为224,,,这样的三角形不存在, 故舍去26. (1)略 ……3分(2)相切,理由略 ……6分 (3)5r = ……10分 27. 解:(1)242002400a a -+……2分(2)当通道所占面积是整个长方形空地面积的83,即花圃所占面积是整个长方形空地面积的85,则854060240020042⨯⨯=+-a a解方程得:51=a ,452=a (不符合题意,舍去)即此时通道宽为5米. ……6分(3)当a =10时,花圃面积为(60210)(40210)800-⨯⨯-⨯=(平方米) 即此时花圃面积最少为800(平方米) 根据图像可设mx y =1,b kx y +=2,将点(1200,48000),(800,48000),(1200,62000)代入,则有 1200m =48000,解得:m =40 ∴ x y 401= 且有 ⎩⎨⎧=+=+62000120048000800b k b k 解得:⎩⎨⎧==2000035b k∴ 20000352+=x y∵花圃面积为:2(602)(402)42002400a a a a --=-+ ∴通道面积为:222400(42002400)4200a a a a --+=-+ ∴)4200(4020000)24002004(3522a a a a -⋅+++-⋅=10592012a =,248a =舍去()答:通道宽为2米时,修建的通道和花圃的总造价为105920元. ……12分28. 证明:(1)①∵1,AB AC B C BC ==∴,1B ACB B ∠=∠∠=∠∵2ACB ∠=∠(旋转角相等)∴12∠=∠∴1BB ∥1CA ……3分 △.过A 作AF BC ⊥于F ,过C 作CE AB ⊥于E ∵,AB AC AF BC =⊥ ∴3BF CF ==作CE AB ⊥ ∵1CB CB =∴12B B BE = ∵22122455ABC S CE AB ⨯=== ∴185BE =∴1365BB =∴13611555AB =-= ∴△1AB C 的面积为1112413225525⨯⨯= ……7分(2) 1EF 的最小值为95;1EF 的最大值为9.∴线段1EF 的最大值与最小值的差936955-=. ……12分1B①。

苏科版初三_九年级上学期第一次月考数学试卷含解析

苏科版初三_九年级上学期第一次月考数学试卷含解析

-第一学期阶段性测试试卷初 三 数 学选择、填空题(Ⅰ卷)一、选择题(每题3分,共30分)1.下列方程为一元二次方程的是( ▲ )A .2220x xy y -+= B .()231x x x +=- C .223x x -=D .10xx+= 2.用配方法解方程2420x x -+=,下列配方正确的是( ▲ )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=3.关于x 的一元二次方程()()0412222=-+-+-m x m x m 的一个根是0,则m 的值是( ▲ )A .2 B .-2 C .2或-2 D .4.若关于的一元二次方程有两个不相等的实数根,则的取值范围是( ▲ )A . B .且 C . D .且 5.已知8)3)(1(2222=++++y x y x 则22y x +的值为( ▲ ). A .-5或1 B .1 C .5 D .5或-1 A .三点确定一个圆B .三角形的外心是三角形三个角的平分线的交点 D .三角形的外心是三角形任意两边的垂直平分线的交点7.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =35°,则∠OAC 的度数是 ( ▲ ) A .35° B .55° C .65° D .70°8.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 的大小为 ( ▲ ) A .25° B .30° C .40° D .50°9.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 的最小值为4,则⊙O 的12x 2210k x x --=k 1k >-1k >-0k ≠1k <1k <0k ≠…………………半径为 ( ▲ ) A .5 B .4 C .3 D .210.下列语句中,正确的有( ▲ ) A .1个 B .2个 C .3个 D .4个 ①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.二、填空题(每题3分,共30分)11. 一元二次方程()02=-x x 的解是 ▲ . 12. 已知a 、b 是一元二次方程2210x x --=的两根,则代数式(2)()2a b a b ab +--+的值等于 ▲ .13.已知32+是关于x 的一元二次方程042=+-m x x 的一个根,则该方程的另一个根是____▲___. 14.关于x 的方程()()012342=-++---m x m xm m m 是一元二次方程,则m = ▲ . 15.某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为3528元/台,设平均每次的降价率为x ,根据题意列出的方程是 ▲16.已知x 1、x 2为方程2310x x ++=的两实根,则212320x x -+= ▲17.若关于x 的方程()01212=+--x x m 有实数解,那么实数m 的取值范围是 ▲ 18.如图,AB 为⊙O 的直径,∠E =200,∠DBC =500,则∠CBE =___▲____0. 19.如图,在⊙O 中,弦AB =1.8 cm ,圆周角∠ACB =300,则⊙O 的直径为 ___▲___cm .20.如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =B D ,∠CCC =700.