材料性能与测试-第4章材料的磨损性能 1分析
POM_TPU共混物的力学性能和摩擦磨损性能研究[1]
![POM_TPU共混物的力学性能和摩擦磨损性能研究[1]](https://img.taocdn.com/s3/m/8aebf907bed5b9f3f90f1cfd.png)
图 1 为 POM /TPU ( 质量 比 70 /30, 树脂总 质量 为 100份, 下同 ) 共混物缺口 冲击强度 随增容剂 Z 用量的变化曲线。由图可知, 加入增容剂后合金的冲 击强度提高, 当增容剂 Z 的用量为 5份时, 共混体系 的缺口冲击强度比在同条件下, 未加入增容剂 Z 的 缺口冲击强度提高了 50% 。这是由于增容剂 Z 促进 了分散相 TPU 的分散, 使 POM 和 T PU 很好地形成均 匀的海 - 岛结构; 能够在 POM 与 TPU 分子之间形成 一种类似于互穿网络结构的物理或化学或两者兼而有 之的区域, 从而大大提高了冲击强度。但是, 增容剂
# 10#
塑料工业 CH INA PLA ST ICS INDU STRY
第 37卷第 1期 2009年 1月
POM /TPU共混物的力学性能和摩擦磨损 性能研究
张 辉, 高西萍, 李瑞海
(四川大学高分子科学与工程学院, 四川 成都 610065)
摘要: 采用双螺杆挤出熔融共混的方 法制备了聚甲醛 ( POM ) 和热塑性聚氨酯弹性体 ( TPU ) /增容剂 Z 共混物。
摩擦 磨 损 性 能 的 改 性 POM 复 合 材 料, 近 年 来, P alan ive lu K 等 [ 6- 7] 采 用 了热 塑 性聚 氨 酯 弹性 体 对 POM 改性。本文以热塑性聚氨酯弹性体 ( T PU ) 与 POM 共混为研究对象, 研究了该共混 物的力学性能
以及摩擦磨损性能。
SEM 测试: 形态 样 品 经 液 氮低 温 脆 断, 断 口 在常温下经 N, N - 二甲基酰胺刻蚀处理后喷金; 磨损 表面直接喷 金, 然 后进行电 子显微 镜扫描 实验。
薄膜力学性能解析

19
二、残余应力的测量
1. Stoney公式
在薄膜残余应力的作用下,基底会发生挠曲,这
种变形尽管很微小,但通过激光干涉仪或者表面轮廓
仪,能够测量到挠曲的曲率半径。基底挠曲的程度反
映了薄膜残余应力的大小,Stoney给出了二者之间的
3
分类
脆性薄膜
按
脆性基底
力
学
性
质 分
脆性薄膜
类
韧性基底
韧性薄膜 脆性基底
韧性薄膜 韧性基底
4
4.1 薄膜的弹性性能
一、薄膜的弹性常数
弹性模量是材料最基本的力学性能参之一,由于 薄膜的某些本质的不同之处,其弹性模量可能完全不 同于同组分的大块材料。
5
三点弯曲
如图所示,加载和挠度的测量均在两支点中心位置,
2
y
2bdy
hs 2
hs 2h f
I f y2bdy
hs 2
(4.3)
实验中测出载荷增量与中心挠度增量的关系曲线(近似 线性),求出其斜率,用(4.1)式求出薄板的抗弯刚度,若基 体弹性模量已知,则利用(4.2)式可求得薄膜的弹性模量。
7
压痕法
纳米压痕技术可用以测定薄膜的硬度、弹性模量以
及薄膜的蠕变行为等,其理论基础是Sneddon关于轴
详细推导过程见流程图2。
15
表4.1 式(4.21)中对应于hg /R 的系数
16
17
图2 根据p-h 曲线确定应力-应变关系的流程图
4.2 薄膜的残余应力
一、残余应力的来源
通常认为,薄膜中的残余应力分为热应力和内应力两种 。
材料性能的测试和分析方法

