第八章 其它海洋参数的遥感反演 - 海洋遥感..
海洋水色遥感 海洋遥感PPT课件

2021/6/17
第28页/共63页
5.4 海洋水色要素浓度反演
(1)叶绿素浓度反演
a.代数法(基于模型的解析算法)
浮游植物色素浓度C的反演:
利用吸收系数:
a( ) aw ( ) f1 ( ) exp( f 2 ( )) C
利用衰减系数:
b( 500 nm) 0.3C 0.62
4.海洋水色遥感的几个基本概念
a. 海洋水体分类
根据Morel等提出的双向分类法,可分为:
- Ⅰ类水体:光学特性主要由浮游植物及其分解物决定;
- Ⅱ类水体:光学特性除了与浮游植物及其分解物有关外,
还由悬浮物、黄色物质决定,其水色由水体的各成分以非
线性方式来影响。
2021/6/17
第8页/共63页
5.1 概述
综合以上诸式可得:
※遥感反射率:
2021/6/17
r
E d ( ,0 )
Eu ( ,0 ) Q Lu ( ,0 )
Lw
L
(
,
0
)
u
Eu ( ,0 )
R
ti REd ( ,0 ) ti (1 ) R
Lw ( , v )
E0 ( ) cos st ( , s )
常用的经验关系:蓝绿比值经验算法
C A(
Lw (i ) B
)
Lw ( j )
log C log A B log(
Lw (i )
)
Lw ( j )
利用水体随着叶绿素浓度的增大,离水辐射度光谱峰从
蓝波段向绿波段偏移的机理而提出蓝绿比值经验算法。
中国海洋大学海洋遥感课程大纲

中国海洋大学海洋遥感课程大纲英文名称Ocean Remote Sensing【开课单位】信息科学与工程学院海洋技术系【课程模块]专业知识【课程编号]【课程类别]必修【学时数】48 (理论卫实践_0_)【学分数】—3 ______一、课程描述本课程大纲根据2011年本科人才培养方案进行修订或制定。
(-)教学对象海洋技术专业本科生。
(二)教学目标及修读要求1、教学目标本课程重点介绍卫星海洋遥感的基本原理和最新研究进展,通过海洋遥感课程的教学,使学生比较系统地学习海洋遥感探测的基本原理,掌握遥感数据处理的基本过程和方法,熟悉海洋遥感的最新进展,为学生毕业后从事相关的工作和学习打下良好基础。
教学中注重理论与实践相结合,并注意介绍海洋遥感研究中的一些最新成果。
本课程不进行双语教学,但在教学中注意介绍相关的专业词汇。
2、修读要求海洋遥感是海洋技术专业的一门专业基础课,属于海洋遥感与GIS技术课程模块中的专业知识教育层面。
海洋遥感具有应用性强,研究内容涉及物理学、计算机技术、图像处理技术等各个学科领域,同时又随着卫星遥感技术的迅速发展不断变化。
教学内容上将结合该领域的发展,不断补充更新,介绍海洋遥感技术发展与应用的前沿。
引导学生阅读参考文献,查阅最新的期刊杂志,提高学生的自学能力,使学生了解海洋遥感技术发展应用的新动向。
学生应具备大学物理、高等数学的基本知识和理论,并已经选修海洋学I、遥感概论等。
(二)先修课程选修海洋遥感课程的学生应当在学习大学物理、高等数学的基础上,并具备海洋学、遥感概论、数字图像处理等基本理论知识。
二、教学内容(一)绪论11、主要内容:主要介绍海洋遥感的概念、海洋遥感和空间海洋学的历史发展、海洋遥感系统的主要组成部分、海洋遥感在海洋科学研究中的价值,以及国际和国内的主要海洋卫星计划。
2、教学要求:掌握海洋遥感的基本概念、海洋遥感系统的组成部分以及海洋遥感发展过程中的重要阶段和代表性卫星及传感器,理解海洋遥感和空间海洋学的发展历史背景、在海洋科学研究中的主要作用,了解国际上的海洋卫星发展规划。
海洋遥感在海洋资源勘探中的作用如何

