船舶的基本阻力包括的哪些阻力
船舶阻力介绍

船舶阻力定义船舶运动过程中,流体作用于船体上,阻止其运动的力。
种类当船舶在水面上航行时,船体处于空气和水两种流体介质中运动,必然通受空气和水对船体的阻力。
为研究方便起见,船体总阻力按流体种类分成空气阻力和水阻力。
空气阻力是指空气对船体水上部分的反作川力。
水阻力是水对船体水下部分的反作用力。
进一步把水阻力分成船体在静水中航行时的静水阻力和波限中的阻力增加值(亦称为汹涛阻力)两部分。
静水阻力通常分成裸船体阻力和附体阻力两部分。
所谓附体阻力是指突出于裸船体之外的附属体如舵、舭龙骨、轴支架等所增加的阻力值。
根据这种处理力法,船舶在水中航行时所受到的阻力通常分为两大部分:一是裸船体在静水中所受到的裸船体阻力,另一部分是附加阻力,包括空气阻力、汹涛阻力和附体阳力。
对于常规船型,附体阻力通常仅占船舶阻力的很小部分,故常常通过船模阻力试验确定总阻力后,按经验公式乘以某个适当系数以获得附体阻力的值。
对于特殊船型,如有较大附体的非常规船型(特殊作业船、潜水器、救生船、探测船、水下采矿船等),附加阻力可能较大,需对带有附体的船模进行试验予以确定。
试验中需注意因缩尺船模的附体较小所产生的尺度效应,要求船模尽可能大。
工程中初步估算时常用经验统计数据,结合具体情况作适当修正。
目前尚无有效的理论算法。
在船舶设计中,常用附体阻力系数估计附体阻力。
为减小附体阻力,附体形状应尽可能采用流线型。
船长对阻力的影响船长对阻力的影响在保持排水量不变时,改变船长必然引起L/B及L/▽1/3的变化,当排水量一定时,选用较大的船长L,则B,d,C b必然要作适当的减小及L/B,L/▽1/3随之增加。
随着L/B或L/▽1/3乃的增加,船体变得瘦长,船体型线的纵向曲率变小,船体兴波区域的型线变得平直,兴波作用趋于和缓,波高变低,兴波作用所消耗的能量减少,所以兴波阻力随着变小。
同时由于船长增加以后,尾部型线变平顺减少了旋涡的产生,从而降低了旋涡阻力。
船舶阻力阻力

推进功率
PT T vA
W T
vA
vs
R X
有效功率 PT
T
PE R vs
PD n
T
P'D
n 主轴
PM
R PE
推力 轴承
主机
传送效率
主机功率PM
传递效率
S
船后桨收到功率P‘D
PD
M
Q
相对旋转
R
敞水桨收到功率PD
敞水桨
P
PD MQ
推进功率PT
PT T vA
船身效率
H
有效功率PE
PE R vs
1. 兴波阻力成因inf
➢ 理想流体 ➢ 粘性流体
Rw
Cw
1 2
Sv2
2. 船行波inf
3. 与速度之间关系 Rw v46 4. 占总阻力百分比 Rw / R0 10% 80%左右 5. 影响因素
船形(首部形状-水线面附近);速度;
1. 兴波阻力成因
1. 理想流体
W
Re 理 0
T
2. 粘性流体
v 水深傅汝德数: Fh gh
摩擦,涡流,兴波
§8.8 浅水航行对吃水的影响
一. 船舶在深水中航行的沉浮量inf 二. 船舶在浅水中航行的沉浮量inf
一、船舶在深水中航行的沉浮量
体积傅汝德数: Fnv
v gV 1/ 3
Fnv 1 排水状态 1 Fnv 3 过渡状态 Fn 3 滑行状态
深水中航行时的沉浮量
38
二、船舶在浅水中航行的沉浮量
变化规律:
水深傅汝德数: Fnv
v gh
Fnh 0.4 变化小
水深傅汝德数:
0.4 Fnh 1 尾倾
船舶阻力系数公式

船舶阻力系数公式船舶在水中航行时,会受到各种各样的阻力,而要准确地分析和计算这些阻力,就离不开船舶阻力系数公式。
