材料力学性能实验(精)

合集下载

实验报告材料力学性能测试

实验报告材料力学性能测试

实验报告材料力学性能测试实验目的:通过对不同材料的力学性能进行测试,评估其机械强度以及抗压、抗拉等能力,为材料选择和应用提供依据。

实验方法:1. 准备样本:选取不同材料的标准样本(例如金属、塑料、玻璃等),保证样本尺寸一致。

2. 强度测试:使用万能材料试验机对样本进行拉伸和压缩测试,记录其最大拉力和最大压力值。

3. 杨氏模数测试:利用杨氏模量试验机对样本进行弯曲试验,测得样本的弯曲刚度和屈服强度。

4. 硬度测试:使用洛氏硬度计等硬度测试仪器对样本进行硬度测试,得到相应硬度值。

实验结果:根据实验方法进行测试,得到以下结果:1. 强度测试结果:金属样本的最大拉力为100N,最大压力为200N;塑料样本的最大拉力为80N,最大压力为150N;玻璃样本的最大拉力为90N,最大压力为180N。

2. 杨氏模数测试结果:金属样本的弯曲刚度为500N/mm,屈服强度为400N/mm;塑料样本的弯曲刚度为300N/mm,屈服强度为200N/mm;玻璃样本的弯曲刚度为400N/mm,屈服强度为300N/mm。

3. 硬度测试结果:金属样本的洛氏硬度为80;塑料样本的洛氏硬度为60;玻璃样本的洛氏硬度为70。

实验讨论:从实验结果可以看出,金属样本在强度、刚度和硬度方面表现出较高的数值,具有较好的机械性能。

塑料样本在各项测试指标中表现适中,而玻璃样本在拉伸和硬度方面较弱。

这些结果与我们对材料性质的常识相符。

实验结论:根据实验结果,我们可以得出以下结论:1. 对于需要具备高机械强度和刚度的应用场景,金属材料是一个较好的选择。

2. 对于一些耐腐蚀性、电绝缘性等特殊要求的应用,塑料材料是一个适宜的选择。

3. 玻璃材料在某些特定场景下可以作为透明、坚固的材料选用,但其机械性能相对较弱,需谨慎选择使用。

实验改进:1. 增加样本数量:为了提高实验的可靠性和准确性,可以增加样本数量以扩大样本数据集。

2. 引入其他测试方法:除了上述提及的测试方法,可以引入其他力学性能测试方法,如拉伸变形率、材料疲劳寿命等指标,以更全面地评估材料性能。

材料力学性能实验

材料力学性能实验

实验一、金属光滑试样静拉伸试验
过D作弹性直线段的平行线DB,交曲线于B点,B点所对应的 力值即Fp0.2。
F
Fp0.2
0.2%Le.n
图1-2 Fp0.2的确定
实验一、金属光滑试样静拉伸试验
3.抗拉强度Rm 将试样加载至断裂,由测力度盘或拉伸曲线上读出试样拉 断前的最大载荷Fm,Fm所对应的应力即为抗拉强度Rm。 Rm=Fm/S0 (N/mm2) 4.断后伸长率A 试样拉断后,标距的伸长与原始标距的百分比,即 A=(Lu-L0)/L0 *100% 式中,L0为试样原始标距,Lu为试样拉断后的标距。 由于试样断裂位置对A有影响,其中以断在正中的试样伸 长率最大。因此,测量断后标距部分长度Lu时,规定以断在正 中试样的L1为标准,若不是断在正中者,则应换算到相当于在 正中的Lu。 为此,试样在拉伸前应将标距部分划为10等分,划上标记。 测量Lu时分为两种情况:
强度,用以表征材料在试验力作用下抵抗微量塑性变形的抗力。
图解法:在拉伸过程中绘制具有足够大倍数的力-伸长曲线(见
图1-2)。曲线高度应使规定非比例伸长的力值Fp0.2处于力轴的
1/2以上。伸长放大倍数n的选择应使图中OD段长度不小于5mm。
自弹性直线段与横座标轴的交点O起,截取一段相应于规定非
比例伸长的OD(OD=0.2%Len,Le为引伸计计算距)。
实验二、系列冲击试验
JBD-30夏氏冲击试验机的使用方法如下: 实验前对试验机进行检查并进行空击试验,较正指针零点。 安放试样时采用专用样规,以保证试样缺口与支座跨距中心相重 合。 试验时,首先将摆锤用支撑铁支托,使其偏离中心位置,在 支座上放好试样。然后按取摆按钮将摆锤举起。然后,按冲击按 钮,使摆锤落下冲断试样。当摆锤冲断试样后运动到最高点并向 回摆动时,按刹车按钮,使摆锤停止摆动。记录试验机指针在表 盘上所指的数值,即为冲断试样所消耗的冲击功Aku(或Akv)以 此计计算试样的冲击韧性aku(或akv)。整个操作过程都应特别注意 安全,防止摆锤和击断的试样飞出伤人。 2. 加热及冷却介质与装置 (1)介质:室温~90℃用水浴。80℃~200℃可用油浴,室温 以下用干冰或液氮和低凝固点液体的混合物作为冷却剂。本实验

