一元线性回归基本操作
用eviews进行一元线性回归分析

用eviews进行一元线性回归分析LT目录一、引言 (1)(一)研究背景 (1)(二)研究意义 (1)二、研究综述 (2)(一)模型设定 (2)1.定义变量 (2)2.数据来源 (2)(二)作散点图 (3)三、估计参数 (4)(一)操作步骤 (4)(二)回归结果 (4)四、模型检验 (5)(一)经济意义检验 (5)(二)拟合优度和统计检验 (5)(三)回归预测 (5)五、结论 (5)参考文献: (6)一元回归分析居民收入与支出的关系一、引言(一)研究背景随着近年来我国成为世界第二大经济体,居民的高生活水平也日益显著。
我国人口正在高速城镇化,2011年中国大陆城镇人口为69079万人,城镇人口占总人口比重达到51.27%。
因此城镇居民作为消费主体,研究城镇居民人均可支配收入以及人均可支配消费性支出之间的关系,可以有效的了解到我国各地区的人民生活水平以及经济状况,因此能更好的的带动我国GDP的飙升,改善居民的生活水平。
(二)研究意义居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这要是人民生活水平的具体体现。
改革开饭以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
例如,2007年的城市居民家庭平均每人每年消费支出,最高的是上海市达人均20667.91元,最低的则是新疆,人均只有8871.27元,上海是新疆的2.33倍。
为了研究全国居民消费水平及其变动的原因,需要做具体的分析。
影响各地区居民消费指出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售业物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
论述一元线性回归的基本步骤

论述一元线性回归的基本步骤
一元线性回归是一种统计学方法,用来描述两个变量之间的线性关系,并建立相应的回归模型。
基本的步骤包括:
(1)确定数据源和变量:从数据源中收集相关的数据,并确定要进行研究的变量:x代表自变量,y代表因变量。
(2)进行各种统计分析:绘制散点图或残差图,用于可视化数据并判断是否存在线性关系;同时,计算出x与y之间的相关系数,试图发现x与y 之间的关联,以确定是否存在线性回归关系。
(3)拟合线性模型:使用常见的最小二乘法方法根据已有数据估计线性模型,即拟合误差平方和最小化的拟合直线,从而得到线性回归模型。
(4)检验线性模型:检验线性模型的有效性是至关重要的一步,可以检验残差图的正态分布假设、小概率假设和模型假设,可以构建R2、F值、AIC和BIC等指标,以进一步确定模型的有效性。
(5)预测新数据:如果经过上述模型检验发现线性模型是有效的,则可以用该模型预测新数据的结果。
总的来说,一元线性回归的基本步骤主要是确定数据源和变量,进行各种统计分析,拟合线性模型,检验模型的有效性,最后利用模型预测新的数据。
第3章 一元线性回归分析

3.7 假设条件的放松
3.7.1 假设条件的放松(一)—非正态 分布误差项
• 放松了假设4后,与之相关的结论10和12 不再成立,t-检验、F-检验不再成立。 • 大样本情况下,t-统计量近似服从标准正态 分布,因此可以用标准正态分布临界值进 行判断。 • 去掉假设4不影响OLS估计的一致性、无偏 性和渐近正态性。
1
s ˆ
1
t-检验的涵义:估计参数的绝对值足够大或者 标准误很小(标准误小则随机性小,估计越精 确) 样本量较大时 (n>35),t分布接近正态分布, 5%置信水平下临界值接近2,因此常用统计量 是否大于2作为判断系数显著与否的标准。
3.5 拟合优度 R 和模型检验(F检验)
检验 X 和 Y 之间是否 具有线性关系:看 Y 的变化能被 X 的变化解释多少。 总平方和(total sum squared):
一元线性回归分析
3.6 用EViews7.2进行一元线性回归 3.7 假设条件的放松
3.7.1 假设条件的放松(一)—非正态分布误差 项 3.7.2 假设条件的放松(二)—异方差 3.7.3 假设条件的放松(三)—非随机抽样和序 列相关 3.7.4 假设条件的放松(四)—内生性 3.7.5 总结
重要概念
第3章
一元线性回归分析
一元线性回归分析
3.1 一元线性回归模型 3.2 一元线性回归模型参数估计
3.2.1 回归系数估计 3.2.2 误差的估计—残差 ˆ 和 ˆ 的分布 3.2.3 0 1
3.3 更多假设下OLS估计量性质 3.4 回归系数检验(t-检验) 2 R 3.5 拟合优度 和模型检验(F检验)
2
3.5 拟合优度 R 和模型检验(F检验)
不带常数项的模型其相应的TSS和ESS为:
一元线性回归

