概率论与数理统计第一章课件

合集下载

概率论与数理统计-绪论、第一章ppt课件

概率论与数理统计-绪论、第一章ppt课件

A B C
A B C A B C A B C AB C A BC A B C
B C A C A B
ABC
概率论与数理 A 6 “三人均未命中目标” : 统计课件
ABC

• 本节主要讲授: 1.随机现象; 2.随机试验和样本空间; 3.随机事件的概念;

成功在于专注并不懈努力
第一章 随机事件与概率
成功在于专注并不懈努力
• §1.1
随机事件
• §1.2
• §1.3 • §1.4
概率论与数理 统计课件
概率
条件概率 事件的独立性
§1.1 随机事件
成功在于专注并不懈努力
1.1.1 随机现象
现象按照必然性分为两类: 一类是确定性现象; 一类是随机现象。 在一定条件下,可能出现这样的结果,也可能出现那 样的结果,我们预先无法断言,这类现象成为随机现象。
课程目标
成功在于专注并不懈努力
通过自学考试——以教材为基础,以考试大纲为中 心,达到考试要求,通过自学考试。 实际简单应用——在现实生活中简单应用概率论与 数理统计知识,学以致用,甚至研究学术问题。
概率论与数理 统计课件


成功在于专注并不懈努力
第一章 随机事件与概率(重点)
第二章 随机变量及其概率分布(重点)

(1) ABC
(4) A B C
——
(2) ABC
(3) ABC
概率论与数理 统计课件
( 5 ) A B CA B CA B C
成功在于专注并不懈努力
例1-5 某射手向一目标射击3次,Ai表示“第i次射击命中目标”,
i=1,2,3.Bj表示“三次射击恰命中目标j次”,j=0,1,2,3.试用 A1,A2,A3的运算表示Bj,j=0,1,2,3.

《概率论与数理统计》-课件 概率论的基本概念

《概率论与数理统计》-课件 概率论的基本概念
解 以C记事件“母亲患病”,以N1记事件“第1个 孩子未患病”,以N 2记事件“第2个孩子未患病”.
已知 P(C ) 0.5, P( N1 C ) P( N2 C ) 0.5,
P(N1N2 C) 0.25, P(N1 C) 1, P(N2 C) 1. (1) P(N1) P(N1 C)P(C) P(N1 C)P(C)
6 3 3. 100 100 100
故 注意
p 17 10 3 1 12 . 100 2 25
只有当 B A 时才有 P( A B) P( A) P(B).
例7 设盒 I 有 6 只红球, 4 只白球; 盒 II 有7只红 球, 3只白球. 自盒 I 中随机地取一只球放入盒 II, 接着在盒 II 中随机地取一只球放入盒 I. (1) 然后在盒 I 中随机地取一只球 , 求取到的是红 球的概率. (2) 求盒 I 中仍有 6 只红球 4 只白球的概率.
以 B 记事件“至少有一个配对” , 则 B A1 A2 An .
(1) 由和事件概率公式
P(B) P( A1 A2 An )
n
n
n
P( Ai ) P( Ai Aj )
P( Ai Aj Ak )
i 1
1i jn
1i jkn
(1)n1 P( A1 A2 An ),
n n 1 n(n 2)!, 1 1 2
n n 1 n
(n 2)!
于是
P(B) 1
1 2 nn
.
例4 将 6 只球随机地放入到3 只盒子中去, 求每 只盒子都有球的概率. 解 以 A 记事件 “每只盒子都有球” . A 发生分为三种情况 : (i) 3 只盒子装球数分别为 4, 1, 1, 所含的样本点数为

概率论与数理统计第一章(浙大第四版)ppt课件

概率论与数理统计第一章(浙大第四版)ppt课件

ppt课件
9
例:
概率论
一枚硬币抛一次
记录一城市一日中发生交通事故次数
记录一批产品的寿命x
记录某地一昼夜最高温度x,最低温 度y
ppt课件
10
概率论
S={正面,反面}; S={0,1,2,…}; S={ x|a≤x≤b }
S={(x,y)|T0≤y≤x≤T1};
ppt课件
111
n—总试验次数。称 fn ( A) 为A
在这n次试验中发生的频率。
ppt课件
27
例:
概率论
中国男子国家足球队,“冲出亚洲”
共进行了n次,其中成功了一次,在
这n次试验中“冲出亚洲”这事件发
生的频率为 1 n;
ppt课件
28
概率论
某人一共听了16次“概率统计”课,其 中有12次迟到,记A={听课迟到},则
ppt课件
33
(二) 概率
概率论
定义1:fn ( A) 的稳定值p定义为A的概率,记为P(A)=p
定义2:将概率视为测度,且满足:
1。 P( A) 0
2。 P(S ) 1
3。 A1, A2,...,Ak ,...,Ai Aj (i j),