材料性能的测试和分析方法材料是指人类在生产、生活、科技研发中所使用的原材料,包括金属、合金、非金属、复合材料等。
材料性能是指材料在使用过程中,表现出来的物理、化学、力学等方面的性质和特征,包括强度、硬度、耐腐蚀性、导电性等等。
了解和掌握材料的性能是进行科研和生产的必要前提,而测试和分析材料性能则是了解和掌握材料性能的必要手段。
本文将介绍针对材料性能的测试方法和分析方法。
一、力学性能的测试和分析方法力学性能是指材料所表现出来的强度、韧性、硬度等表面的物理力学特性。
力学性能的测试方法主要有拉伸试验、压缩试验、弯曲试验、硬度试验等。
其中针对不同类型材料,需要选择不同的测试方法和测试设备。
例如钢材的硬度测试必须采用布氏硬度计,而塑料的硬度测试则需要用洛氏硬度计。
而不同的测试方法也会得出不同的测试结果,例如在同样的试验条件下,拉伸试验得出的拉伸强度值和压缩试验得出的屈服强度值是不同的。
力学性能的分析方法主要有断口分析、金相分析和扫描电镜分析等。
断口分析是指通过观察材料在拉伸或压缩试验中断裂的断口形态和特点,来判断材料的性能和失败原因。
金相分析是指将材料进行钢切件制备,并通过光学方法来观察材料断口、晶粒结构和组织性质,从而了解材料的组织结构和性质。
扫描电镜分析则是利用电子束照射材料表面,通过观察反射电子和离子的图像来了解材料的表面形貌和微观结构。
三种分析方法方便快捷地评估和分析材料的性能。
二、热学性能的测试和分析方法热学性能是指材料在加热或冷却过程中所表现的吸热、放热、导热、热膨胀等热学性质。
热学性能的测试方法主要有热膨胀测试、热导测试、热量测试等。
其中热膨胀测试会测量材料在不同温度下的膨胀系数,从而评估材料的热稳定性。
而热导测试则可以测量材料在不同温度下的热导率,从而了解材料的导热性质。
热量测试可测量材料在吸热或放热过程中的温度变化,从而了解材料的热量性质。
热学性能的分析方法主要有热失重分析和热分解分析。
材料性能与测试

重量法
通过测量材料在腐蚀介质 中的重量变化来评估其耐 腐蚀性能。
深度法
测量材料腐蚀后的深度或 厚度变化来评估耐腐蚀性 能。
电化学方法
利用电化学原理测量材料 的腐蚀电流、电位等参数 来评估耐腐蚀性能。
抗氧化性能评估方法
热重分析法
通过测量材料在高温下的重量变化来 评估其抗氧化性能。
化学分析法
通过分析材料氧化后的产物来评估其 抗氧化性能。
压缩、弯曲和剪切试验方法
压缩试验
压缩试验主要测定材料在轴向压力作用下的力学行为,试样破坏时的最大压缩载荷除以试 样的横截面积,称为压缩强度或抗压强度。
弯曲试验
弯曲试验是测定材料承受弯曲载荷时的力学特性的试验,试样在弯曲过程中外层受到拉伸 ,内层受到压缩,在其横截面上存在着一个既不受拉,又不受压的应力为零的纤维层,称 为材料的中性层。
其他化学性能测试技术
01
02
03
04
光谱分析法
利用光谱原理分析材料的化学 成分和结构来评估其性能。
质谱分析法
通过质谱仪测量材料的质谱图 来评估其化学成分和性能。
核磁共振法
利用核磁共振原理测量材料的 分子结构和化学环境来评估其
性能。
X射线衍射法
通过X射线衍射仪测量材料的 晶体结构来评估其性能和组成
。
人工智能在材料性能测试中应用
01
数据处理
利用人工智能技术处理大量实验 数据,提取有用信息,提高数据 处理效率。
智能预测
02
03
优化设计
基于机器学习算法,建立材料性 能预测模型,实现对材料性能的 快速预测。
利用人工智能技术优化材料设计 方案,提高材料性能和使用寿命 。