《土地利用规划学》一元线性回归分析学院:资源与环境学院班级:2013009姓名:x学号:201300926指导老师:x目录一、根据数据绘制散点图: (1)二、用最小二乘法确定回归直线方程的参数: (1)1)最小二乘法原理 (1)2)求回归直线方程的步骤 (3)三、回归模型的检验: (4)1)拟合优度检验(R2): (4)2)相关系数显著性检验: (5)3)回归方程的显著性检验(F 检验) (6)四、用excel进行回归分析 (7)五、总结 (15)一、根据数据绘制散点图:◎由上述数据,以销售额为y 轴(因变量),广告支出为X 轴(自变量)在EXCEL 可以绘制散点图如下图:◎从散点图的形态来看,广告支出与销售额之间似乎存在正的线性相关关系。
大致分布在某条直线附近。
所以假设回归方程为:x y βα+=二、用最小二乘法确定回归直线方程的参数: 1)最小二乘法原理年份 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 广告支出(万元)x 4.00 7.00 9.00 12.00 14.00 17.00 20.00 22.00 25.00 27.00销售额y7.00 12.00 17.00 20.00 23.00 26.00 29.00 32.00 35.00 40.00最小二乘法原理可以从一组测定的数据中寻求变量之间的依赖关系,这种函数关系称为经验公式。
考虑函数y=ax+b ,其中a,b 为待定常数。
如果Pi(xi,yi)(i=1,2,...,n )在一条直线上,则可以认为变量之间的关系为y=ax+b 。
但一般说来, 这些点不可能在同一直线上. 记Ei=yi-(axi+b),它反映了用直线y=ax+b 来描述x=xi ,y=yi 时,计算值y 与实际值yi 的偏差。
当然,要求偏差越小越好,但由于Ei 可正可负,所以不能认为当∑Ei=0时,函数y=ax+b 就好好地反应了变量之间的关系,因为可能每个偏差的绝对值都很大。
一元线性回归法 excle操作

实验结果:实验一:一元线性回归在Excel中的实现一、实验过程描述1.录入数据打开EXCLE,录入实验数据,B列存放居民货币收入,C列存放居民消费品购买力,如下图所示:2.绘制散点图点击插入——图表——散点图——下一步,选择数据区域如下图:定义表名为消费能力表、X轴为收入、Y轴为购买力,形成生散点图:根据散点图可知,题中两个条件之间存在着线性关系,根据散点图可建立一次回归模型。
3.所需数据的计算一元线性回归系数的计算中,需要用到∑x、∑y、∑2x、∑2y及∑xy 的值,因此按下列步骤求出这些值。
在D2单元格中输入“=B2*B2”,下拉求出所有的值。
同上,在E2单元格中输入”=C2*C2”,在F2单元格中输入“=B2*C2”,依次下拉,得到所有值。
结果如下表所示:在B11单元格中输入“=SUM(B2:B10)”,依次右拉,求出各列的和∑x 、∑y 、∑2x 、∑2y 及∑xy ,依次存在B11,C11,D11,E11,F11.如下图所示:4. 一元线性回归系数的计算:根据系数公式x b y a x x n y x xy n b 22-=--=∑∑∑∑∑)(,在EXCLE 表格中进行计算如下: 在I2单元格中输入一元线性回归系数b 的公式“=(9*F11-B11*C11)/(9*D11-B11*B11)”,在I3单元格中输入系数a 的公式 “ =C11/9-I2*(B11/9)”结果如下图所示:由此得出回归方程:Y=-0.99464X+0.847206二、实验结果分析在进行线性回归分析之前,首先必须依据一定的经济理论、专业知识,对变量间是否存在一定的相关性进行分析。
本题中,应根据实际经验,确定居民货币收入为自变量,居民消费品购买力为因变量。
再次要绘制散点图,观察数据信息是否符合线性要求,在完成上述准备工作后,才能进行线性回归方程的计算。
一元线性回归