现给出以下四个结论:①∠CA =450;②AC =AB ;③AE =B CE ;④CE ·AB =2BD 2.其中正确结论的序号是 ___▲____.初三数学答题卷(Ⅱ卷)二、填空题(每题3分,共30分)11. 、 12. 、 13. 、 14. 、 15. 、 16. 、 17. 、 18. 、 19. 、 20. 、三、解答题(本大题共9小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)(1) ()0422=--x (2)0342=--x x (3)()()2232-=-x x x(4)2450x x +-=(配方法...) (5) 230x ++=22.(本题满分5分)小明家的房前有一块矩形的空地,空地上有三棵树A 、B 、C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).(2)若△ABC 中AB =8米,AC =6米,∠BAC =90°,试求小明家圆形花坛的面积.23.(本题满分5分)已知关于x 的一元二次方程22(21)20x k x k +++-=有实根 (1)求k 的取值范围(2)若方程的两实根的平方和等于11,求k 的值. 24.(本题满分5分)如图,在⊙O 中,∠ACB =∠BDC =60°,AC =23cm . (1)求∠BAC 的度数; (2)求⊙O 的周长. 25.(本题满分6分)如图,∆ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC =5,DC =3,AB =42,求⊙O 的直径.26.(本题满分6分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请回答: (1)商场日销售量增加 件,每件商品盈利 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利达到2100元?27.(本题满分6分)已知∆ABC 的两边AB 、AC 的长是关于x 的一元二次方程()0233222=++++-k k x k x 的两个实数根,第三边的长是5.(1)求当k 为何值时,∆ABC 是以BC 为斜边的直角三角形; (2)求当k 为何值时,∆ABC 是等腰三角形,并求三角形的周长。

苏科版九年级上册数学第一次月考试题带答案

苏科版九年级上册数学第一次月考试题带答案

苏科版九年级上册数学第一次月考试卷一、选择题。

(每小题只有一个正确答案)1.一元二次方程22x x 的解是()A .x =2B .x =0C .x 1=﹣2,x 2=0D .x 1=2,x 2=02.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定3.如图,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°,则∠DAB 等于()A .55°B .60°C .65°D .70°4.如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,已知CD =16,BE =4,则⊙O 的直径为()A .8B .10C .15D .205.如图,AB 是⊙O 的直径,C .D 是⊙O 上一点,∠CDB=20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 等于()A .40°B .50°C .60°D .70°6.一个点到圆的最小距离为4cm ,最大距离为9cm ,则该圆的半径是()A .2.5cm 或6.5cmB .2.5cmC .6.5cmD .5cm 或13cm7.若将半径为12cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A .2cm B .3cm C .4cm D .6cm8.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是()A .4-9πB .4-89πC .8-49πD .8-89π9.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为A B .5C .3D .10.已知关于x 的一元二次方程(k+1)x 2+2x+k 2-2k-3=0的常数项等于0,则k 的值等于()A .-1B .3C .-1或3D .-3二、填空题11.半径为2的圆的内接正三角形的面积是____.12.过⊙O 内一点M 的最长弦为10cm ,最短弦为8cm ,则OM=_______cm 13.已知直角△ABC 的两直角边的长分别为6、8,则此直角三角形的内切圆的半径为__.14.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是_____(结果保留π)15.如图,⊙O 是△ABC 的外接圆,∠BAC=60°,若⊙O 的半径OC 为2,则弦BC 的长为___________.16.方程250x x -=的解是________________.17.一元二次方程x(x ﹣5)=x ﹣5的解为___________.三、解答题18.用适当的方法解下列方程:(1)2x 510x -+=;(2)()()23x-2x-2x =;(3)()()22231y y +=-.19.如图,OA=OB ,AB 交⊙O 于点C 、D ,AC 与BD 是否相等.为什么.20.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,求点C 的坐标.21.