材料力学性能实验报告

材料力学性能实验报告

大连理工大学实验报告学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___指导教师签字:成绩:实验一金属拉伸实验Metal Tensile Test一、实验目的Experiment Objective1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率φ的测定方法。

2、掌握金属材料屈服强度σ0.2的测定方法。

3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。

4、简单了解万能实验拉伸机的构造及使用方法。

二、实验概述Experiment Summary金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。

此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。

通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。

在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。

用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。

三、实验用设备The Equipment of Experiment拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。

液压式万能实验机是最常用的一种实验机。

它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。

(一)加载部分The Part of Applied load这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。

其加载方式是液压式的。

在机座上装有两根立柱,其上端有大横梁和工作油缸。

材料力学实验参考

材料力学实验参考

实验一、测定金属材料拉伸时的力学性能一、实验目的1、测定低碳钢的屈服极限s σ,强度极限b σ,延伸率δ和面积收缩率ψ。

2、测定铸铁的强度极限b σ。

3、观察拉伸过程中的各种现象,并绘制拉伸图(l F ∆-曲线)。

二、仪器设备1、液压式万能试验机。

2、游标卡尺。

三、实验原理简要材料的力学性质s σ、b σ、δ和ψ是由拉伸破坏试验来确定的。

试验时,利用试验机自动绘出低碳钢拉伸图和铸铁拉伸图。

对于低碳材料,确定屈服载荷s F 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。

测力回转后所指示的最小载荷即为屈服载荷s F ,继续加载,测得最大载荷b F 。

试件在达到最大载荷前,伸长变形在标距范围内均匀分布。

从最大载荷开始,产生局部伸长和颈缩。

颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至断裂。

铸铁试件在极小变形时,就达到最大载荷,而突然发生断裂。

没有流动和颈缩现象,其强度极限远低于碳钢的强度极限。

四、实验过程和步骤1、用游标卡尺在试件的标距范围内测量三个截面的直径,取其平均值,填入记录表内。

取三处中最小值作为计算试件横截面积的直径。

2、 按要求装夹试样(先选其中一根),并保持上下对中。

3、 按要求选择“试验方案”→“新建实验”→“金属圆棒拉伸实验”进行试验,详细操作要求见万能试验机使用说明。

4、 试样拉断后拆下试样,根据试验机使用说明把试样的l F ∆-曲线显示在微机显示屏上。

从低碳钢的l F ∆-曲线上读取s F 、b F 值,从铸铁的l F ∆-曲线上读取b F 值。

5、 测量低碳钢(铸铁)拉断后的断口最小直径及横截面面积。

6、 根据低碳钢(铸铁)断口的位置选择直接测量或移位方法测量标距段长度1l 。

7、 比较低碳钢和铸铁的断口特征。

8横截面面积A1=25.50 mm伸长率=⨯-=%1001lllδ断面收缩率=⨯-=%1001AAAψ试样草图拉伸图实验前:d..l实验后:FO l∆灰铸铁试件试样尺寸实验数据实验前:标距=l100 mm直径=d10.16mm横截面面积A =81.03 mm2实验后:标距l1≈100 mm最小直径d1=10.15mm横截面面积A=80.91 mm2最大载荷=bF14.4kN抗拉强度==AFbbσMPa 实验前草图实验后草图六、实验结论分析与讨论分析比较两种材料在拉伸时的力学性能及断口特征。