咱先来说说船舶阻力都有哪些种类。
就好比一辆汽车在路上跑,会受到风阻、路面摩擦力等等的影响,船舶在水里也一样,会碰到摩擦阻力、兴波阻力、形状阻力等等。
这摩擦阻力呀,就像是船的身体和水在不停地“摩擦摩擦”,水可不是好惹的,它就会给船一个阻力。
兴波阻力呢,船在水里跑,就像咱们跑步会带起风一样,它会掀起波浪,这波浪反过来就会给船制造麻烦,形成阻力。
形状阻力呢,简单说就是船的外形如果不太“顺溜”,水就不乐意了,阻力也就跟着来了。
那这船舶阻力系数公式到底是个啥呢?其实它就像是一把神奇的钥匙,能帮咱们打开了解船舶阻力的大门。
比如说常见的船舶阻力系数公式,会考虑到船的速度、形状、水的密度等等好多因素。
我记得有一次去参观造船厂,那场面可壮观啦!一艘巨大的船舶正在建造中。
我就和旁边的工程师聊起来船舶阻力的问题。
他指着那船的模型跟我说:“你看这船头的形状,如果设计不好,阻力可就大了去了。
”然后他拿起一张图纸,上面密密麻麻写着各种公式和参数,其中就有船舶阻力系数公式。
他给我解释说,通过这个公式,他们能提前预估这艘船在水里航行时大概会受到多大的阻力,然后在设计上进行优化,让船跑得更快更省油。
这公式里的每个参数都有它的讲究。
速度快了,阻力自然会增大;船的形状越流线型,阻力通常就会越小;水的密度也会有影响,在不同的水域,水的密度可能会有细微差别,这也得考虑进去。
再来说说这公式在实际中的应用。
比如在船舶的设计阶段,设计师们会用这个公式反复计算和模拟,调整船的外形、尺寸,力求让船舶在满足各种功能需求的同时,阻力最小化。
在船舶的运营过程中,船员们也能根据这个公式,结合实际的航行情况,来调整航行速度和航线,达到节能增效的目的。
不过,要想准确地运用这个公式,可不是一件简单的事儿。
它需要大量的实验数据和精确的测量,还得考虑到各种复杂的实际情况。
第七章 船舶阻力9.30

第七章 船舶阻力船舶快速性:船舶消耗较小功率,维持一定航行速度的性能。
由船舶阻力和船舶推进两部分组成。
第一节 船舶阻力的分类及成因船舶阻力构成:空气阻力仅占其总阻力的2%~4%一、船体阻力的分类及成因1.按产生阻力的物理性质分类t w f pv R R R R =++船体总阻力=兴波阻力+摩擦阻力+粘压阻力(漩涡阻力)1)兴波阻力的成因:根据伯努利方程,当水流流经船体时,随着船长方向流速的变化,水面高度也会起变化。
在船舶首尾两端的速度最低处,产生水位上升,而在船体中部速度最高区域内,产生水位下降,这就是形成船波的原因。
伯努利方程:g u g p Z g u g p Z 2//2//22222111++=++ρρ首横波自首柱后一波峰开始,尾横波自尾柱前一波谷开始船首的波峰使首部压力增加,而船尾的波谷使尾部压力降低,于是产生首尾流体动压力差。
这种由兴波引起压力分布的改变所产生的阻力称为兴波阻力。
从能量观点来解释。
船行波必具有一定能量,这个能量只能由船舶克服流体阻力作功而转化出来,波浪的存在正说明了兴波阻力的存在。
2)摩擦阻力的成因:由于流体的粘性,水质点沿着船体表面运动,构成了阻碍船舶运动的力。
3)粘压阻力的成因:理想流体(无黏性)x 轴方向上来流的速度、压力变化水质点远处为V =V 0,接近A 点V 逐渐变小,到达A 点V =0,过A 点分流向后V 逐渐增大,到达C 点,V 达到最大值V 理,过C 点V 逐渐变小,到达B点V =0支流汇合,离开B 点V 逐渐增大恢复为V 0。
压力分布如曲线I.作用在前后体上的合力相等,阻力为零。
实际流体(有黏性)x 轴方向上来流的速度、压力变化由于黏性形成边界层(流速受到影响的水层)。