海洋遥感在海洋资源勘探中的作用如何关键信息项:1、海洋遥感技术的定义和分类定义:____________________________分类:____________________________2、海洋资源勘探的目标和范围目标:____________________________范围:____________________________3、海洋遥感在海洋资源勘探中的具体应用应用领域 1:____________________________应用领域 2:____________________________应用领域 3:____________________________4、海洋遥感技术的优势优势 1:____________________________优势 2:____________________________优势 3:____________________________5、海洋遥感技术的局限性局限性 1:____________________________局限性 2:____________________________局限性 3:____________________________6、应对海洋遥感技术局限性的措施措施 1:____________________________措施 2:____________________________措施 3:____________________________7、海洋遥感技术在未来海洋资源勘探中的发展趋势趋势 1:____________________________趋势 2:____________________________趋势 3:____________________________11 海洋遥感技术的定义和分类海洋遥感技术是指利用传感器对海洋表面和海洋内部的物理、化学、生物等参数进行非接触式测量和监测的技术手段。
海洋遥感复习知识点

名词解释、填空1.海面亮温:低于实际物体的温度指物体的辐射功率等于某一黑体的辐射功率时,该黑体的绝对温度即为亮度温度。
2.发射率:观测物体的辐射能量与同观测物体具有相同热力学温度的黑体的辐射能量之比根据发射率,=1黑体,0~1灰体3.大气气溶胶:悬浮在空气中的来自地球外表的小的液体或固体颗粒。
气溶胶类型:海洋型、陆地型、火山爆发自然〔陆地海洋火山〕;人为〔汽车尾气、污染物〕4.瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。
散射率与波长的四次方成反比,因此,瑞利散射的强度随着波长变短而迅速增大。
对可见光的影响较大。
米散射:当微粒的直径与辐射波长差不多时的大气散射。
气溶胶引起的,对波长依赖性很小无选择散射:云,所有光都被散射回来5.大气层结构简答,根据温度分布,垂向划分:对流层、平流层、中间层、热成层、外大气层1)对流层:有各种天气现象,强烈对流/温湿分布不均匀/航空活动区,对遥感最重要2)平流层/同温层:天气现象少/空气稳定/水汽、沙尘少,温度随高度增加而增加3)中间层:温度随高度增加而减少,对遥感的辐射传递几乎没影响4)热成层:温度随高度增加而增加,高度电离状态,短波电磁波被电离层折返回地面6.一类水体:浮游植物及其共变的碎屑主导海水光谱特性;二类水体:除浮游植物外的其他物质在海水光谱特性中起主导作用海洋初级生产力:把无机碳变成有机碳的单位时间的速率,和叶绿素浓度、光照、光照时间、光穿透距离有关7.遥感反射比〔可见光、海色遥感〕:公式、向上辐亮度和向下辐照度之比,Rw和Ed之比归一化离水辐亮度:假设太阳在正上,把大气分子散射衰减消除的离水辐亮度8.黄色物质:有色可溶有机物,陆源〔植被,棕黄酸〕,海洋〔动物死亡分解〕9.生物光学算法:通过离水辐亮度去推导海水中的各主分浓度的算法。
由海水上面的离水辐亮度推导叶绿素浓度、泥沙浓度、k490衰减系数、透明度等。
10.大气校正:由传感器接收到的辐亮度计算出离水辐亮度的过程Lt是卫星接收的总辐射;第一项是离水辐亮度,接下来三项是大气路径辐射,分别是气溶胶的,分子的,两者都有的,Lwc是白冒,Lsr是太阳耀斑。
基于光谱分层的浅海水深遥感反演方法

基于光谱分层的浅海水深遥感反演方法1. 引言浅海水深是海洋环境的重要指标之一,它不仅影响着海洋生物的分布和生长,还对海洋工程和资源的开发利用具有重要意义。
准确快速地获取浅海水深信息对于海洋研究和利用具有重要意义。
传统的获取浅海水深信息的方法主要是通过水下测深仪进行地面观测,这种方法存在着工作效率低、成本高、受天气影响大等问题。