P( Ai ) P( Ai )
(1)从袋中随机摸一球,记A={ 摸到红 球 },求P(A).
(2)从袋中不放回摸两球,记B={恰是一 红一黄},求P(B).
ppt课件
47
概率论
解:(1)
S={1,2, ,8},A={1,2,3}

P

A

3 8
(2)P(B)

C31C51

概率论与数理统计课件(共199张PPT)

概率论与数理统计课件(共199张PPT)
P(An|A1A2…An-1).
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分

定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )

概率论与数理统计图文课件最新版-第1章-随机事件与概率

概率论与数理统计图文课件最新版-第1章-随机事件与概率

AB
注 ▲ 它是由事件 A与 B 的所有
公共样本点构成的集合。
n
▲ 称 I Ak 为 n 个事件 A1 , A2 ,L An 的积事件 k 1
I
k 1
Ak
为可列个事件
A1
,
A2
,L
L
的积事件
概率统计
5.事件的差: 若事件 A 发生而事件 B 不发生,则称 这样的事件为事件 A 与事件 B 的差。
A B 记作: A B x x A且x B
2
0.4
18 0.36
4
0.8
27 0.54
247 0.494
251 0.502 26波2 动0最.52小4
258 0.516
概率统计
从上述数据可得:
(1) 频率有随机波动性
即对于同样的 n, 所得的 f 不一定相同.
(2) 抛硬币次数 n 较小时, 频率 f 的随机波动幅 度较大, 但随 n 的增大 , 频率 f 呈现出稳定性.
解: S1 {正面,反面}
S2 0,1, 2, 3,
概率统计
S3 1, 2, 3, S4 0,1, 2, 3, ,10
S5 1, 2, 3,4,5,6

E3 :射手射击一个目标, 直到射中为止,观 察 其射击的次数
E4:从一批产品中抽取十 件,观察其次品数。
E5:抛一颗骰子,观察其 出现的点数。
义上提供了一个理
H
想试验的模型:
(H,T): H (T,H): T (T,T): T
T
在每次试验中必
有一个样本点出
H
现且仅有一个样
本点出现 .
T
概率统计
例4.若试验 E是测试某灯泡的寿命. 试写出该试验 E 的样本空间. 解:因为该试验的样本点是一非负数,

海南大学《概率论与数理统计》课件-第一二三四章

海南大学《概率论与数理统计》课件-第一二三四章

x2 f ( x)d x;
x1
(4) 若 f ( x) 在点 x 处连续,则有 F( x) f ( x).
注意 对于任意可能值 a ,连续型随机变量取 a 的概率等于零.即
P{ X a} 0.
10、 均匀分布 定义 设连续型随机变量X 具有概率密度
例如某无f些线( x元电) 件元 或件0b,设的1 a备寿, 的命其a寿,电它命x,力服设从b,备指的数寿分命布,. 则称动物X 的在寿区命间等(a都,b)服区从间指上数服分从布均. 匀分布, 记为 X ~ U(a,b).
代表事件 A 在试验中发生的概率,它与试验总

n 有关。若
lim
n
npn
0

lim
n
Cnk
pnk
1 pn
nk
k
k!e
8、 连续型随机变量及其概率密度
设X为 随 机 变 量,F ( x)为X 的 分 布 函 数,若 存 在 非 负 函 数f ( x),使 对 于 任 意 实 数x 有
x
F ( x) f (t)d t,
第一章 随机事件及其概率
1 了解样本空间的概念,理解随机事件的概念,重 点掌握随机事件的关系和运算。 2 理解概率和条件概率的概念,掌握概率的基本性 质,能利用古典概型和几何概型计算一些事件的 概率。 3 掌握概率的加法公式、条件概率公式、乘法公式、 全概率公式和贝叶斯公式计算过事件的概率的方 法 4 理解事件独立性的概念,会利用事件独立性进行 事件概率计算。 5 理解独立重复试验的概率,掌握利用伯努利概型 计算过事件概率的方法。
(3) F () lim F ( x) 0, F () lim F( x) 1;
x
x

同济大学《概率论与数理统计》PPT课件

同济大学《概率论与数理统计》PPT课件
随机事件 D=“出现的点数超过 6”= ,即一定不会发生的不可能事件。
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)