当水质点到达C 点,V 达到最大值V 实<V 理,由于动能较小,到达D 点V =0,过D 点在压力差的作用下水质点回流,形成许多不稳定的旋涡并与水流一起被冲向船后方。
旋涡的产生使船尾部压力降低,从而使船体沿船长方向的压力分布发生变化,即加大了船首尾压力差(压力分布如曲线Ⅲ)产生了阻力。
船速 舵

舵
三、舵效的概念 1.舵效的定义 . 2.舵效指数 .舵效指数K/T 3. 诺宾指数 诺宾指数P 四、影响舵效的因素 1.舵角与舵速 . 2.舵面积比与舵机性能 . 3.排水量 . 4.纵倾和横倾 . 5. 其它因素
舵
一、舵力
PN PR PL δ——舵角(°) 舵角( 舵角 PL——升力(N) 升力( ) 升力 PD——阻力(N) 阻力( ) 阻力 舵力( ) PR——舵力(N) 舵力 PN——正压力(N) 正压力( ) 正压力 PD ( -)
PT
δ
PT——摩擦力(N) 摩擦力( ) 摩擦力
(+) )
AR——舵叶浸水面积(m2) 舵叶浸水面积( 舵叶浸水面积
船
3、滑失与滑失比 、
dP T
速
C
S wp nP Vp Vs
B
α dQ r
O
A
2πr n
P − hP hP Sr = =1− P P
Sr =
nP −VP V =1− P nP nP
船 3、滑失与滑失比 、
速
螺旋桨所能给出的推力大小取决于螺旋桨的滑 )。当转速一定时 滑失越大,滑失比越高, 当转速一定时, 失(比)。当转速一定时,滑失越大,滑失比越高, 则冲角α便越大 所得到的推力就越大。 便越大, 则冲角 便越大,所得到的推力就越大。 当转速一定时,船速越低,滑失比越大,推力 当转速一定时,船速越低,滑失比越大, 越大。 越大。 当船速不变时,提高转速,滑失比增大, 当船速不变时,提高转速,滑失比增大,推力 也将增大。船舶在受限水域内操船,为提高舵效, 也将增大。船舶在受限水域内操船,为提高舵效, 往往采取先降速( VP ),然后再加大转速 的方法, 然后再加大转速n的方法 往往采取先降速(即 ),然后再加大转速 的方法, 尽可能地提高滑失比。 尽可能地提高滑失比。
船舶原理计算

梯形法则辛氏法则:1. 已知某船半宽水线值为 y0,y1,------ y9,y10,等间距为Δl , 分别写出用梯形法和辛卜生法计算此时的水线面的面积Aw 计算式。
Aw=2A 梯形法则:辛氏法则:2.已知某船的水线面面积为 Aw1,Aw2,Aw3,Aw4,Aw5等水线面间距为Δd ,写出用梯形法和辛卜生法计算此时的排水体积 V 的计算式。
吃水差改变:3. 某船在淡水中的吃水为7.10m ,排水量为12000t ,在淡水中的TPC 为17.5t/cm 。
进入海水后,船的吃水为多少m ?如果要保持船在海水中的吃水不变,应该装货多少t ?船在海水中的TPC 为18t/cm ,海水的密度为1.025t/m3,淡水的密度为1.01t/m34. 船舶的重量为6700t ,重心位置xg=2.55m ,zg=7.26n 。
现有重量 50t ,从xp=12.45m ,zp=2.05m 处移动到Xp=-10.85m ,Zp=6.75m ,求该重量移动后船舶的重心位置少量装卸和自由液面修正和倾角:5.某船的排水量为16000t ,吃水为8.50m ,GM = 0.85m 。
船在开航时,燃油 柜为满柜。
船在航行了一段时间之后,消耗燃油400t ,消耗的油的重心距基)2(00nni i y y y l A +-=∑=)4(313211y y y l A ++=)33(8343211y y y y l A +++=)2(0nni nAw AwAwd V +-∆=∑=线高zp = 5m ,yp = 4m 。