如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)求证:AC=CD;(2)如果OD=1,tan∠OCA,求AC的长.22.如图,△ABC外切于⊙O,切点分别为D、E、F,BC=7,⊙O的半径为,(1)∠A=60°,求△ABC的周长.(2)若∠A=70°,点M为⊙O上异于F、E的动点,则∠FME的度数为°.23.如图,在平面直角坐标系中,⊙P切x轴、y轴于C、D两点,直线交x轴、y轴的正半轴于A、B两点,且与⊙P相切于点E.若AC=4,BD=6.(1)求⊙P的半径;(2)求切点E的坐标.24.在矩形ABCD中,点O在对角线BD上,以OD为半径的⊙O与AD、BD分别交于点E、F,且∠ABE=∠DBC.(1)求证:BE与⊙O相切;(2)若1sin3ABE∠=,CD=2,求⊙O的半径.25.如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(﹣2,0).(1)求线段AD所在直线的函数表达式;(2)动点P从点A出发,以每秒1个单位长度的速度,按照A⇒D⇒C⇒B⇒A的顺序在菱形的边上匀速运动一周,设运动时间为t秒、求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切.26.在直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.(1)如图,当C点在x轴上运动时,若设AC=x,请用x表示线段AD的长.(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时直线EF∥直线BO?这时⊙F和直线BO相切的位置关系如何?请给予说明.(4)G为CD与⊙F的交点,H为直线DF上的一个动点,连接HG、HC,求HG+HC的最小值,并将此最小值用x表示.参考答案1.D2.C3.C4.D5.B6.A7.D8.B9.D10.B11..12.313.2.14.8﹣2π15.16.x =0或x =517.x 1=5,x 2=118.(1)52x ±=;(2)x 2=或x 3=;(3)1y -4=或3y 2=.19.AC BD =,理由见解析.20.点C 的坐标为(1,3).21.(1)详见解析;(2)2.22.(1)20;(2)55或125.23.(1)2;(2)E (185,165).24.(1)证明见解析;(2)218.25.(1)y =+;(2)当t =2、6、10、14时,以点P 为圆心、以1为半径的圆与对角线AC 相切.26.(1)AD =1+x ;(2)随着C 点的变化,直线AE 的位置不变,直线AE 的解析式为y =x;(3)直线BO 与⊙F 相切,理由详见解析;(4.。

【苏科版】2017届九年级上第一次月考数学试卷(含答案解析)

【苏科版】2017届九年级上第一次月考数学试卷(含答案解析)

2016-2017学年江苏省无锡市东湖塘中学九年级(上)第一次月考数学试卷一、选择题1.关于x的方程x2﹣4=0的根是()A.2 B.﹣2 C.2,﹣2 D.2,2.下列说法中正确的是()A.弦是直径 B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦3.某地区周一至周六每天的平均气温为:2,﹣1,3,5,6,5(单位:℃),则这组数据的极差是()℃.A.7 B.6 C.5 D.04.若⊙O的弦AB等于半径,则AB所对的圆心角的度数是()A.30°B.60°C.90°D.120°5.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为()A.B.C.D.6.三角形的内心是三角形的()A.三条高的交点 B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点7.如图,AB、AC是⊙O的两条弦,∠A=25°,过点C的切线与OB的延长线交于点D,则∠D的度数()A.25°B.30°C.40°D.50°8.某县2014年的GDP是250亿元,要使2016年的GDP达到360亿元,求这两年该县GDP 年平均增长率.设年平均增长率为x,可列方程()A.250(1+2x)2=360 B.250(1+2x)=360C.250(1+x)(1+2x)=360 D.250(1+x)2=3609.如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是()A.cm B.cm C.cm D.cm10.如图,圆中有四条弦,每一条弦都将圆分割成面积比为1:3的两个部分,若这些弦的交点恰是一个正方形的顶点,那么这个正方形的外接圆的面积与图中阴影部分面积的比值为()A.π B.2﹣π C.πD.2π二、填空题11.一元二次方程2x2﹣5x﹣1=0的两根为x1,x2,则x1+x2=,x1•x2=.12.若⊙O的半径为5,弦AB的弦心距为3,则AB=.13.弧的半径为24,所对圆心角为60°,则弧长为.14.一组数据:2,3,4,5,6的方差是.15.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是.16.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为.17.如图,在三角形ABC中,∠A=70°,⊙O截△ABC的三边所得的弦相等,则∠BOC=.18.如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.三、解答题19.解方程(1)(2x﹣3)2=25(2)x2﹣x﹣1=0(3)x2﹣6x+8=0(4)(x﹣3)2=(5﹣2x)2.20.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x1x2﹣2x1﹣2x2=10时,求m的值.21.