4章磨损

二、磨损的基本特性
磨损系数表示磨损量与工况之间的关系。当载荷与速 度为已知,并可求出一定工况下的磨损系数时,就可估算 磨损量,以预测摩擦学系统的寿命;也可根据磨损系数来 确定磨损类型,因为不同的磨损类型具有不同的磨损系数。 (5)磨损速率(磨损强度):
I V
I W
t
t
此外,还采用相对耐磨性这一参数,它是标准试样的 磨损率与被测试样磨损率之比。
§4-3
磨粒磨损
磨粒磨损是指在摩擦过程中,由于摩擦表面上硬 的微凸体或摩擦界面上的硬颗粒而引起物体表面材料 损耗的一种磨损,这是最常见的一种磨损现象。据统 计,因磨粒磨损而产生的损失约占各类磨损所造成的 全部损失的一半。挖掘机、运输机许多零件的磨损都 属于磨粒磨损。
一、主要类型
由于物体表面本身硬的微凸体使对偶表面产生的磨粒 磨损称为两体磨粒磨损(Two-body abrasive wear);由于摩 擦表面上存在自由硬颗粒而产生的磨粒磨损称为三体磨粒 磨损(Three- body abrasive wear)。
(3)刮伤 沿滑动方向形成严重的划痕,剪切破坏发生 在较软金属的表层。
一、主要类型
按照磨损程度的不同,粘着磨损可以分为以下五类:
(4)胶合 表面局部温度相当高,粘着点的面积较大, 由于粘着点的剪切强度比形成粘着的任何一方基 体金属的剪切强度都要高(如铜与钢对磨),故在 摩擦副的一方或双方的基体金属上产生较深层的 破坏。因而,既有较多的软金属转移到硬金属表 面上,同时也有部分硬金属转移到软金属表面上。
三、磨损的分类 实际的磨损现象大都是多种类型磨损同时存 在,或磨损状态随工况条件的变化而转化。因此, 在分析和处理磨损问题时,必须善于分析并抓住 主要的磨损类型,或着眼于主要的磨损过程,才 能采取有效的减磨措施。
材料力学性能知到章节答案智慧树2023年西安工业大学

参考答案:
越宽
35.典型疲劳断口具有3个特征区分别为()。
参考答案:
疲劳裂纹扩展区
;疲劳源
;瞬断区
36.疲劳条带和贝纹线均属于疲劳断口的微观特征形貌。()
参考答案:
错
37.同种材料不同应力状态下,表现出的应力~寿命曲线是不同的,相应的疲劳极限也不相同。一般而言,对称弯曲疲劳极限()对称拉压疲劳极限。
参考答案:
错
26.线弹性断裂力学研究方法之一是应力应变分析方法,与之相对应的是()判据。
参考答案:
K
27.要测量金属材料的断裂韧性(断裂韧度)KIC,中国国家标准中规定了四种试样,下列中不属于这四种试样的是()。
参考答案:
标准四点弯曲试样
28.奥氏体钢的KIC比马氏体钢的高。)
参考答案:
对
29.对于过共析钢而言,如果沿晶界析出二次渗碳体的数量逐渐增多,则该材料的KIC()。
参考答案:
晶粒大小
;金相组织
;加载速度
第四章测试
23.裂纹扩展的基本形式有()。
参考答案:
滑开型
;张开型
;撕开型
24.某材料的KIC=50MPa·m^-1/2,承受1000MPa的拉应力,假设K=1.2σ(πa)^1/2,该试样的临界裂纹尺寸是()。
参考答案:
1.1mm
25.应力场强度因子,综合反映了外加应力和裂纹长度、裂纹形状对裂纹尖端应力场强度影响,是材料本身固有的力学性能。()
参考答案:
错
59.两表面完全分开,形成液体与液体之间的摩擦是流体摩擦。()
参考答案:
必修实验八材料的摩擦与磨损实验

必修实验八材料的摩擦与磨损实验一、实验目的1) 熟悉往复式摩擦磨损试验机的结构、实验原理和操作方法。
2) 掌握摩擦系数、磨损量的测定方法。