概率论与数理统计课件第1章

概率论与数理统计课件第1章

第1章随机事件与概率概率论与数理统计是研究随机现象规律性的学科.概率论侧重于对随机现象出现的可能性大小做出数量上的描述,形成一整套数学理论和方法;数理统计是以概率论为基础研究收集数据、分析数据并据以对所研究的问题作出一定结论的科学和艺术.概率论与数理统计是既有理论基础又有应用潜力的学科,其理论与方法已广泛应用于林业、农业、工程、社会学、经济学等领域中,还在不断向新兴学科渗透并相互促进发展.§1.1 随机现象及其统计规律性客观世界的各种现象大体可分为两类:一类称为决定性现象,即在一定的条件下,只出现一个结果.例如,在标准大气压下,水升温至100摄氏度时沸腾;每天清晨,太阳总从东方升起;向空中抛一物体必然下落等.另一类称为非决定性现象,即在一定的条件下,并不总是出现相同结果,在概率论中称为随机现象. 比如,播种一粒银杏种子,可能发芽可能不发芽;掷一颗骰子,可能出现1至6点等.该类现象有以下两个特点:①结果不止一个;②人们事先不能确定出现的结果.随机现象是概率论与数理统计的研究对象.1.1.1 随机试验对随机现象进行的试验和观察称为随机试验.例1.1随机现象的例子(1)播种一粒银杏种子,观察银杏种子发芽;(2)掷一颗骰子,观察出现的点数;(3)单位时间内,某手机被呼叫的次数;(4)某种型号冰箱的使用寿命;(5)测量课本的长度,观测其误差.在一定条件下,对自然与社会现象进行的观察或实验称为试验.在概率论中,将满足下述条件的试验称为随机试验:(1)试验在相同条件下是可以重复进行的;(2)试验的结果不至一个,但全部可能结果事先是知道的;(3)每一次试验都会出现上述全部可能结果中的某一个结果,至于是哪一个结果则事先无法预知.1.1.2随机现象的统计规律性对一个随机试验来说,每次试验结果具有不确定性,规律性不强,但大量重复性试验的结果就存在一定的规律性.例如,若抛掷一枚均匀硬币,一次抛掷,出现正面还是出现反面很难确定,但重复大量次抛掷,出现正面次数占抛掷总次数的1/2. 历史上有许多科学家做过抛掷硬币的试验. 抛掷均匀硬币,其结果见表1—1.表1—1 历史上抛掷硬币试验可以看出,试验中出现正面次数与抛硬币次数的比值,当试验次数较小时,随机波动较大;当试验次数较大时,随机波动较小. 随着试验次数的增大, 出现正面次数与抛硬币次数的比值逐渐稳定于固定值0.5,出现很强的规律性.随机现象在大量次试验中所呈现出的规律性,称为随机现象的统计规律性.由于概率论和数理统计所研究的试验都是随机试验,所以随机试验简称为试验.§1.2 随机事件及其关系1.2.1样本空间与随机事件1. 样本空间随机现象一切可能的基本结果组成的集合称为样本空间,用}{ω=Ω表示,其中ω表示基本结果,又称为样本点.例1.2 给出例1.1中随机现象的样本空间:(1) 播种一粒银杏种子的样本空间:},{211ωω=Ω,其中1ω表示银杏种子发芽,2ω表示银杏种子不发芽.(2) 掷一颗骰子的样本空间:},,,{6212ωωω =Ω,其中i ω表示出现i 点,6,,2,1 =i .也可更直接地记此样本空间为:}6,,2,1{2 =Ω.(3) 单位时间内某手机被呼叫的次数的样本空间:},2,1,0{3 =Ω.(4)某种型号冰箱使用寿命的样本空间:}0{4≥=Ωt t .(5) 测量课本的长度,测量误差的样本空间:}{5+∞<<∞-=Ωx x .2. 随机事件随机现象的某些样本点组成的集合称为随机事件,简称事件,一般用大写字母,,,A B C 表示.例如,掷一颗骰子,=A “出现奇数点”是一个事件,即}5,3,1{=A .关于事件的定义,有以下几个说明.(1)任一事件A 是样本空间Ω的子集.在概率论中我们可用维恩(Venn )图表示(见图1—1).(2)当A 中某个样本点出现了,就说事件A 发生了.(3)事件既可以用语言描述,也可以用集合表示.(4)由样本空间Ω中的单个元素组成的子集称为基本事件.样本空间的最大子集,即其本身称为必然事件,记作Ω.样本空间的子集之一,空集称为不可能事件,记作φ.例1.3 掷一颗骰子的样本空间为:}6,,2,1{ =Ω.事件=A “出现2点”,即}2{=A ,它是一个基本事件.事件=B “出现的点数不超过6”,即Ω==}6,5,4,3,2,1{B ,它就是必然事件.事件=C “出现的点数小于1”,即φ=C ,它就是不可能事件.1.2.2 事件的关系及运算假设以下讨论是在同一个样本空间Ω中进行的.1.事件间的关系图1—11)包含关系如果A 中的样本点都是B 中的样本点,则称A 包含于B (见图1—2),或称B 包含A ,也称A 为B 的子事件,记为B A ⊂或A B ⊃.用概率论语言描述为:事件A 发生必然导致事件B 发生.例如,冰箱的使用寿命T 超过30000h ,记为事件}30000{>=T A ,使用寿命T 超过35000h ,记为事件}35000{>=T B ,则B A ⊃.对任一事件A ,必有Ω⊂⊂A φ.2)相等关系如果事件A 与事件B 满足:A 中的样本点都是B 中的样本点,同时B 中的样本点又都是A 中的样本点,即B A ⊂且A B ⊂,则称事件A 与事件B 相等,记为B A =.