如图,⊙O的半径是5,P是⊙O外一点,PO=8,∠OPA=30°,求AB和PB的长.22.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)23.从甲、乙两位运动员中选出一名参加在规定时间内的投篮比赛.预先对这两名运动员进行了6次测试,成绩如下(单位:个):甲:6,12,8,12,10,12;乙:9,10,11,10,12,8;(1)填表:平均数众数方差甲10乙10(2)根据测试成绩,请你运用所学的统计知识作出分析,派哪一位运动员参赛更好?为什么?24.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.25.如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)在图中确定该圆弧所在圆的圆心D点的位置,D点坐标为.(2)连接AD、CD,求⊙D的半径及弧的长.26.如图,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围.27.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.28.(1)数学爱好者小森偶然阅读到这样一道竞赛题:一个圆内接六边形ABCDEF,各边长度依次为3,3,3,5,5,5,求六边形ABCDEF的面积.小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图③.可以求出六边形ABCDEF的面积等于.(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3.求这个八边形的面积.请你仿照小森的思考方式,求出这个八边形的面积.2016-2017学年江苏省无锡市东湖塘中学九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题1.关于x的方程x2﹣4=0的根是()A.2 B.﹣2 C.2,﹣2 D.2,【考点】解一元二次方程-直接开平方法.【分析】直接利用开平方法解方程得出答案.【解答】解:x2﹣4=0,则x2=4,解得:x1=2,x2=﹣2,故选:C.2.下列说法中正确的是()A.弦是直径 B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦【考点】圆的认识.【分析】根据弦、直径、弧、半圆的概念一一判断即可.【解答】解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选D.3.某地区周一至周六每天的平均气温为:2,﹣1,3,5,6,5(单位:℃),则这组数据的极差是()℃.A.7 B.6 C.5 D.0【考点】极差.【分析】先找出这组数据的最大值与最小值,再根据极差的定义即可求得.【解答】解:这组数据的最大数是6,最小数是﹣1,则极差是:6﹣(﹣1)=7;故选A.4.若⊙O的弦AB等于半径,则AB所对的圆心角的度数是()A.30°B.60°C.90°D.120°【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.【分析】由⊙O的弦AB等于半径,可得△AOB是等边三角形,继而求得AB所对的圆心角的度数.【解答】解:∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°.故选B.5.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为()A.B.C.D.【考点】几何概率.【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再根据旋转的性质求出阴影区域的面积即可.【解答】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为;故选A.6.三角形的内心是三角形的()A.三条高的交点 B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【考点】三角形的内切圆与内心;三角形的重心.【分析】A、三条高的交点叫垂心;B、三角形的三条角平分线的交点叫内心;C、三条中线的交点叫重心;D、三条边的垂直平分线的交点叫外心.【解答】解:三角形的内心是三角形的三条角平分线的交点,故选B.7.如图,AB、AC是⊙O的两条弦,∠A=25°,过点C的切线与OB的延长线交于点D,则∠D的度数()A.25°B.30°C.40°D.50°【考点】切线的性质.【分析】由于CD是切线,可知∠OCD=90°,而∠A=25°,利用圆周角定理可求∠COD,进而可求∠D.【解答】解:连接OC,∵CD是切线,∴∠OCD=90°,∵∠A=25°,∴∠COD=2∠A=50°,∴∠D=90°﹣50°=40°.故选C.8.某县2014年的GDP是250亿元,要使2016年的GDP达到360亿元,求这两年该县GDP 年平均增长率.设年平均增长率为x,可列方程()A.250(1+2x)2=360 B.250(1+2x)=360C.250(1+x)(1+2x)=360 D.250(1+x)2=360【考点】由实际问题抽象出一元二次方程.【分析】2016年的GDP360=2014年的GDP250×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2015年的GDP为250×(1+x),2014年的GDP为250×(1+x)(1+x)=250×(1+x)2,即所列的方程为250(1+x)2=360,故选D.9.