材料力学性能测试实验报告

材料力学性能测试实验报告

材料力学性能测试实验报告为了评估材料的力学性能,本实验使用了拉力试验和硬度试验两种常见的力学性能测试方法。

本实验分为三个部分:拉力试验、硬度试验和数据分析。

通过这些试验和分析,我们可以了解材料的延展性、强度和硬度等性能,对材料的机械性质有一个全面的了解。

实验一:拉力试验拉力试验是常见的力学性能测试方法之一,用来评估材料的延展性和强度。

在拉力试验中,我们使用了一个万能材料试验机,将试样夹紧在两个夹具之间,然后施加拉力,直到试样断裂。

试验过程中我们记录了试验机施加的力和试样的伸长量,并绘制了应力-应变曲线。

实验二:硬度试验硬度试验是另一种常见的力学性能测试方法,用来评估材料的硬度。

我们使用了洛氏硬度试验机进行试验。

在实验中,将一个试验头按压在试样表面,然后测量试验头压入试样的深度,来衡量材料的硬度。

我们测得了三个不同位置的硬度,并计算了平均值。

数据分析:根据拉力试验得到的应力-应变曲线,我们可以得到材料的屈服强度、断裂强度和延伸率等参数。

屈服强度是指材料开始塑性变形的应变值,断裂强度是指材料破裂时的最大应变值,延伸率是指试样在断裂前的伸长程度。

根据硬度试验得到的硬度数值,我们可以了解材料的硬度。

结论:本实验通过拉力试验和硬度试验对材料的力学性能进行了评估。

根据拉力试验得到的应力-应变曲线,我们确定了材料的屈服强度、断裂强度和延伸率等参数。

根据硬度试验的结果,我们了解了材料的硬度。

这些数据可以帮助我们判断材料在不同应力下的性能表现,从而对材料的选用和设计提供依据。

总结:本实验通过拉力试验和硬度试验对材料的力学性能进行了评估,并通过应力-应变曲线和硬度数值来分析材料的性能。

通过这些试验和分析,我们对材料的延展性、强度和硬度等性能有了全面的了解。

这些结果对于材料的选用和设计具有重要意义,可以提高材料的应用性能和可靠性。

材料力学性能试验有哪些带你了解材料力学性能试验!

材料力学性能试验有哪些带你了解材料力学性能试验!

材料力学性能试验有哪些带你了解材料力学性能试验!材料力学性能又称机械性能,任何材料受力后都要产生变形,变形到一定程度即发生断裂。

这种在外载作用下材料所表现的变形与断裂的行为叫力学行为,它是由材料内部的物质结构决定的,是材料固有的属性。

检测可靠性实验室可材料力学性能试验服务。

作为第三方检测中心,机构拥有CMA、CNAS检测资质,检测设备齐全、数据科学可靠。

材料力学性能试验:拉伸试验拉伸试验是其中一种最常用的试验方法,用于测定试样在受到轴向拉伸载荷后的行为。

这些试验类型可在室温或受控(加热或制冷)条件下进行,以确定材料的拉伸性能。

适用材料:金属、塑料、弹性体、纸张、复合材料、橡胶、纺织品、粘合剂、薄膜等。

常见的拉伸试验结果:最大载荷、最大载荷下的挠度、最大载荷做功、刚度、断裂载荷、断裂时的形变、断裂做功、弦斜率、应力、应变、杨氏模量试验仪器:万能试验机,高速试验机等测试标准GB/T 6397-1986《金属拉伸试验试样》ASTM D3039-76用于测定高模量纤维增强聚合物复合材料面内拉伸性能ASTM D638用于测定试件的拉伸强度和拉伸模量材料力学性能试验:压缩试验压缩试验是一种常用于测定材料的压缩负载或抗压性的试验方法,同时也用于测定材料在受到一个特定的压缩负载并保持一段设定时间后的恢复能力。

压缩试验用于测定材料在加载下的行为。

此外也可测定一段时间内材料在(恒定或递增)载荷下可承受的最大应力。

适用材料金属、塑料、弹性体、纸张、复合材料、橡胶、纺织品、粘合剂、薄膜等。

试验仪器:万能试验机,高速试验机、压缩试验机等注意事项:(1)压缩试验主要适用于脆性材料,如铸铁、轴承合金和建筑材料等;(2)对于塑性材料,无法测出压缩强度极限,但可以测量出弹性模量、比例极限和屈服强度等。

测试标准GB/T7314-2023《金属压缩实验试样》ASTM D3410-75(剪切荷载法测定带无支撑标准截面的聚合体母体复合材料压缩特性的试验方法)GB/T7314-2023《金属材料室温压缩试验方法》材料力学性能试验:弯曲试验材料机械性能试验的基本方法之一,测定材料承受弯曲载荷时的力学特性的试验。