例如,抛掷两颗骰子,记事件A =“两颗骰子的点数之和为奇数”,事件B =“两颗骰子的点数为一奇一偶”,显然,B A =.3)互不相容关系如果A 与B 没有相同的样本点(见图1—3),则称A 与B 互不相容.用概率论语言描述为:事件A 与事件B 不能同时发生.例如,掷一颗骰子,事件=A “出现偶数点”,B =“出现奇数点”,显然A 与B 互不相容.例1.4 掷一颗骰子的样本空间为:}6,,2,1{ =Ω.图1—3图1—2事件=A “出现2点”,即}2{=A ,=B “出现偶数点”,即}6,4,2{=B ,显然B A ⊂;=C “出现非奇数点”,即}6,4,2{=C ,显然C B =;=D “出现奇数点”,即}5,3,1{=C ,显然C ,,与B A D 都互不相容.2.事件间的运算事件的运算与集合的运算类似,有和、积、差等运算.(1)事件A 与B 的和,记为B A .其含义为“由事件A 与B 中所有样本点组成的新事件”(见图1—4).用概率论语言描述为:事件A 与B 中至少有一个发生.事件的和运算可推广至有限个或可列个的情形: n i i A 1=或∞=1i i A . (2)事件A 与B 的积,记为B A 或简记为AB .其含义为“由事件A 与B 中公共的样本点组成的新事件”(见图1—5) .用概率论语言描述为:事件A 与B同时发生.事件的积运算可推广至有限个或可列个的情形: n i i A 1=或 ∞=1i i A .(3)事件A 与B 的差,记为B A -.其含义为“由事件A 中而不在B 中的样本点组成的新事件”(见图1—6).用概率论语言描述为:事件A 发生而B 不发生.图1—4图1—5(4)对立事件事件A 的对立事件,记为A ,即“由在Ω中而不在A 中的样本点组成的新事件”(见图1—7). 用概率论语言描述:A 不发生,即A A -Ω=.注意 (1)A A =,φ=Ω,Ω=φ.(2)A 与B 为对立事件的充分必要条件是φ=B A ,且Ω=B A . 例1.5 掷一颗骰子的样本空间为}6,,2,1{ =Ω.设}4,2,1{=A , }5,4,1{=B . 则=B A }5,4,2,1{;}4,1{=B A ;}2{=-B A ;}6,5,3{=A .例1.6 设C B A ,,是某个随机现象的三个事件,则(1) “A 发生,C B ,都不发生”的事件可表示为:C B A C B A --=;(2) “B A ,都发生,C 不发生”的事件可表示为:C AB C AB -=;(3) “C B A ,,都发生”的事件可表示为:ABC ;(4) “C B A ,,中至少有一个出现”的事件可表示为:C B A C B A = .图1—6(1)图1—6(2)图1—73.事件的运算性质(1)交换律A B B A =,BA AB =.(2)结合律)()(C B A C B A =,)()(BC A C AB =.(3)分配律BC AC C B A =)(,)()()(C B C A C B A =.(4)对偶律(德莫根公式)B A B A = ,B A AB =. 对偶律可推广至有限个及可列个的情形: n i i n i i A A 11===, ni i n i i A A 11===, ∞=∞==11i i i i A A , ∞=∞==11i i i i A A .§1.3 事件的概率及其性质1.2.1 概率的定义1.概率的频率定义定义1.1 设在n 次随机试验中,事件A 出现的次数为)(A n ,这里的)(A n 也称为事件A 出现的频数.称事件A 出现的频数与随机试验总数之比,即nA n A f n )()(= 为事件A 出现的频率.容易验证频率满足:(1)非负性 0)(≥A f n ;(2)规范性 1)(=Ωn f ;(3)有限可加性 若m A A A ,21 ,,,两两互不相容,则)()(11i mi n m i i n A f A f ∑=== .随机现象的统计规律性表明:随着试验重复次数n 的增加,事件A 出现的频率)(A f n 会稳定在某一常数p 附近,即频率的稳定值,这个频率的稳定值就是事件A 发生的概率,因此我们可以用事件A 频率来定义事件A 的概率,即)()(A f A P n ≈(n 足够大).下面用例子进一步说明频率的稳定性.例1.7 考虑某树种发芽率试验. 从一大批树种中随机抽取7批树种做发芽试验,其结果见表1—2.表1—2 树种发芽试验的频率表可以看出,树种发芽的频率也具有随机波动性.当树种粒数较小时,随机波动较大;当树种粒数较大时,随机波动较小.最后,随着树种粒数的增大,发芽率逐渐稳定于固定值0.9. 用概率频率的定义可以描述为:该树种发芽的概率为0.9.2.概率的古典定义古典概型满足:(1)样本空间Ω中只有有限个样本点,即},,,{21n ωωω =Ω;(2)每个样本点发生可能性相等,即nP P P n 1)()()(21====ωωω , 若事件A 含有k 个样本点,则事件A 的概率为nk A A P =Ω=中所有样本点的个数所含样本点的个数事件)(. 例1.8 掷两枚硬币,记事件=A “一个正面朝上,一个反面朝上”, =B “两个正面朝上”, =C “至少一个正面朝上”,求)(A P ,)(B P ,)(C P .