3) 比较不同材料的摩擦磨损性能,并分析其原因。
二、实验原理摩擦磨损是工业生产中普遍存在的现象,凡是具有相对运动的摩擦副间,必然会伴随有摩擦和磨损现象。
影响材料摩擦与磨损的因素很多,如压力、运动速度、工件表面质量、润滑剂及材料性能等。
所以材料的摩擦磨损特性并不是材料固有的,而是摩擦条件与材料性能的综合特性。
摩擦磨损试验机的种类很多,一般由加力装置、摩擦力测量机构及摩擦副相对运动驱动机构等部分组成。
现以往复式摩擦磨损试验机为例,介绍摩擦磨损试验机的结构及测试原理。
摩擦副由上试样和下试样组成;上试样与下试样间的往复运动由电机带动偏心轮的旋转而实现。
往复运动的振幅可通过偏心距进行调节。
摩擦副间的压力通过砝码加载、并由压力传感器进行测量;而摩擦副间的摩擦力通过拉/压传感器进行测量,如图1所示。
将压力、摩擦力和时间信号输入到计算机中,便可得到摩擦力、摩擦系数随时间的变化曲线,如图2。
经过一定时间(或滑动距离)后,下试样(待测试样)表面将产生具有一定深度的磨痕(图3a)。
利用表面轮廓仪,在垂直于往复运动的方向上测量磨痕的微观形貌(图3b),确定磨痕的深度、截面积,从而与往复运动的振幅相乘得到磨损的体积。
也可进一步由磨损体积求出材料的磨损重量,根据磨损量的大小即可判断材料的耐磨性能。
若在相同的时间(或距离)内磨损量愈大,表明材料的耐磨性能愈差。
反之,则表明耐磨性愈好。
图 1 往复式摩擦磨损试验机的原理图01002003004005006000.00.10.20.30.40.50.6摩擦时间 / s 摩擦系数图 2摩擦系数与时间的变化关系(a )宏观形貌 (b )微观形貌图 3 磨痕的宏微观形貌三、实验材料与样品本实验的上试样选用直径Φ8mm 的ZrO 2球或GCr15钢球,试验载荷为10N ,往复运动振幅为10mm ,频率为1Hz ,测试周期为20分钟。
磨损实验报告

磨损实验报告磨损实验报告摘要:本实验旨在研究不同材料在摩擦条件下的磨损情况,并探讨材料的磨损机理。
通过对不同材料的磨损实验,我们发现了磨损过程中的一些规律,为材料的选用和改进提供了实验依据。
引言:磨损是材料工程中一个重要的问题,它会导致材料的性能下降和寿命缩短。
因此,研究磨损机理对于材料的选用和改进具有重要意义。
本实验选取了几种常见的材料,通过模拟实际工况下的摩擦条件,观察其磨损情况,并分析磨损机理。
实验方法:1. 实验材料的准备:选取了铁、铜、铝和塑料等材料进行实验。
2. 实验装置的搭建:搭建了一个模拟摩擦的实验装置,包括一个转动的轴和一个与之接触的材料样品。
3. 实验过程:将材料样品与转动轴接触,并施加一定的压力和转速,模拟摩擦条件。
记录实验过程中的磨损情况和相关数据。
实验结果与分析:通过实验观察和数据记录,我们得出了以下结论:1. 不同材料的磨损情况存在明显差异。
铁材料在摩擦条件下磨损最为严重,而塑料材料的磨损相对较轻。
2. 磨损过程中,材料表面出现了磨痕和磨粒。
磨痕是由于材料表面的微小凸起与摩擦力的作用产生的,而磨粒是由于磨损过程中材料的剥落和破碎产生的。
3. 磨损过程中,材料的摩擦系数和磨损速率呈正相关关系。
摩擦系数越大,磨损速率也越大。
4. 磨损过程中,材料的硬度和韧性对磨损的影响较大。
硬度较高的材料更容易产生磨痕,而韧性较好的材料更容易产生磨粒。
结论:通过本实验,我们深入了解了不同材料在摩擦条件下的磨损情况,并探讨了磨损机理。
根据实验结果,我们可以得出以下结论:1. 在实际工程中,应根据具体工况选择合适的材料,以减少磨损带来的损失。