如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是()A.cm B.cm C.cm D.cm【考点】垂径定理;全等三角形的性质;勾股定理;特殊角的三角函数值.【分析】易证△AOD是等腰直角三角形.则圆心O到弦AD的距离等于AD,所以可先求AD的长.【解答】解:以BC上一点O为圆心的圆经过A、D两点,则OA=OD,△AOD是等腰直角三角形.易证△ABO≌△OCD,则OB=CD=4cm.在直角△ABO中,根据勾股定理得到OA2=20;在等腰直角△OAD中,过圆心O作弦AD的垂线OP.则OP=OA•sin45°=cm.故选:B.10.如图,圆中有四条弦,每一条弦都将圆分割成面积比为1:3的两个部分,若这些弦的交点恰是一个正方形的顶点,那么这个正方形的外接圆的面积与图中阴影部分面积的比值为()A.π B.2﹣π C.πD.2π【考点】正多边形和圆.【分析】根据条件先确定小正方形面积与阴影部分面积的关系,再求出这个正方形的外接圆的面积与图中阴影部分面积的比值即可.【解答】解:如图用a、b、c表示图中相应部分的面积.由题意:4(a+2b)=4a+4b+c,∴c=4b,∴小正方形的面积=阴影部分面积的2倍,设小正方形的边长为x,则外接圆的面积=x2,∴这个正方形的外接圆的面积与图中阴影部分面积的比值=x2:x2=π.故选C.二、填空题11.一元二次方程2x2﹣5x﹣1=0的两根为x1,x2,则x1+x2=,x1•x2=﹣.【考点】根与系数的关系.【分析】根据韦达定理可直接得出.【解答】解:∵方程2x2﹣5x﹣1=0的两根为x1,x2,∴x1+x2=﹣=,x1x2=﹣,故答案为:,﹣.12.若⊙O的半径为5,弦AB的弦心距为3,则AB=8.【考点】垂径定理;勾股定理.【分析】如图,过O作OE⊥AB于E,则OE=3,OB=5,然后根据垂径定理即可求出AB.【解答】解:如图,过O作OE⊥AB于E,则OE=3,OB=5,∵OE过圆心,∴OE平分弦AB,在Rt△OEB中,OE=3,OB=5,∴EB===4,故AB=2EB=2×4=8.13.弧的半径为24,所对圆心角为60°,则弧长为8π.【考点】弧长的计算.【分析】直接利用弧长公式得出即可.【解答】解:∵弧的半径为24,所对圆心角为60°,∴弧长为l==8π.故答案为:8π.14.一组数据:2,3,4,5,6的方差是2.【考点】方差.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差计算公式可以解答本题.【解答】解:,=2,故答案为:2.15.一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是.【考点】几何概率.【分析】首先确定在阴影的面积在整个面积中占的比例,根据这个比例即可求出小鸟落在阴影方格地面上的概率.【解答】解:∵正方形被等分成16份,其中黑色方格占4份,∴小鸟落在阴影方格地面上的概率为:=.故答案为:.16.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2.【考点】垂径定理的应用.【分析】作OD⊥AB于D,连接OA,先根据勾股定理得AD的长,再根据垂径定理得AB 的长.【解答】解:作OD⊥AB于D,连接OA.∵OD⊥AB,OA=2,∴OD=OA=1,在Rt△OAD中AD===,∴AB=2AD=2.故答案为:2.17.如图,在三角形ABC中,∠A=70°,⊙O截△ABC的三边所得的弦相等,则∠BOC= 125°.【考点】三角形的内切圆与内心.【分析】根据弦相等,则对应的弦心距相等,即O到△ABC的三边相等,则O是△ABC 的内心,然后根据内心的性质求解.【解答】解:∵⊙O截△ABC的三边所得的弦相等,∴O到△ABC三边的距离相等,∴O在三角形的角的平分线上,即O是△ABC的内心.∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB),又∵△ABC中,∠ABC+∠ACB=180°﹣∠A=180°﹣70°=110°.∴∠OBC+∠OCB=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故答案是:125°.18.如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于﹣3.【考点】圆的综合题.【分析】作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,根据两点之间线段最短得到此时PM+PN最小,再利用对称确定A′的坐标,接着利用两点间的距离公式计算出A′B的长,然后用A′B的长减去两个圆的半径即可得到MN的长,即得到PM+PN的最小值.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣A′M=﹣2﹣1=﹣3,∴PM+PN的最小值为﹣3.故答案为﹣3.三、解答题19.解方程(1)(2x﹣3)2=25(2)x2﹣x﹣1=0(3)x2﹣6x+8=0(4)(x﹣3)2=(5﹣2x)2.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)利用直接开平方法解方程即可;(2)利用配方法解方程即可;(3)分解因式后得到(x﹣4)(x﹣2)=0,推出方程x﹣4=0,x﹣2=0,求出方程的解即可;(4)移项后,利用平方差公式分解因式,再解两个一元一次方程即可.【解答】解:(1)∵(2x﹣3)2=25,∴2x﹣3=±5,∴2x=8或2x=﹣2,x1=4,x2=﹣1;(2)∵x2﹣x﹣1=0,x2﹣x+﹣﹣1=0,∴(x﹣)2=,∴x﹣=±,∴x1=,x2=;(3)∵x2﹣6x+8=0,∴(x﹣2)(x﹣4)=0,x﹣2=0或x﹣4=0,∴x1=2,x2=4;(4)∵(x﹣3)2=(5﹣2x)2,∴(x﹣3﹣5+2x)(x﹣3+5﹣2x)=0,3x﹣8=0或2﹣x=0,∴x1=,x2=2.20.