解 此试验的样本空间为=Ω{(正,正),(正,反),(反,正),(反,反)},即样本空间为Ω有4个样本点.由于=A {(正,反),(反,正)},即A 含有2个样本点,所以21)(=A P ;由于=B {(正,正)},即B 含有1个样本点,所以41)(=B P ;由于=C {(正,正),(正,反),(反,正)},即C 含有3个样本点,所以43)(=C P .例1.9 设有两种树苗栽成一排,每种树苗都是4棵,为了美观,树苗必须交叉排列栽植,求其栽植概率.解 利用排列组合知识,有351!8!4!412=⋅⋅=A P .例1.10 今年有12名同学进行暑期社会实践,其中有3名同学是女生,现将它们随机地平均分配到三个小组中去,问: ⑴每个小组都分配到一名女同学的概率是多少? ⑵3名女同学分配在同一小组的概率是多少? 解 12同学平均分配到三个小组中的分法总数为 !4!4!4!124448412=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛.⑴ 每个小组分配到一名女同学的分法有!3. 对应每种分法,其余9名同学平均分配到三个小组的分法共有!3!3!3!9333639=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛,故所求的概率为 5516!4!4!4!12!3!3!3!9!31==P . ⑵ 将3名女同学分配在同一小组的分法有3种,对应每种分法,其余9名同学的分法共有!4!4!1!9444819=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛,故所求的概率是 553!4!4!4!12!4!4!1!932=⋅=P . 例1.11 设袋中有白球a 只,黑球b 只.每次从中任取一只,取后放回袋中,共取n 次,试求=k A “n 次取球中有k 次取到白球”的概率.解 利用排列组合知识,有kn k k b a b b a a k n A P -++⎪⎪⎭⎫ ⎝⎛=)()()(,n k ,,1,0 =.若记p ba a=+,则 kn k k p p k n A P --⎪⎪⎭⎫ ⎝⎛=)1()(,n k ,,1,0 =.例1.12 设有n 个球,每个球都等可能地被放到N 个不同盒子中的任一个,每个盒子所放球数不限.试求(1)指定的)(N n n ≤个盒子中各有一球的概率1p ; (2)恰好有)(N n n ≤个盒子中各有一球的概率2p . 解 利用排列组合知识,有 (1) nN n p !1=; (2) )!(!!2n N N N N n n N p nn -=⎪⎪⎭⎫ ⎝⎛=. 例1.13 n 个人生日全不相同的概率是n p 多少?解 把n 个人看成是n 球,将一年365天看成是N =365个盒子,则“n 个人生日全不相同”就相当于“恰好有)(N n n ≤个盒子中各有一球”, 所以n 个人生日全不相同的概率为365!365(365)!n np n =-. 当60n =时,10.9922n p -=,表明在60个人的群体中至少有两个人生日相同的概率超过99%.3.概率的几何定义 几何概型满足:(1)样本空间Ω充满某个区域,其度量(长度、面积或体积等)大小可用ΩS 表示;(2)任意一点落在度量相同的 子区域内是等可能的,与子区域的形 状及子区域在Ω中位置无关,若事件 A 为Ω中的某个子区域(见图1—8), 图 ? 1 — 8其度量大小可用A S 表示,则事件A 的概率为Ω=S S A P A)(. 例1.14 甲、乙两人约定上午8点到9点之间在茶馆会面,并约定先到者应等候另一人20分钟,过时即可离去.求两人会面的概率.解 以x 和y 分别表示甲、乙两人到达 约会地点的时间,则两人能够会面的充要 条件为20≤-y x . 在平面上建立直角坐标 系,如图1—9,则95604060222=-==ΩS S P A .4.概率的公理化定义定义1.2 设Ω为一个样本空间,对Ω中的任一随机事件A ,定义一个实数值)(A P 满足:(1)非负性 0)(≥A P ; (2)规范性 1)(=ΩP ;(3)可列可加性 若 ,,21A A ,两两互不相容,有 ∑∞=∞==11)(i i i i A P A P )( ,则称)(A P 为事件A 的概率.由概率的公理化定义知,概率是事件(集合)的映射,当这个映射能满足上述公理的三条,就被称为概率.1.3.2 概率的性质 性质1 0)(=φP._ 图 1 — 9_x因为1)(=ΩP ,则0)(1)(=Ω-=P P φ.性质2 (有限可加性)若有限个事件n A A A ,21 ,,互不相容,则 ∑===ni i n i i A P A P 11)()( . 性质3 对任一事件A 有 )(1)(A P A P -=.例1.15 设袋中有5只白球,7只黑球.从中任取3只,求至少取到1只白球的概率.解 记=A “取出的3只中至少有1只白球”,则A 包括三种情况:取到白球1只黑球2只,或取到白球2只黑球1只,或取到白球3只黑球0只, 如此计算较为复杂.