2. 在材料的设计和改进中,应注重提高材料的硬度和韧性,以增强其抗磨损能力。
3. 磨损实验是研究材料性能的重要手段之一,可以为材料的选用和改进提供实验依据。
展望:本实验只研究了几种常见材料的磨损情况,未来可以进一步扩大实验样本,研究更多材料的磨损性能。
同时,结合实际工程应用,可以通过改变摩擦条件和磨损环境,探索材料磨损的更多机理和规律,为材料的选用和改进提供更准确的指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6.1 磨损的概念和类型
一、摩擦与磨损的概念
1.2 摩擦的分类
➢ 摩擦按摩擦副运动状态可分为: • 静摩擦:两物体表面产生接触,有相对运动趋势但尚未产生相对运动 时的摩擦; • 动摩擦:两相对运动表面之间的摩擦。 ➢ 按相对运动的位移特征分类: • 滑动摩擦:两接触物体接触点具有不同速度和(或)方向时的摩擦; • 滚动摩擦:两接触物体接触点的速度大小和方向相同时的摩擦; • 自旋摩擦:两接触物体环绕其接触点处的公法线相对旋转时的摩擦。
粘着磨损形貌 粘着磨损过程示意图
§6.2 磨损过程
一、粘着磨损(咬合磨损)
➢ 典型的粘着磨损
根据粘着点强度和破坏位置不同,粘着磨损从轻微磨损到破坏性严重 的胶合磨损。它们的磨损形式、摩擦系数和磨损度虽然不同,但共同 的特征是:出现材料迁移,以及沿滑动方向形成程度不同的划痕。
a. 轻微磨损 粘着强度比摩擦副两金属基体强度低时,剪切发生在粘着结合面上, 表面转移的材料较轻微。 此时虽然摩擦系数增大,但磨损却很小,材料迁移也不显著。通常在 金属表面具有氧化膜、硫化膜或其他涂层时发生轻微粘着摩损。
§6.1 磨损的概念和类型
一、摩擦与磨损的概念
1.2 摩擦的分类
➢ 按表面润滑状态分类: • 干摩擦:两表面之间即无润滑剂又无湿气的摩擦; • 边界摩擦:边界膜隔开相对运动表面时的摩擦; • 流体摩擦:以流体层隔开相对运动表面时的摩擦; • 混合摩擦:半干摩擦和半流体摩擦的统称。
§6.1 磨损的概念和类型
§6.1 磨损的概念和类型
二、磨损的基本类型
1、根据摩擦面损伤和破坏的形式,大致可分四类: a 粘着磨损(Adhesive Wear):材料表面某些接触点局部压应力超过该 处材料屈服强度发生粘合并拉开而产生的磨损;
b 磨粒磨损(Abrasive Wear):摩擦副的一方表面存在坚硬的细微凸 起或在接触间存在硬质粒子时产生的磨损;
c 腐蚀磨损(Corrsion Wear):在腐蚀应用环境中摩擦表面与周围介 质发生反应,表面形成腐蚀产物粘附不牢,摩擦中被剥落下来,新 表面又进一步发生反应,产生磨损。
d 接触疲劳磨损(Rolling Contact Wear):两接触材料作滚动或者滚 动滑动摩擦时,交变接触压应力长期作用使得材料表面疲劳磨损, 局部区域出现小片或者小块状材料剥落,而产生的磨损。
§6.2 磨损过程
一、粘着磨损(咬合磨损)
➢ 典型的粘着磨损
b. 涂抹 粘着强度大于摩擦副中较软金属,小于较硬金属的强度。剪切破坏发 生在离粘着结合面不远的较软金属浅层内,软金属涂抹(粘附)在硬金 属表面上。该模式下摩擦系数与轻微磨损差不多,但磨损程度加剧。 c. 擦伤 粘着强度比摩擦副两金属基体强度都高。剪切主要发生在软金属的亚 表层内,有时也发生在硬金属的亚表层内。转移到硬金属上的粘着物 又刮削软金属表面,使软金属表面出现划痕。即擦伤主要发生在软金 属表层,硬金属表面也偶有划伤。