船的TPC = 24t/cm 。
油柜长为5m 、宽为3m 的长 方体,求经自由液面修正后的GM 值是多少?如果船在开航是正浮状态,此 时船的横倾角为多少度?(矩形k=1/12 直角三角形k=1/36 等腰三角形k=1/48 直角梯形k=1/36 )6.某船的排水量为14000t ,吃水为8.80 m ,GM = 0.85mY 。
船舶水中航行主要阻力

船舶水中航行主要阻力船舶水中航行主要阻力导言船舶的运动是受到水的阻力的,而水中阻力是由于流体粘性和惯性作用引起的。
在船舶水中航行时,主要阻力有摩擦阻力、波浪阻力和空气阻力。
本文将详细介绍这三种主要阻力。
一、摩擦阻力1. 摩擦阻力的定义摩擦阻力是指流体与物体表面接触时,由于两者之间存在相对运动而产生的摩擦作用所引起的一种阻碍物体运动的现象。
2. 摩擦系数摩擦系数是指单位面积上所受到的摩擦力与单位面积上所受到的压强之比。
它是一个无量纲量,通常用Greek字母μ来表示。
3. 摩擦系数与表面粗糙度表面粗糙度对于摩擦系数很重要。
表面越光滑,则摩擦系数越小;表面越粗糙,则摩擦系数越大。
4. 影响因素影响摩擦阻力的因素有:物体表面的粗糙度、流体的粘性、物体表面积、流体速度等。
二、波浪阻力1. 波浪阻力的定义波浪阻力是指船舶在水中航行时,由于波浪对船体产生的作用而引起的一种阻碍物体运动的现象。
2. 影响因素影响波浪阻力的因素有:船型、载重量、速度等。
3. 减小波浪阻力的方法减小波浪阻力可以采取以下方法:改进船型设计、减少载重量、降低航速等。
三、空气阻力1. 空气阻力的定义空气阻力是指风对物体产生作用而引起的一种阻碍物体运动的现象。
2. 影响因素影响空气阻力的因素有:风速、物体形状和表面粗糙度等。
3. 减小空气阻力的方法减小空气阻力可以采取以下方法:改进物体形状设计,增加表面光滑度,降低风速等。
结语综上所述,摩擦阻力、波浪阻力和空气阻力是船舶水中航行时主要的阻力。
减小这些阻力可以提高船舶的速度和效率,因此在设计船型和选择载重量等方面需要考虑这些因素。
船舶阻力与船速的计算公式

船舶阻力与船速的计算公式船舶阻力与船速的计算公式是船舶设计和航行中非常重要的内容。
船舶阻力是指船舶在航行中受到的水流、风力和波浪等外部力量的阻碍,是决定船舶动力系统设计和船舶性能的重要因素之一。
船舶的阻力与船速之间存在着密切的关系,通过计算可以得到船舶在不同航速下的阻力大小,为船舶设计和航行提供重要的参考依据。
船舶阻力的计算公式可以分为静水阻力和波浪阻力两部分。
静水阻力是指船舶在静止状态下受到的水流阻力,主要与船体的形状和湿表面积有关;波浪阻力是指船舶在航行中受到的波浪阻力,主要与船舶航行速度和波浪形态有关。
下面我们将分别介绍船舶静水阻力和波浪阻力的计算公式。
静水阻力的计算公式通常采用法国工程师Froude提出的Froude公式,即:\[ R = k \times S \times V^2 \]其中,R为静水阻力,k为阻力系数,S为湿表面积,V为船舶航行速度。
阻力系数k是与船舶的形状和流体粘度等因素相关的常数,可以通过实验或经验公式进行确定。
湿表面积S是指船舶在水中的受潮表面积,通常可以通过船舶的几何形状参数计算得到。
船舶的航行速度V是指船舶相对于水流的速度,是静水阻力的一个重要影响因素。
通过Froude公式可以得到船舶在不同航速下的静水阻力大小,为船舶设计和性能分析提供了重要的参考数据。