而A 只包括一种情况,即“取到的3只全是黑球”,从而159.044731237)(==⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=A P , 所以841.04437)(1)(==-=A P A P . 性质4 若B A ⊃,则)()()(B P A P B A P -=-.证明 因为B A ⊃,所以)(B A B A -= ,且B A -与B 互不相容,则 )()()(B A P B P A P -+=, 即)()()(B P A P B A P -=-.推论(单调性)若B A ⊃,则)()(B P A P ≥.性质5 对任意两个事件B A ,,有)()()(AB P A P B A P -=-. 例16 从1,2,…,100中任取一数,求它能被2整除但不能被3整除的概率.解 记=A “取到的数能被2整除”,=B “取到的数能被3整除”,AB =“取到的数能被2和3整除”,则 “能被2整除但不能被3整除”的事件可表示为B A -.由性质5,有)()()(AB P A P B A P -=-50171001610050=-=. 性质6(加法公式)对任意两个事件B A ,,有)()()()(AB P B P A P B A P -+= .对任意n 个事件n A A A ,21 ,,,有 ∑∑∑≤<<≤≤<≤==+-=nk j i kjinj i jini i n i i A A A P A A P A P A P 1111)()()()()()1(211n n A A A P --++. 推论(半可加性) 对任意两个事件B A ,,有)()()(B P A P B A P +≤ . 例17 从1~1000中随机取一整数,问取到的整数能被4或6整除的概率是多少?解 设A 为“取到的整数能被4整除”,B 为“取到的整数能被6整除”,则所求概率为)()()()(AB P B P A P B A P -+= 由于25041000=,16761000166<<,8412100083<<, 则 1000250)(=A P ,1000166)(=B P ,100083)(=AB P ,所以 )()()()(AB P B P A P B A P -+=100033310008310001661000250=-+=.例18已知41)()()(===C P B P A P ,12/1)()(==BC P AB P ,0)(=AC P .则C B A ,,中至少有一个发生概率是多少?C B A ,,都不发生概率是多少?解 因为0)(=AC P ,AC ABC ⊂,所以由概率的单调性知0)(=ABC P .再由加法公式,得C B A ,,中至少有一个发生概率为)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=12712243=-=. C B A ,,都不发生概率是)(1)(C B A P C B A P -==125. 1.4 条件概率和乘法公式在实际问题中,除了要考虑某事件A 的概率外,有时还需要考虑在“事件B 已经发生”的条件下,某事件A 发生的概率.一般情况下,前后两者的概率不同.为了有所区别,常称后者的概率为条件概率,记为)(B A P 或)(A P B ,读作“在事件B 发生的条件下,事件A 发生的条件概率”.1.4.1 条件概率例1.19 从标有号为1,2,3,4,5,6的6个同型同质的球中等可能地任取一球,事件A =“取得标号为4”,事件B =“取得标号为偶数”,求“在取得标号为偶数条件下,取得标号为4”的概率.解 由于6个球中有3个标号为偶数,按古典概型计算,得31)(=B A P ,而61)(=A P ,由此可见)()(A P B A P ≠.还可以得到“很巧合”的结论,可以计算得61)(=AB P ,21)(=B P ,从而,)()(21/6131)(B P AB P B A P ===. 受此启发,可以给出条件概率的定义.定义1.3 设B A ,是两个随机事件,且0)(>A P ,称 )()()(A P AB P A B P =为在事件A 发生条件下事件B 发生的条件概率.不难验证,条件概率)(A P ⋅满足概率定义中的三条公理,即 (1)非负性 对于任一事件B ,有0)(≥A B P ; (2)规范性 1)(=ΩA P ;(3)可列可加性 若 ,,21B B ,两两互不相容,则∑∞=∞==11)(i i i i A B P A B P )( .因为条件概率符合上述三则公理,所以关于概率的一些重要结果都适用于条件概率.例如,)(1)(A B P A B P -=;对于任意事件21,B B ,有)()()()(212121A B B P A B P A B P A B B P -+= .例1.20 某种动物出生后活到20岁的概率为0.8,活到30岁的概率为0.72,求现年为20岁的这种动物活到30岁的概率.解 记A =“动物出生后活到20岁”,B =“动物出生后活到30岁”,则)(A P =0.7,)()(AB P B P ==0.72,由条件概率计算公式,得9.08.072.0)()()()()(====A PB P A P AB P A B P . 