轨道磨损
弓网:大电流下的摩擦磨损
水中航行体的主要能源和动力被用来克 服行进中的阻力,其中摩擦阻力占最大成 分(水下80%);对于诸如输油管道这类管 道运输,其能量几乎全部被用来克服流固 表面的摩擦阻力。
卫星飞轮 轴承润滑油 耐磨轴承材料 稳定的微量发动机振动故障的70%以上
压气机盘与涡轮盘
2、磨损研究的主要内容:
(1) 主要磨损类型发生条件、特征和变化规律; (2) 磨损的影响因素, 包括摩擦副材料、表面形态、润滑状况、环
境条件, 以及滑动速度、载荷、工作温度等工况参数; (3) 磨损的模型与磨损计算; (4) 提高材料耐磨性的措施; (5) 磨损研究的测试技术与实验分析方法。
§6.1 磨损的概念和类型
一、摩擦与磨损的概念
➢ 耐磨性
耐磨性是材料抵抗磨损的能力。 通常用试样摩擦表面法相方向尺寸的减小(线磨损)、试样体积或质 量的损失来表示(体积磨损或质量磨损)。
比磨损量
§6.1 磨损的概念和类型
二、磨损的基本类型
➢ 磨损是多种因素相互影响的复杂过程,其具体类型也有多种分类:
§目 录
§6.1 磨损的概念和类型 §6.2 磨损过程 §6.3 耐磨性指标及其测试 §6.4 提高耐磨性的途径 §6.5 补充:炭炭复合材料的磨损
§6.1 磨损的概念和类型
一、摩擦与磨损的概念
1.1 摩擦
相互接触的两个物体在外力作用下 有相对运动或相对运动的趋势,接 触界面上出现阻碍相对运动的阻力, 该阻力称为摩擦力,其方向与引发相 对运动切线方向相反,可用接触面 法向方向压力与摩擦系数的乘积表示:
第四章 材料的磨损性能
一、概 述
相互接触的物体发生相对运动,其表面间发生摩擦,致使表层材 料不断损失、转移或产生残余变形,物体表面发生磨损。
➢ 有些磨损是有益的,如“研磨”,可使零件表面粗糙度减小,
使刀刃变得锋利。 ➢ 但是,据统计约有80%左右的机械零件是由于磨损而报废或 失效。磨损不仅消耗材料,浪费能源,并直接影响到机器的寿 命和可靠性。固此,对磨损的研究引起了人们的极大关注。
一、概 述
摩擦:相互接触的两个物体有相对运动或相对运动的趋势,在其 接触界面上出现阻碍相对运动的现象,该阻力称为摩擦力。其方 向与引起相对运动的切线方向相反,可用接触面法向方向压力与 摩擦系数的乘积表示:
μ= F/N
磨损:物体表面相互摩擦,材料表面逐渐分离出磨屑,致使材料 损伤的现象。 摩擦是磨损的原因,磨损是摩擦的结果。机件间摩擦磨损引起失 效叫磨损失效。
§6.1 磨损的概念和类型
二、磨损的基本类型
2. 磨损类型在某些条件下可以实现转化
磨损类型转化
§6.2 磨损过程
一、粘着磨损(咬合磨损)
➢ 磨损条件:
摩擦副相对滑动速度小;接触面氧化膜脆弱; 润滑条件差及接触应力大的滑动摩擦条件。
➢ 磨损特点:
机件表面有大小不等的结疤。
➢ 磨损过程:
表面接触的少量微凸体→产生很高的应力 →发生塑性变形→形成粘着点 →被剪断、拉开→转移到一方材料表面 →脱落下来→形成磨屑。 粘着点不断形成,又不断被破坏并脱落的过程。
一、摩擦与磨损的概念
1.2 摩擦的分类
➢ Stribeck曲线: 不同摩擦状态下,材料表现出的摩擦系数不同。
§6.1 磨损的概念和类型
一、摩擦与磨损的概念
2、磨损:
物体表面相互摩擦,材料表面逐渐分离出磨屑,致使材料损伤的现象。 磨屑的形成也是一个变形和断裂的过程。
➢ 磨损过程:
1) 跑合(磨合)阶段: 磨损速率下降; 2) 稳定磨损阶段: 磨损速率稳定; 3) 剧烈磨损阶段: 磨损速率急剧增加。