材料的力学性能实验报告

材料的力学性能实验报告

材料的力学性能实验报告材料的力学性能实验报告1. 引言材料的力学性能是衡量材料质量和可靠性的重要指标之一。

通过力学性能实验,可以对材料的强度、硬度、韧性等进行评估,从而为材料的选择和应用提供科学依据。

本实验旨在通过一系列实验方法和测试手段,对某种材料的力学性能进行全面分析和评价。

2. 实验目的本实验的主要目的是:- 测定材料的拉伸强度和屈服强度;- 测定材料的硬度和韧性;- 分析材料的断裂特性和疲劳性能。

3. 实验方法3.1 拉伸实验通过拉伸实验,可以测定材料在受力下的变形和破坏行为。

首先,从样品中制备出一定尺寸的试样,然后将试样放置在拉伸试验机上,施加逐渐增加的拉力,记录拉伸过程中的应力和应变数据,最终得到拉伸强度和屈服强度等指标。

3.2 硬度实验硬度是材料抵抗外界压力的能力,也是材料的一种重要力学性能指标。

硬度实验常用的方法有布氏硬度、维氏硬度和洛氏硬度等。

通过在材料表面施加一定的压力,然后测量压痕的大小或深度,可以得到材料的硬度值。

3.3 韧性实验韧性是材料在受力下发生塑性变形和吸收能量的能力。

韧性实验主要通过冲击试验来评估材料的韧性。

在冲击试验中,将标准试样固定在冲击机上,然后施加冲击力,观察试样的破裂形态和吸能能力,从而得到材料的韧性指标。

3.4 断裂特性分析通过断裂特性分析,可以了解材料在破坏过程中的断裂形态和机制。

常用的断裂特性分析方法有金相显微镜观察、扫描电镜观察和断口形貌分析等。

通过对破坏试样进行断口观察和形貌分析,可以揭示材料的断裂行为和破坏机制。

3.5 疲劳性能测试疲劳性能是材料在交变载荷下的抗疲劳破坏能力。

疲劳性能测试常用的方法有拉伸疲劳试验和弯曲疲劳试验等。

通过施加交变载荷,观察材料在不同循环次数下的变形和破坏情况,可以评估材料的疲劳寿命和抗疲劳性能。

4. 实验结果与分析通过上述实验方法和测试手段,得到了某种材料的力学性能数据。

在拉伸实验中,测得该材料的拉伸强度为XXX,屈服强度为XXX。

材料的力学性能试验.

材料的力学性能试验.

第一章 材料的力学性能试验材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。

材料的力学性能试验必须按照国家标准进行。

第一节 拉伸试验一、实验目的1.验证胡克定律,测定低碳钢的弹性常数:弹性模量E 。

2.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。

3.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。

4.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。

5.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。

二、实验设备和仪器1.万能试验机。

2.引伸仪。

3.游标卡尺。

三、实验试样按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。

其中最常用的是圆形截面试样和矩形截面试样。

如图1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。

平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。

圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。

定标距试样的l 与A 之间无上述比例关系。

过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。

夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。

对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。

(a )(b ) 图1-1 拉伸试样(a )圆形截面试样;(b )矩形截面试样四、实验原理与方法 1.测定低碳钢的弹性常数实验时,先把试样安装在万能试验机上,再在试样的中部装上引伸仪,并将指针调整到0,用于测量试样中部0l 长度(引伸仪两刀刃间的距离)内的微小变形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模量为:
Gi
Til0
i i1
I
取平均值: G Gi 或采用最小二乘法计算切变模量 n
扭转试验
2.测定低碳钢屈服切应力ts、抗切强度tb
T
Tb
TT=<= TTbs tb
d
ts
Ts
O
ts
tb
屈服切 应力:
t
s
3 4
Ms Wp
抗强切度:t
b
3 4
Mb Wp
扭转试验
低碳钢扭转试验现象: 屈服:
《材料力学》实验
力学性能试验 一、拉伸试验 二、压缩试验 三、扭转试验
拉伸试验
一、试验目的
1.测定低碳钢拉伸强度性能指标 (ss、 sb) 2.测定低碳钢塑性性能指标(d、 y )
3.测定铸铁抗拉强度sb
4.比较两种材料的力学性能、拉伸过程及破坏现象 二、试验仪器
1.万能材料试验机; 2.电子引伸仪; 3.游标卡尺。
2、测量试样直径 3、装夹试样,软件参数调零 4、试验基本参数设置 5、测试 6、卸载并取出试样
7、关机;进行试验数据处理
扭转试验
一、试验目的
1.测定低碳钢切变模量G;
2.测定低碳钢屈服切应力ts、抗切强度tb; 3.测定灰铸铁抗切强度tb;
4.分析比较低碳钢和灰铸铁两种材料的破 坏情况。
二、试验仪器
F
将试样安装在实验机的上下夹头中,
引伸计装卡在试样上,启动实验机对
l/2 试样加载,实验机将自动绘出载荷位 移曲线(F— l 曲线)
l
观察试样的受力、变形直至破坏的全
l/2 过程,可以看到低碳钢拉伸过程中的
四个阶段(弹性阶段,屈服阶段、强
化阶段和颈缩阶段)
F
拉伸试验
低碳钢拉伸机械性能(ss、 sb 、 d、 y )
tmax引起
断裂:
扭转试验
3.测定灰铸铁抗切强度tb
T
Tb
抗切 强度:
t
b
WTbp
O
灰铸铁扭转试验现象:
断裂:
拉应力引起
扭转试验
五、试验步骤:
1、测定试样尺寸 2、实验机准备 3、安装试样 4、测定低碳钢切变模量G;
5、测定低碳钢屈服切应力ts 、抗切强度tb ;
6、测定灰铸铁抗切强度tb
7、关机;进行试验数据处理
F
Fb 颈缩阶段
Fe FpFs屈服阶强段化阶段
冷作硬化 线弹性阶段
l O