i
x )Yi
l xx
,
3
一元回归方程检验
⑴ F检验法:
当H0为真时,
SSE
SSE
2
2
~ 2 ( n 2),
2
~ (1);
且SSR与SSE相互独立;因此,当H0为真时,
SSR F ~ F (1, n 2), SSE ( n 2)
当F≥F1-α(1,n-2)时应该放弃原假设H0。
Y0的观测值y0的点预测是无偏的。
⑵ 当x=x0时,用适合不等式P{Y0∈(G,H)}≥ 1-α的统计量G和H所确定的随机区间(G,H) 预测Y0的取值范围称为区间预测,而(G,H)称 为Y0的1-α预测区间。 若Y与样本中的各Y相互独立,则根据 Z=Y0-(a+bx0)服从正态分布,E(Z)=0, 2 1 ( x0 x ) 2 D( Z ) (1 ), n l xx SSE 及 2 ~ 2 ( n 2), Z与SSE相互独立,
Q 2 ˆ 是 的无偏估计。 n2
2
2. 总体中未知参数的估计 根据最小二乘法的要求由
Q Q 0, 0, 得 a b
n
2 [ y i (a bx i )] 0, i 1 n 2 [ y i (a bx i )] x i 0, i 1
(2)t检验法:
b ~ N ( ,
2
l xx
),
SSE
2
~ 2 (n 2),
当H0为真时,
l xx t b ~ T (n 2), SSE (n 2)
当|t|≥t1-0.5α(n-2)时应该放弃原假设H0。
根据x与Y的观测值的相关系数 (3)r检验法:
stata软件基本操作和简单的一元线性回归

16
回归结果的提供和分析
Page 17
回归结果提供的两种格式
ˆ 3.805 0.4845 X Y (1.79) (14.96) ˆ 3.805 0.4845 X Y
se: (2.12) (0.03)
R 2 0.9655 注:括号内数字为t检验值 R 2 0.9655 注:括号内数字为标准误(se)
(2)拟合优度检验、t检验和F检验
P值为0.000,在任何显著性水平下,斜率项和截距项显然不为 零,拒绝两系数为零的假设。另外,拟合优度R方表明,食品 支出的97.5%的变化也以由收入X的变化来解释,因此拟合情 况较好。 如果需要查看残差值e,输入scatter e即可,list e可以列出所 有ei值,scatter e X可以看ei残差图
Stata基本操作及 简单的线性回归 邬龙
一、 Stata软件介绍
Stata是世界著名的统计分析软件之一。 Stata 是一套提供其使用者数据分析、数据管理以 及绘制专业图表的完整及整合性统计软件。它提供 许许多多功能,包含线性混合模型、均衡重复反复 及多项式普罗比模式。用Stata绘制的统计图形相当 精美。 Stata的统计功能很强,除了传统的统计分析方法外, 还收集了近20 年发展起来的新方法,如 Cox 比例风 险回归,指数与Weibull回归,多类结果与有序结果 的logistic回归,Poisson回归,负二项回归及广义负 二项回归,随机效应模型等。
分析命令在这里输入
4
查看历史命令
数据读入和保存(从Excel)
1. 点击data editor(edit)图标进入数据编辑器 2. 复制数据(连同第一行表头),在数据编辑器里 粘贴 3. 弹出提示,询问第一行是否要当成变量名称(表 头),选左边为是,选第二个为否 4. 点击保存,存为xxx.dta文件,便于以后使用
线性回归分析