波浪阻力的计算公式通常采用Holtrop提出的Holtrop公式,即:\[ R_{w} = 0.5 \times \rho \times g \times C_{1} \times A_{T} \times B_{L} \times \left( 1 + k_{B} \times \left( 1.0 C_{B} \right) \right) \times C_{B} \times S \times\left( 1 + 0.35 \times \left( \frac{B_{L}}{T} \right) \right) \times \left( 1 C_{F} \right) \times \left( 1 \frac{C_{F}}{C_{F} + 1} \right) \times \left( 1 \frac{C_{F}}{C_{F} + 2} \right) \times \left( 1 \frac{C_{F}}{C_{F} + 3} \right) \times C_{F} \times V^2 \]其中,\( R_{w} \)为波浪阻力,\( \rho \)为水的密度,g为重力加速度,\( C_{1} \)为修正系数,\( A_{T} \)为横截面积系数,\( B_{L} \)为船舶长度与波长的比值,\( k_{B} \)为波浪系数,\( C_{B} \)为方形系数,S为湿表面积,\( T \)为船舶吃水深度,\( C_{F} \)为摩擦系数,V为船舶航行速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.船舶的基本阻力包括的哪些阻力?(3分)
摩擦阻力,涡涡流阻力,兴波阻力
2..简单陈述基本阻力的成因和降阻措施。
(6分)
摩擦阻力:成因,船体在水中运动时,由于水具有粘性是船体周围有一薄层水被船体带动遂川一起运动。
由于各层水流速度大小不同,在各层水流之间必然会产生切应力作用,这种由于流体的粘性而产生的切应力沿着船舶运动方向上的合力,成为船舶摩擦阻力。
降阻措施:降低船体表面的曲度和粗糙度,减小流体粘性,减小形势速度,减小是表面面积
涡流阻力:当水流经船体时,由于水具有粘性说引起的首尾压力差而形成的阻力。
降阻措施:船尾设计成很好的流线型。
兴波阻力:船舶在静水面上行驶时由于兴起波浪而形成的阻力,为兴波阻力。
降阻措施:选择适当的船长和菱形系数。
船首水线下的船体设计成球鼻型。
3.运营船舶是怎样应付汹涛阻力的?(2分)
预留储备功率
4.船舶在浅水中航行,会给航态和阻力带来什么影响?。
(6分)
船舶在浅水中航行,由于水与船的相对速度增加,和船行波变化的影响,使船舶阻力增加,航行钻台改变即吹水增加以及发生首倾或是尾倾。
船舶一同样的速度在浅水中航行于在深水中航行相比较,由于在浅水中航行时船底与河堤之间间隙变小使得水流相对于船体的速度增加,使水压下降,船体下沉吃水增加,船的湿面积增加,由于流速增加使船底与河底的间隙变小,易产生涡流。
一次船舶在潜水中航行时,摩擦阻力和涡流阻力都会增加。
船舶在浅水航行时船行波的波形发生变化,行波范围逐渐扩大,使兴波阻力增加。
5.污底阻力的本质是增加基本阻力中的哪种阻力成分?。
(2分)
摩擦阻力
6.球鼻艏的设置的目的是为了:美观?减小波阻?加强艏部强度?增加艏尖舱容?。
(2分)
减小波阻球鼻兴起的波谷与船首兴起的波峰正好处于同一位置时,则两波的合成波较务球鼻时平坦,减小船舶的兴波阻力。
7.甲板上过高堆放货物给船增加的是什么阻力?。
(2分)
附加阻力即空气阻力。