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x1x2﹣2x1﹣2x2=10时,求m的值.【考点】根与系数的关系;根的判别式.【分析】(1)由方程有两个实数根结合根的判别式即可得出关于m的一元一次不等式,解不等式即可得出m的取值范围;(2)根据根与系数的关系找出x1+x2=1﹣2m、x1•x2=m2,结合x1x2﹣2x1﹣2x2=10即可得出关于m的一元二次方程,解方程即可得出m的值,结合(1)的结论即可得出m的值.【解答】解:(1)∵关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,∴△=(2m﹣1)2﹣4m2=﹣4m+1≥0,∴m≤.(2)∵x1+x2=1﹣2m,x1•x2=m2,∴x1x2﹣2x1﹣2x2=x1x2﹣2(x1+x2)=m2﹣2(1﹣2m)=m2+4m﹣2=10,即m2+4m﹣12=0,解得:m=2或m=﹣6,∵m≤,∴m=﹣6.21.如图,⊙O的半径是5,P是⊙O外一点,PO=8,∠OPA=30°,求AB和PB的长.【考点】垂径定理;切割线定理.【分析】延长PO交⊙O于点C,过点O作OE⊥AB于E,∠OPA=30°,PO=8,可得OE=4;在Rt△OBE中,OB为半径,可以得出BE的长度,即可得到AB;再根据割线定理,有PD•PC=PB•PA,即可得出PB.【解答】解:延长PO交⊙O与点C,过点O作OE⊥AB于E根据题意,∠OPA=30°,且PO=8,在Rt△OPE中,OE=OP=4;在Rt△OBE中,OB=5,OE=4,则BE=3,即AB=2BE=6;又因为PD•PC=PB•PA,即PD•PC=PB•(PB+AB),即得PB=.即AB=6;PB=.22.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)【考点】扇形面积的计算;切线的判定.【分析】(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)阴影部分的面积可由梯形OBCD和扇形OBD的面积差求得;扇形的半径和圆心角已求得,那么关键是求出梯形上底CD的长,可通过证四边形ABCD是平行四边形,得出CD=AB,由此可求出CD的长,即可得解.【解答】解:(1)直线CD与⊙O相切.理由如下:如图,连接OD∵OA=OD,∠DAB=45°,∴∠ODA=45°∴∠AOD=90°∵CD∥AB∴∠ODC=∠AOD=90°,即OD⊥CD又∵点D 在⊙O 上,∴直线CD 与⊙O 相切;(2)∵⊙O 的半径为1,AB 是⊙O 的直径,∴AB=2,∵BC ∥AD ,CD ∥AB∴四边形ABCD 是平行四边形∴CD=AB=2∴S 梯形OBCD ===;∴图中阴影部分的面积等于S 梯形OBCD ﹣S 扇形OBD =﹣×π×12=﹣.23.从甲、乙两位运动员中选出一名参加在规定时间内的投篮比赛.预先对这两名运动员进行了6次测试,成绩如下(单位:个):甲:6,12,8,12,10,12;乙:9,10,11,10,12,8;(1)填表:平均数 众数 方差甲 10 12乙 10 10(2)根据测试成绩,请你运用所学的统计知识作出分析,派哪一位运动员参赛更好?为什么?【考点】方差;算术平均数;众数.【分析】(1)根据众数、平均数、方差的求法进行计算即可;(2)可以从不同的方面说,比如:平均数或方差,方差越小,成绩越稳定,答案不唯一.【解答】解:(1)甲:12出现的次数最多,所以众数为12,S 甲2= [(6﹣10)2+(12﹣10)2+(8﹣10)2+(12﹣10)2+(10﹣10)2+(12﹣10)2]=; 乙: =(9+10+11+10+12+8)=10.故答案为12,; 10; (2)解答一:派甲运动员参加比赛,因为甲运动员成绩的众数是12个,大于乙运动员成绩的众数10个,说明甲运动员更容易创造好成绩;解答二:派乙运动员参加比赛,因为两位运动员成绩的平均数都是10个,而乙成绩的方差小于甲成绩的方差,说明乙运动员的成绩更稳定.24.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.25.如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)在图中确定该圆弧所在圆的圆心D点的位置,D点坐标为(2,0).(2)连接AD、CD,求⊙D的半径及弧的长.【考点】垂径定理;坐标与图形性质;弧长的计算.【分析】(1)利用垂径定理可作AB和BC的垂直平分线,两线的交点即为D点,可得出D 点坐标;(2)在△AOD中AO和OD可由坐标得出,利用勾股定理可求得AD和CD,即为⊙D的半径;过C作CE⊥x轴于点E,则可证得△OAD≌△EDC,可得∠ADO=∠DCE,可得∠ADO+∠CDE=90°,可得到∠ADC的度数,利用弧长公式可得结果.【解答】解:(1)如图1,分别作AB、BC的垂直平分线,两线交于点D,∴D点的坐标为(2,0),故答案为:(2,0);(2)如图2,连接AD、CD,过点C作CE⊥x轴于点E,则OA=4,OD=2,在Rt△AOD中,可求得AD=2,即⊙D的半径为2,且CE=2,DE=4,∴AO=DE,OD=CE,在△AOD和△DEC中,,∴△AOD≌△DEC(SAS),∴∠OAD=∠CDE,∴∠CDE+∠ADO=90°,∴∠ADC=90°,弧AC的长=π×2=π.26.如图,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围.【考点】切线的性质;全等三角形的判定与性质;正方形的性质.