一元线性回归分析1.理论回归分析是通过试验和观测来寻找变量之间关系的一种统计分析方法。
主要目的在于了解自变量与因变量之间的数量关系。
采用普通最小二乘法进行回归系数的探索,对于一元线性回归模型,设(X1,Y1),(X2,Y2),…,(X n,Y n)是取至总体(X,Y)的一组样本。
对于平面中的这n个点,可以使用无数条曲线来拟合。
要求样本回归函数尽可能好地拟合这组值。
综合起来看,这条直线处于样本数据的中心位置最合理。
由此得回归方程:y=β0+β1x+ε其中Y为因变量,X为解释变量(即自变量),ε为随机扰动项,β0,β1为标准化的偏斜率系数,也叫做回归系数。
ε需要满足以下4个条件:1.数据满足近似正态性:服从正态分布的随机变量。
2.无偏态性:∑(εi)=03.同方差齐性:所有的εi 的方差相同,同时也说明εi与自变量、因变量之间都是相互独立的。
4.独立性:εi 之间相互独立,且满足COV(εi,εj)=0(i≠j)。
最小二乘法的原则是以“残差平方和最小”确定直线位置。
用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。
最常用的是普通最小二乘法(OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。
线性回归分析根据已有样本的观测值,寻求β0,β1的合理估计值^β0,^β1,对样本中的每个x i,由一元线性回归方程可以确定一个关于y i的估计值^y i=^β0+^β1x i,称为Y关于x的线性回归方程或者经验回归公式。
^β0=y-x^β1,^β1=L xy/L xx,其中L xx=J12−x2,L xy=J1−xy,x=1J1 ,y=1J1 。
再通过回归方程的检验:首先计算SST=SSR+SSE=J1^y−y 2+J1−^y2。
其中SST为总体平方和,代表原始数据所反映的总偏差大小;SSR为回归平方和(可解释误差),由自变量引起的偏差,放映X的重要程度;SSE为剩余平方和(不可解释误差),由试验误差以及其他未加控制因子引起的偏差,放映了试验误差及其他随机因素对试验结果的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
打开eviews7 软件
1.导入数据
File----open--Eviews workfile
查找出数据存放的地方,点击下一步,完成,即可。
(注意:数据的格式须正确,否则无法正常操作,若出现?则说明数据格式存在问题,须返回重新修改。
)
2.对数据做描述性统计
选中变量,如X,Y 如下图,右键----open—as group
出现如下界面
选择view---descriptive stats(描述性统计)---common sample
从上到下分别是均值,中值,最大值,最小值,标准差
偏度:(样本图形分布)等于0,图形对称分布,大于0,图形长的右拖,小于0,长的左拖峰度:(衡量正态分布)等于3,图形凸起状态符合正态分布,
J-B衡量是否服从正态分布的统计量
Pro为J-B的相伴概率,于拒绝原假设,不服从正态分布,10%以内,不能拒绝原假设,即服从正态分布
加总,偏差平方和,观测值数
3.对数据作图进行观测
Scatter(散点图),Line & Symbol(线性图)
一般来说图形纵轴表示应变量,横轴表示自变量,若出现相反情况说明选择时顺序不对,返回更改X,Y的选择顺序即可。
4.简单一元线性回归
Quick---Equation Estimation , 再进行如下操作,键入y c x(按照方程式的顺序,否则无法得到想要的结果),方法选择LS(最小二乘法)
得到如下结果
若要显示回归结果的图形,在“Equation”框中,点击“Resids”,即出现剩余项(Residual)、实际值(Actual)、拟合值(Fitted)的图形,如图2.13所示。