而基于光谱分层的浅海水深遥感反演方法则可以通过卫星遥感技术实现对海洋水深的快速准确获取,因此备受关注。
2. 基本原理在浅海水域中,水体的吸收、散射和反射作用对光的传播具有重要影响。
水深的不同会导致光在水体中的传播方式和路径发生变化,不同深度的水体对应着不同的光谱特征。
基于光谱分层的浅海水深遥感反演方法利用了这一原理,通过分析水体的光学特性,可以间接推算出水深信息。
3. 数据获取和处理为了实现基于光谱分层的浅海水深遥感反演,首先需要获取海洋的遥感图像数据。
目前,卫星遥感技术已经能够提供高分辨率、多光谱的遥感图像数据,这为浅海水深遥感反演提供了坚实的数据基础。
需要对获取的遥感图像数据进行预处理和特征提取,以获得水体的光学特性信息。
4. 算法模型基于光谱分层的浅海水深遥感反演方法主要依靠遥感图像的光学特性参数和数学模型进行水深反演。
目前,常用的算法模型包括改进的水深反演模型、颗粒摩尼模型等。
这些模型着重于分析水体的反射率、透明度等光学特性参数,通过建立水深与光学特性参数之间的定量关系,实现了对水深的定量估算。
5. 应用与展望基于光谱分层的浅海水深遥感反演方法已经被成功应用于浅海水深的遥感监测与研究中,并取得了一定的成果。
随着遥感技术的不断发展和完善,基于光谱分层的浅海水深遥感反演方法将进一步提高反演水体精度和时效性。
未来,我们可以期待该方法在海洋资源开发、海洋环境监测等领域发挥更大的作用。
6. 个人观点基于光谱分层的浅海水深遥感反演方法作为一种新兴的水深遥感技术,具有很大的应用潜力。
海洋水色卫星遥感二类水体反演算法综述

。
环 境 大 视 野
海洋水色卫星遥感二类水体反演算法综迹
卢 聪 景 ( 建 省 石 狮 市环 境 监 测站 福 建 泉 州 3 2 0 ) 福 6 7 0
摘要 在 简要 说 明 海 洋 水 色遥 感 原 理 、水 体 类 型 和 水 色遥 感 的 物 理 基 础 上 ,针 对 二 类 水 体 的 光 谱 特 性 和 海 洋 现 象 的特
目前 . 过 对 卫 星 平 台 传 感 器 和 现 场 观 测 的 研 究 . 色 反 演 通 水
况 下 二 类 水体 对 入 射 光 具 有 很 大 的 散 射 作 用 因 此 已有 的 一 类 水 体 反 演 算 法 并 不 适 用 于 二 类 水 体 . 要 设 计 新 的算 法 来 需 研 究 二 类 水 体 下 面 介 绍 现 有 的几 种 二 类 水 体 反 演 算 法 及 其
经验 公式是建 立在实验 数据基础 上 的 . 过建立水 体光 通
优 缺 点
2 1 经 验 公 式 法 .
的 新 算 法 相继 问 世 例 如 针 对 二 类 水 体 的特 点 . 立 一 些 新 建 的 数 学 模 型 . 海 洋 一 大 气 系 统 当 作 耦 合 系 统 . 水 色 因子 将 用 反 演 的 理 论 模 式 取 代 经 验 算 法 . 引 入 新 的数 据 处 理 方 法 解 并 决 算 法 中 的 多 变 量 的非 线 性 问题 水 体 水 色反 演 算 法 的 各 种 算 法 , 进 行 了特 点 比较 。 综 并
关 键 词 水 色遥 感
中图分类 号 : 7 56 P 1.
文献标识码 : A
文章编号 :6 2 9 6 (0 10 — 6 — 1 7 — 0 42 1 )5 0 4 3
遥感水深反演的stumf模型

遥感水深反演的stumf模型【实用版】目录1.引言2.遥感水深反演的方法1.解析法2.统计法3.STUMF 模型的原理1.模型构建2.模型参数4.STUMF 模型的应用5.结论正文引言遥感水深反演是遥感技术在海洋领域中的一个重要应用。
准确的水深信息对于海洋资源开发、航海安全以及海洋环境保护等方面具有重要意义。
目前,遥感水深反演方法主要有解析法和统计法两种。
本文主要介绍一种基于 STUMF 模型的遥感水深反演方法。
一、遥感水深反演的方法1.解析法解析法主要是通过建立传感器接收的辐射亮度值与底质反射率之间的关系,进而推算出水深。
这种方法的关键在于建立辐射亮度值与底质反射率之间的精确关系。