【分析】(1)连接OE,根据切线的性质求得OA⊥FA,OE⊥EF,FA=FE,根据角的平分线定理的逆定理求得∴∠AOF=∠EOF=∠AOE,然后求得∠OBE=∠OEB,∠AOE=∠OBE+∠OEB=2∠OBE,从而求得∠AOF=∠OBE,根据平行线的判定证得OF∥BE;(2)过F作FQ⊥BC于Q,根据勾股定理即可求得y关于x的函数解析式.【解答】(1)证明:连接OE,∵FE、FA是⊙O的两条切线,∴OA⊥FA,OE⊥EF,FA=FE,∴∠AOF=∠EOF=∠AOE,又∵OB=OE,∴∠OBE=∠OEB,∠AOE=∠OBE+∠OEB=2∠OBE∴∠AOF=∠OBE.∴OF∥BE;(2)解:过F作FQ⊥BC于Q,∴PQ=BP﹣BQ=x﹣y,PF=EF+EP=FA+BP=x+y,∵在Rt△PFQ中,FQ2+QP2=PF2,∴22+(x﹣y)2=(x+y)2,化简得y=,(1<x<2).27.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.【考点】垂径定理;勾股定理;三角形中位线定理.【分析】(1)根据OD⊥BC可得出BD=BC=,在Rt△BOD中利用勾股定理即可求出OD的长;(2)连接AB,由△AOB是等腰直角三角形可得出AB的长,再根据D和E是中点可得出DE=;(3)由BD=x,可知OD=,由于∠1=∠2,∠3=∠4,所以∠2+∠3=45°,过D作DF⊥OE,DF=,EF=x即可得出结论.【解答】解:(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;(2)如图(2),存在,DE是不变的.连接AB,则AB==2,∵D和E分别是线段BC和AC的中点,∴DE=AB=;(3)如图(3),连接OC,∵BD=x,∴OD=,∵∠1=∠2,∠3=∠4,∴∠2+∠3=45°,过D作DF⊥OE.∴DF==,由(2)已知DE=,∴在Rt△DEF中,EF==,∴OE=OF+EF=+=∴y=DF•OE=••=(0<x<).28.(1)数学爱好者小森偶然阅读到这样一道竞赛题:一个圆内接六边形ABCDEF ,各边长度依次为 3,3,3,5,5,5,求六边形ABCDEF 的面积.小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图③.可以求出六边形ABCDEF 的面积等于 .(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3.求这个八边形的面积.请你仿照小森的思考方式,求出这个八边形的面积.【考点】圆的综合题.【分析】(1)如图③,利用六边形ABCDEF 每次绕圆心O 旋转120°都和原来的图形重合可判断△MNQ 为等边三角形,△MAF 、△NBC 和△QDE 都是等边三角形,然后根据等边三角形的面积公式求解;(2)先画出分割重组的图形,如图⑤,利用八边形ABCDEFGH 为轴对称图形,每次绕圆心O 旋转90°都和原来的图形重合,可判断四边形PQMN 为正方形,△PAB 、△GCD 、△MEF 、△NHG 都是等腰直角三角形,根据根据正方形的性质和等腰直角三角形的性质求解.【解答】解:(1)如图③,∵六边形ABCDEF 为轴对称图形,每次绕圆心O 旋转120°都和原来的图形重合,∴△MNQ 为等边三角形,△MAF 、△NBC 和△QDE 都是等边三角形,∴NQ=3+5+3=11,∴六边形ABCDEF 的面积=S △MNQ ﹣3S △AMN=×112﹣3××32 =;故答案为. (2)如图⑤,∵八边形ABCDEFGH 为轴对称图形,每次绕圆心O 旋转90°都和原来的图形重合,∴四边形PQMN 为正方形,△PAB 、△GCD 、△MEF 、△NHG 都是等腰直角三角形,∴PA=AB=,PN=+3+=3+2,∴这个八边形的面积=(3+2)2﹣4×××=9+12+8﹣4=13+12.2016年11月1日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.在比例尺为 1:2000 的地图上,测得 A、B 两地间的图上距离为 4.5 厘米,则其 实际距离为 ▲ 米. 16.如图,AB、CD 相交于点 O,OC=2,OD=3,AC∥BD,EF 是△ ODB 的中位线,且 EF=2,则 AC 的长为 ▲ AF 1 17.如图,AD 为△ABC 的中线,AE= AD,BE 交 AC 于点 F,DH∥BF,则 = ▲ . 3 CH 18.如图,点 A、B 的坐标分别为(8,0) (0,2 3 ),C 是 AB 的中点,过点 C 作 y 轴的垂线,垂 足为 D, 动点 P 从点 D 出发, 沿 DC 向点 C 匀速运动, 过点 P 作 x 轴的垂线, 垂足为 E, 连接 BP、 EC. 当 BP 所在直线与 EC 所在直线第一次垂直时,点 P 的坐标为▲
9. 宽与长的比是
A.矩形 ABFE
B.矩形 EFCD
C.矩形 EFGH
D.矩形 DCGH
(第 9 题图)
(第 10 题图)
10.如图,在矩形纸片 ABCD 中,AB=6,BC=10,点 E 在 CD 上,将△ BCE 沿 BE 折叠,点 C 恰 落在边 AD 上的点 F 处;点 G 在 AF 上,将△ ABG 沿 BG 折叠,点 A 恰落在线段 BF 上的点 H 处,①∠EBG=45°;②△ DEF∽△ABG;③S△ ABG=
2 2
B. x 4 x 10 0
2 2
C. x 4 x 4 0 D. x 4 x 5 0 3.若△ABC∽△A'B'C',∠A=20°,∠C=120°,则∠B'的度数为……………… ( ▲ ) A.20° B.30° C.40° D.120° 4.如图,已知 AB∥CD∥EF,那么下列结论正确的是………………………………… ( ▲ ) A. = B. = C. = D. =
y y y y A
O
A.