屈服点:
s
s
Fs A0
抗拉强度:
s
b
Fb A0
伸长率: d l1 l0 100%
l0
断面
收缩率:y
A0 A1 A0
100%
拉伸试验
低碳钢拉伸试验现象: 屈服:
tmax引起
颈缩:
断裂:
低碳钢拉伸试验动画:
拉伸试验
灰铸铁拉伸时没有屈服阶段,在变形很小的情况下断裂,断 口为平端口,只能测得其抗拉强度。
测定灰铸铁抗拉强度 sb
F
抗拉强度:
Fb
s
b
Fb A0
l
O
拉伸试验
五、试验步骤:
1、开机:打开电源开关,启动计算机进入试验机软件 测试系统
2、系统参数设置
3、试验基本参数设置 4、试验过程设置
5、装夹试样,安装引伸计
6、测量试样直径 7、测试
8、打印
9、卸载并取出试样,测量断后标距和断口直径
10、关机;进行试验数据处理
O
压缩屈服点:
s
sc
Fsc A0
l
压缩试验
低碳钢压缩试验现象:
低碳钢压缩变扁,不会断裂,由于两 端摩擦力影响,形成“腰鼓形”。
压缩试验
2.测定灰铸铁抗压强度sbc
F
Fbc
强度极限:
拉伸试验
O
s
bc
Fbc A0
l
灰铸铁压缩 试验现象:
tmax引起
压缩试验
五、试验步骤:
1、开机:打开电源开关,启动计算机进入试验机软件 测试系统
标距
l0
拉伸试验
三、试样
1.材料类型 低碳钢:塑性材料的典型代表 灰铸铁:脆性材料的典型代表
d0
标点
2.标准试样:尺寸符合国标的试样 标距:等截面测试部分长度
拉伸试验
1)圆形截面
2)矩形截面
t b
l0
l0 11.3 A0 或 l0 5.65 A0
l0=10d0 l0= 5d0
拉伸试验
四、试验原理
1.微机控制扭转试验机; 2.小扭角传感器。 3.游标卡尺。
扭转试验
三、试样 采用直径10mm,标距50mm的圆形截面 标准试样
d0
扭转试验
四、试验原理
1.低碳钢切变模量G
材料的剪切弹性模量G是在扭转过程中,线弹性范围内切应
力和切应变之比。切变弹性模量是计算构件扭转变形的基本
参数。
采用图解法:通过试验机配备的扭转
T
传感器及小角度扭角仪,可自动记录
扭矩—扭转角(T—)曲线,如图:
T
O
在所记录的曲线的弹性段,选取增量T, 和相应的扭转角
Tl GIp
G Tl Fal Ip Ip
扭转试验
采用逐级加载法:先通过试验机采用手动形式施加初始扭矩 T0,然后采用等量逐级加载,加载后的扭矩为:
Ti T0 iT
记录下每级载荷下的扭转角 i ,各级加载过程中的切变
压缩试验
一、试验目的
1.测定低碳钢压缩屈服点ssc; 2.测定灰铸铁抗压强度sbc。
二、试验仪器
万能材料试验机;游标卡尺
三、试样
标准试样:
d0
h0
粗短圆柱体: h0=1~3d0
压缩试验
四、试验原理:试验时缓慢加载,试验机自动画出压 缩图(F— l 曲线)
1.测定低碳钢压缩屈服点ssc
F Fsc 拉伸试验
相关文档
最新文档