2.统计法统计法主要是基于大量的实测数据,建立水深与遥感图像特征之间的统计关系。
这种方法的关键在于选择合适的遥感图像特征以及建立有效的统计模型。
二、STUMF 模型的原理1.模型构建STUMF(Simple Time-domain Model Function)模型是一种简单的时域模型函数,主要用于水深反演。
该模型主要包括两个部分:辐射传输模型和底质反射模型。
2.模型参数STUMF 模型的参数主要包括:水深、底质类型、辐射亮度值、底质反射率以及遥感图像的空间分辨率等。
这些参数可以通过实测数据或先验知识进行获取。
三、STUMF 模型的应用STUMF 模型在遥感水深反演中具有广泛的应用。
通过对遥感图像进行预处理,提取出有用的水深信息,可以实现对海洋底部的准确测量。
同时,STUMF 模型还可以与其他遥感图像特征相结合,提高水深反演的精度和可靠性。
结论遥感水深反演是遥感技术在海洋领域的重要应用之一。
STUMF 模型作为一种简单的时域模型函数,在遥感水深反演中表现出良好的性能。
水深遥感反演的方法和技术流程

水深遥感反演的方法和技术流程今天咱们来唠唠水深遥感反演这事儿。
一、啥是水深遥感反演。
简单来说呢,就是通过遥感技术,从卫星或者飞机等上面获取的数据,然后推算出海洋或者湖泊的水深情况。
这就像是给水体做个透视眼,不用真的下去测量,就能知道水有多深,是不是很神奇呀?二、方法有哪些。
1. 经验模型法。
这种方法可有趣啦。
它是根据大量的实测水深数据和对应的遥感数据,找出它们之间的规律,然后建立一个数学模型。
就好比你发现每次吃三个冰淇淋,体重就会增加一斤,然后就建立了一个“吃冰淇淋 - 体重增加”的模型一样。
比如说,常用的有线性回归模型,通过找到遥感影像中的光谱信息和实际水深之间的线性关系,来反演水深。
2. 半经验模型法。
这个呢,是在经验模型的基础上,再结合一些物理原理。
它就像是给经验模型穿上了一件科学的小外套。
比如考虑到水体对光的吸收和散射这些物理过程,然后再加上经验数据,让反演的结果更准确。
3. 物理模型法。
这可是个“学霸”级别的方法哦。
它完全基于物理原理,像光在水体中的传播、反射、折射等物理过程。
通过复杂的数学公式来描述这些过程,然后根据遥感观测到的光信息,去反推水深。
不过这个方法难度有点大,就像解超级复杂的数学题一样。
三、技术流程。
1. 数据获取。
首先要拿到遥感数据啦,这些数据可以来自卫星影像,像Landsat卫星的数据就很常用。
还有航空遥感数据,就像是从空中给水体拍个照。
同时呢,也要收集实地测量的水深数据,这是用来做参考和验证的。
2. 数据预处理。
这个步骤就像是给数据洗个澡,让它变得干净整洁。
要对遥感数据进行辐射校正,就好比把照片的颜色调整到正常的样子,还有大气校正,把大气对遥感数据的影响去掉。
对于水深测量数据,也要进行整理和质量控制,把那些不靠谱的数据剔除掉。
3. 选择合适的反演模型。
根据研究区域的特点,比如是清澈的湖水还是浑浊的海水,选择前面说的经验模型、半经验模型或者物理模型。
如果是比较简单的水体环境,经验模型可能就够用了,但如果是复杂的海洋环境,可能就得用物理模型啦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/8/5
8.2 海冰与冰山现象的遥感探测
2.海冰与冰山的遥感探测
(1)光学传感器的观测方法
• MODIS海冰的识别方法
一些特殊情况的考虑 :对于较薄海冰(厚度小于10厘米, 没有雪覆盖),其反照率较低,利用雪被指数不容易分辩,在 这种情况下,利用冰表面和海表面的温度差异进行识别。
MODIS计算冰表面温度的算法(MODIS 31和32波段): IST = a +b×T31 +c×(T31 – T32)+d×[(T31–T32)(secθ-1)] a, b, c, d 根据T31位于不同的温度范围:T31 < 240K, 240K < T31 < 260K, T31 > 260K,取相应的系数。
2018/8/5
8.3 海洋溢油污染的遥感监测