x O
B.
x
O
C.
x
O
D.
x
P
B C
Q
5 -1 的矩形叫做黄金矩形. 我们可以用这样的方法画出黄金矩形: 作正方形 ABCD, 2 分别取 AD,BC 的中点 E,F,连接 EF;以点 F 为圆心,以 FD 为半径画弧,交 BC 的延长线与点 G; 作 GH AD ,交 AD 的延长线于点 H.则下列矩形是黄金矩形的是( ▲ )
(第 5 题图)
(第 6 题图)
6.如图,在一幅长 60cm,宽 40 cm 的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若 要使整个挂图的面积是 3100cm2,设金色纸边的宽为 xcm,则满足的方程是( ▲ ) A.(60+x)(40+x)=3100 B. (60+2x)(40+2x)=3100 C.(60+2x)(40+x)=3100 D. (60+x)(40+2x)=3100 2 2 7.已知 a,b 是方程 x +x-2006=0 的两个实数根,则 a +2a+b 的值为于……………( ▲ ) A. 1003 B.2005 C.2006 D.2007 8.如图,△ABC 中,AB=AC=2,∠BAC=20°,动点 P、Q 分别在直线 BC 上运动,且始终保持 ∠ PAQ = 100 ° . 设 BP=x , CQ=y , 则 y 与 x 之 间 的 函 数 关 系 用 图 象 大 致 可 表 示 为……………………………………………………………………………………( ▲ )
2016-2017 学年第一学期初三数学第一次质量检测试卷
(测试时间: 120 分钟 满分:130 分 ) (2016.10) 一、选择题(每题 3 分,共 30 分) 1.用配方法解关于 x 的一元二次方程 x2﹣2x﹣3=0,配方后的方程可以是…………( ▲ ) A.(x﹣1)2=16 B.(x+1)2=4 C.(x﹣1)2=4 D.(x+1)2=16 2.下列一元二次方程两实数根和为﹣4 的是…………………………………………( ▲ ) A. x 2 x 4 0
三、解答题(共 84 分) 19.解方程(每小题 4 分,共 16 (第 分)17 题图) (1) x 2 25 0
(第 16 题图) 2
2
2
A 2
(3)x -2x-99=0
2
(4) (2x+1)(x-2)= -1
B 20. (4 分)已知:如图,AE =AD AB,且∠ABE=∠ACB,求证:DE∥BC
21. (6 分)某地区 2014 年投入教育经费 2900 万元,2016 年投入教育经费 3509 万元. (1)求 2014 年至 2016 年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产 总值的增长情况,该地区到 2018 年需投入教育经费 4250 万元,如果按(1)中教育经费投入的 增长率,到 2018 年该地区投入的教育经费是否能达到 4250 万元?请说明理由. 22. (6 分)关于 x 的一元二次方程(a+c)x2+2bx+(a-c)=0,其中 a、b、c 分别为△ABC 三 边的长. (1)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由; (2)如果△ABC 是等边三角形,试求这个一元二次方程的根. 23. (8 分)已知关于 x 的方程 x 2 2mx m 2 2 x 的两个实数根 x1 、 x2 满足 x1 x2 ,求实数 m 的值。 24. (6 分)如图,四边形 ABCD 中,AC 平分∠DAB, ∠ADC=∠ACB=90° ,E 为 AB 的中点, (1)求证:AC =AB•AD; (2)若 AD=4,AB=6,求
3 S△ FGH;④AG+DF=FG.则下列结论正 2
确的有……………………………………… ( ▲ ) A.①②④ B.①③④ C.②③④ D.①②③ 二、填空题(每小题 2 分,共 16 分) 11.若方程(a+1)x -3x+1=0 是关于 x 的一元二次方程,则 a 需满足
2
2

. .
12.已知关于 x 的方程 x +3x+k=0 的一个根是-1,则方程的另一个根为 ▲ . 13.若关于 x 的一元二次方程(k-1)x2-4x+1=0 有实数根,则 k 的取值范围是 ▲ a-b 3 a 14.若 b =4,则b= ▲ .
5.如图,在△ABC 中,点 P 为 AB 上一点,给出下列四个条件:①∠ACP=∠B; ②∠APC= ∠ACB;③AC2=AP·AB;④AB·CP=AP·CB. 其中能满足△APC 和△ACB 相似的条件是 …………………………………… ( ▲ )A.①②④ B.①③④ C.②③④ D.①②③
(第 4 题图)
相关文档
最新文档