例1.21 掷两颗骰子,已知有一个出现6点,求点数之和不小于9的概率.解 方法一 该试验的样本空间为)}6,6(,),2,6(),1,6(,),6,1(,),2,1(),1,1{( =Ω 共36个样本点.记=A “至少有一个6点”,则)}6,6(),5,6(),6,5(),,4,6(),6,4(),3,6(),6,3(),2,6(),6,2(),1,6(),6,1{(=A ,含有11个样本点;记=B “点数之和不小于9”,则)}6,6(),5,6(),6,5(),5,5(),4,6(),6,4(),4,5(),5,4(),3,6(),6,3{(=B ,含有10个样本点. 而)}6,6(),5,6(),6,5(),4,6(),6,4(),3,6(),6,3{(=AB ,含有7个样本点.由条件概率计算公式,得1173611367)()()(===A P AB P A B P . 方法二 可先将样本空间缩小为)}6,6(),5,6(),6,5(),,4,6(),6,4(),3,6(),6,3(),2,6(),6,2(),1,6(),6,1{(=ΩA ,共有11个样本点.样本空间A Ω中,事件A B )}6,6(),5,6(),6,5(),4,6(),6,4(),3,6(),6,3{(=,含有7个样本点,直接计算得117)(=A B P .1.4.2 乘法公式 (1)若0)(>A P ,则)()()(A B P A P AB P =. (2)若0)(121>-n A A A P ,则)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P .例1.22 某单位100人进行年欢游戏活动,共有1号,2号,…,100号共100支签, 其中有10支中奖签,依次轮流进行抽签,求恰好第三人抽中奖签的概率.解 记=i A “第i 人抽中奖签”,100,,2,1 =i .则所求概率为)()()()(213121321A A A P A A P A P A A A P ==083.09810998910090≈⨯⨯. 1.5 全概率公式和贝叶斯公式1.5.1 全概率公式设n B B B ,,,21 是样本空间Ω的事件,满足: (1)n B B B ,,,21 互不相容; (2) ni i B 2=Ω=;(3)n i B P i ,,2,1,0)( =>则称n B B B ,,,21 是样本空间Ω的一个完备事件组.如果n B B B ,,,21 是样本空间Ω的一个完备事件组,则对样本空间Ω的任一事件A ,有)()()(1i ni i B A P B P A P ∑==.这就是全概率公式. 证明 因为)()(11ni i n i i AB B A A A ====Ω=,且n AB AB AB ,,,21 互不相容,则由可加性可得)())(()(11i ni ni i AB P AB P A P ∑==== ,再将)()()(i i i B A P B P AB P =,n i ,,2,1 =,代入式(1.21)即得)()()(1i ni i B A P B P A P ∑==.关于全概率公式的几点说明:(1)全概率公式的最简单的形式,若1)(0<<B P ,则)()()()()(B A P B P B A P B P A P +=; (2)条件n B B B ,,,21 为样本空间Ω的一个完备事件组,可改成n B B B ,,,21 互不相容,且 ni i A B 2=⊃,)()()(1i ni i B A P B P A P ∑==仍成立.1.5.2 贝叶斯公式设n B B B ,,,21 是样本空间Ω的一个完备事件组,如果0)(>A P ,则)()()()()(1jnj ji i i B A P B P B A P B P A B P ∑==,n i ,,2,1 =.例1.23 设某县有A 、B 、C 、D 、E 共5个片区种植杨树,各个片区种植面积分别占总面积的15%,20%,25%,30%,10%,各个片区杨树中“79杨”的百分比分别为80%,70%,60%,75%,90%,如从该县杨树中任抽取一颗,求:(1)任取一颗为“79杨”的概率;(2)若取到的是“79杨”,求它依次是A 、E 片区种植的概率. 解 记事件Y =“取到“79杨””.(1)由全概率公式,有)()()()()()()()()()()(E Y p E p D Y p D p YC p C p B Y P B p A Y p A p Y p ++++= =90.010.075.030.060.025.070.020.080.015.0⨯+⨯+⨯+⨯+⨯=0.725.(2)由贝叶斯公式,有()2912725.080.015.0)()()(=⨯==Y p A Y p A p Y A p , ()14518725.090.010.0)()()(=⨯==Y p E Y p E p Y E p .1.6 事件的独立性与伯努利概型1.6.1事件的独立性1.两个事件的独立性两个事件之间的独立性是指:一个事件的发生不影响另一个事件的发生.