2.海洋溢油遥感监测的方法
(2)热红外波段监测
水和油膜的热红外发射率具有一定的差别。实验 表明,厚度大于0.3mm的油膜,发射率在0.95-0.98之 间,海水的发射率为0.993。所以实际温度相同的海 水与油膜,它们的热红外辐射强度也不同。
热红外图像中,厚油层“热”,中等厚度“冷”, 薄油层或油膜则难以探测。
• 现场船测
-使用盐度测量仪器(物理法和化学法)
• 航空/卫星测量
-使用被动微波辐射计进行测量,具有大范围、快速、 定量测量的特点。但目前尚无专门的测量仪器(工作在L波 段,1.4GHz左右),SMOS卫星等在计划中。
2018/8/5
8.1 卫星海洋盐度测量
3.海洋盐度的遥感测量原理
(1)简单描述
由上式可知,在给定辐射计相关参数的条件下,亮温是海 表温度和盐度的函数。因此,在适用于盐度遥感的频率上,亮温 随盐度的变化应该比其随温度的变化要显著得多。
研究表明:频率在1.4GHz的L波段是测量海水表面盐度 的最佳波段,该波段对海表温度和风速的敏感度较低。同时 可以采用S波段和C波段来修正海表盐度测量时海表温度和风 速的影响。 2018/8/5
•
当海表温度增加时, 亮温对盐度的敏感 度增大; 盐浓度越低,亮温 与海表温度之间的 线性关系越强。
•
2018/8/5
8.1 卫星海洋盐度测量
4.海洋盐度遥感测量的影响因素分析
2018/8/5
8.1 卫星海洋盐度测量
4.海洋盐度遥感测量的影响因素分析
(1)盐度遥感使用的频率
TB ( f , , Ssss , Ts )
2018/8/5
8.2 海冰与冰山现象的遥感探测
1.概述
(2)海冰的一般分类
• 新成冰(new ice)【新冰】 • 初期冰(young ice)【幼年冰】 • 头年冰(first year ice) • 多年冰(old ice)
依据海冰产 生与持续时间
2018/8/5
8.2 海冰与冰山现象的遥感探测
8.2 海冰与冰山现象的遥感探测
• NOAAAVHRR海冰 检测方法:
2018/8/5
8.2 海冰与冰山现象的遥感探测
2.海冰与冰山的遥感探测
(1)光学传感器的观测方法
• MODIS海冰的识别方法
归 一 化 雪 被 指 数
一般情况下识别海冰的方法:位于海洋且同时满 足以下条件的像元,可以定义为 “海冰”: NDSI=(RefMODIS4-RefMODIS6)/(RefMODIS4+ RefMODIS6) > 0.4; RefMODIS2 > 0.11; RefMODIS1 > 0.1
2018/8/5
8.3 海洋溢油污染的遥感监测
2.海洋溢油遥感监测的方法
(1)可见光波段监测
在可见光波段垂直观测时,水面油膜的反射率比 洁净海面的反射率相比较高,但油面的反射强度也与 遥感器的观测角有关,在可见光内缺乏有效的区别于 背景信息的特征光谱。 总的来说,可见光波段探测能力是有限的,但它 在提供溢油定性描述和相对位置等方面是一种较为经 济和实用的手段。
8.1 卫星海洋盐度测量
4.海洋盐度遥感测量的影响因素分析
( 2) 极化 方式 和入 射角
Ellison模 型得到的 入射角40 度时,海 表亮温对 盐度的敏 感度
2018/8/5
8.1 卫星海洋盐度测量
4.海洋盐度遥感测量的影响因素分析
(2)极化方式和入射角
极化和入射角也影响亮温对盐度的敏感性。其 规律为:
海洋遥感
The Oceanic Remote Sensing
2018/8/5
第八章 其它海洋参数的遥感反演
卫星海洋盐度测量 海冰与冰山现象的遥感探测
海洋溢油污染的遥感监测
2018/8/5
8.1 卫星海洋盐度测量
1.海洋盐度测量的重要性
海水盐度是监测和模拟海洋循环的一个重要变量, 也是气候变化的重要指示器。
1.概述
(3)海冰探测的主要内容
• 冰的密度探测 • 冰类分析
• 浮冰跟踪
• 冰块探测 在海冰探测的基础上,可进行海冰与气候之间的关系分析。
2018/8/5
8.2 海冰与冰山现象的遥感探测
1.概述
(4)海冰的观测方法
• 海岸站测量
• 表面船只测量(如钻孔)
• 航空器测量和卫星遥感(光学和微波传感器)
8.1 卫星海洋盐度测量
4.海洋盐度遥感测量的影响因素分析
(4)其它影响海表微波辐射测量误差的因素
• 表面粗糙度的影响
可利用雷达和辐射计的组合数据,降低其影响。
• 电离层的影响
可利用基于微波被动偏振测定法的技术估计法拉第旋转。
• 太阳系和宇宙辐射的影响
最重要的是太阳辐射的影响。要精心设计天线,使进入天线 侧部的来自太阳的辐射或反射最少。
• 潜水艇测量(声纳)
• 漂移冰站
2018/8/5
8.2 海冰与冰山现象的遥感探测
2.海冰与冰山的遥感探测
(1)光学传感器的观测方法
利用海冰与海水在可见光与近红外波段的反射 率差异和温度的差异对海冰及其密集度进行探测, 可用于海冰活动和走向的研究,但云层的出现减少 了资料的可利用率。
2018/8/5
2018/8/5
8.2 海冰与冰山现象的遥感探测
MODIS 海冰的识 别方法
2018/8/5
8.2 海冰与冰山现象的遥感探测
2.海冰与冰山的遥感探测
(2)微波探测方法
海冰在雷达图像上表现出丰富的反射回波现象,而海 水部分则呈现出强烈的衰减与吸收,这种差异使得海冰下 表面的位置和轮廓可被完整的表现出来。 微波进行海冰监测的物理原理:在微波频率上,冰几 乎是透明的,而水是一个良好的吸收体,由于它们在微波 频率上的发射率和介电常数不同,可以进行区分。
2018/8/5
8.3 海洋溢油污染的遥感监测
1.海洋溢油污染遥感监测的重要性
溢油现象不仅造成了海洋环境污染,而且对水产业、旅 游业也造成了巨大损失。 卫星遥感监测在海上溢油事故处理中发挥着多重作用。 在溢油事故责任主体明确的情况下,可以为计算溢油面积、 溢油量、己有的和未来可能的污染范围和污染程度提供依据, 在责任主体不明的情况下,除了能发挥上述作用外,还可以 结合气象、水文等资料推算出原始溢油地点,从而为确定责 任主体或海底石油资源的位置提供依据。
8.1 卫星海洋盐度测量
4.海洋盐度遥感测量的影响因素分析
(4)其它影响海表微波辐射测量误差的因素
• 大气干空气和水蒸气的影响
1.4GHz频段上,最主要的贡献来自干空气,需要考虑大气透 过率、上行辐射和下行辐射的影响。
• 云的影响
1.4GHz频段上,云的辐射和散射可利用瑞利散射模式解释。
2018/8/5
卫星测量海表盐度的原理是基于在微波频率上, 盐度对海表亮温的敏感度进行的。海水盐度的增加会 使海水导电能力上升,从而使海水的介电常数增大, 最终使得海表发射率的亮温降低。
2018/8/5
8.1 卫星海洋盐度测量
3.海洋盐度的遥感测量原理
(可以表 示为:
TB ( , , i) ei ( , , Ts , Ssss ) Ts
i 为极化方式; Ts 为海表真实温度; S sss为海水盐度;
为入射角;
2018/8/5
8.1 卫星海洋盐度测量
3.海洋盐度的遥感测量原理
(2)海水盐度遥感的理论模型
b. 极化发射率与复介电常数关系如下:
ei ( , , Ts , S sss ) 1 i ( ) 1 Ri ( )
2
由基尔霍夫 定律和Fresnel 定律得
S i 1 (i )1 0
2018/8/5
可由德拜方程得出, (, T , S )
8.1 卫星海洋盐度测量
3.海洋盐度的遥感测量原理
(2)海水盐度遥感的理论模型
c. 亮温与极化发射率之间的关系:
TB ( f , , Ssss , Ts )
若其它参量已知, 则可由亮温得到盐度:
Ssss 1 ( f , , TB , Ts )
可使用Klein-Swift(K-S)模型或Ellison模式求解复介 电常数,进而得到盐度参量。
2018/8/5
8.1 卫星海洋盐度测量
3.海洋盐度的遥感测量原理
(2)海水盐度遥感的理论模型
TB ( f , , Ssss , Ts )
(3)盐度反演精度与亮温的关系
在相对高温和高盐的条件下,亮温对盐度更为敏感, 盐度的反演效果较好(见图)。 • 较大的亮温误差造成较大的盐度反演误差;
• 同样的盐度反演精度下,低温时需要更高的亮温精度; • 在同样的亮温精度条件下,盐度越高则反演精度越高, 但超过一定的盐度时,其影响不显著。