例如,在掷两枚硬币的试验中,记事件=A “第一枚硬币出现正面”,记事件=B “第二枚硬币出现正面”.显然A 与B 的发生是相互不影响的.从概率的角度看,如果事件B 的发生不影响事件A 的发生,即)()(A P B A P =,由此又可推出)()(B P A B P =,即事件A 的发生也不影响事件B 的发生.可见独立性是相互的,它们等价于)()()(B P A P AB P =.另外,对于0)(=B P ,或0)(=A P ,式(1.24)仍然成立.由此,我们给出两个事件相互独立的定义.定义1.4 如果)()()(B P A P AB P =成立,则称事件A 与B 相互独立,简称A 与B 独立.否则称A 与B 不独立或相依.性质1 若事件A 与B 独立,则A 与B 独立;A 与B 独立;A 与B 独立.证明 这里只证事件A 与B 独立,其余类似.因为B A AB A =从而)()()(B A P AB P A P +=由此得 )()()](1)[()()()()()()(B P A P B P A P B P A P A P AB P A P B A P =-=-=-=所以事件A 与B 独立.2.多个事件的相互独立性定义1.5 设C B A ,,是3个事件,如果有⎪⎩⎪⎨⎧===)()()()()()()()()(C P A P AC P C P B P BC P B P A P AB P , 则称C B A ,,两两独立.若还有)()()()(C P B P A P ABC P =,则称C B A ,,相互独立.进一步地,给出3个以上事件的相互独立性.定义1.6 设有个n 事件n A A A ,,,21 ,若)(21k i i i A A A P )()()(21k i i i A P A P A P = )1(n i k ≤≤成立,则称n 事件n A A A ,,,21 相互独立.性质2 n 个相互独立的事件中,任意一部分与另一部分独立.性质3 将n 个相互独立的事件中的任一部分换为对立事件,所得的诸事件仍为相互独立的.例1.24 设三事件C B A ,,相互独立,试证B A -与C 相互独立. 证明 因为)()()()())(())((C P B P A P C B A P C B A P C B A P ===-)()()()(C P B A P C P B A P -==.可以推得:B A 与C 独立;AB 与C 独立.例1.25 甲、乙两射手彼此独立地向同一目标射击,甲射中目标的概率为0.8,乙射中目标的概率为0.9,求目标被击中的概率.解 记=A “甲射中目标”,=B “乙射中目标”,则“目标被击中”B A =,故)()()()()(B P A P B P A P B A P -+==98.09.08.09.08.0=⨯-+.1.6.2 伯努利概型将随机试验E 重复进行n 次,各次试验的结果互不影响,即每次试验结果出现的概率都不依赖于其它各次试验的结果,这样的试验称为n 重独立试验.特别地,若在n 重独立试验中,每次试验的结果只有两个:A 与A ,且q A P p A P ==)(,)( )1,10(=+<<q p p ,则这样的试验称为伯努利(Bernoulli )试验或伯努利概型.对于伯努利概型,我们需要计算事件A 在n 次独立试验中恰好发生k 次的概率.性质4 在伯努利概型中,设事件A 在各次试验中发生的概率)10()(<<=p p A P ,则在n 次独立试验中恰好发生k 次的概率k n k n k n qp k P -=)()(, 其中n k q p ,,2,1,0,1 ==+.证明 设事件i A 表示“事件A 在第i 次试验中发生”,则有),,2,1(1)(,)(n i q p A P p A P i i ==-== .因为各次试验是相互独立的,所以事件n A A A ,,,21 是相互独立的.由此可见,n 次独立试验中事件A 在指定的k 次(如在前面k 次)试验中发生而在其余k n -次试验中不发生的概率)()()()()(1111n k k n k k A P A P A P A P A A A A P ++=k n k k n n q p q q p p --=⋅=个个)( 由于事件A 在n 次独立试验中恰好发生k 次共有⎪⎪⎭⎫ ⎝⎛k n 种不同的方式,每一种方式对应一个事件,易知这⎪⎪⎭⎫ ⎝⎛k n 个事件是互不相容的,所以根据概率的可加性得k n k n q p k n k P -⎪⎪⎭⎫⎝⎛=)( ,n k ,,2,1,0 =. 由于上式右端正好是二项式n q p )(+的展开式中的第1+k 项,所以通常把这个公式称为二项概率公式.例1.26 某种植物移栽成活率为0.8,现移栽10颗,求有8颗成活的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何来研究不确定性现象(随机现象)?
随机现象是通过随机试验来研究的.
随机试验
对随机现象的实验和观察的过称,称为随机试验,
简称试验,用E 表示.
E1 投掷硬币,观察落地后哪一个面朝上; E2 掷骰子,观察出现的点数; E3 一射手对某目标进行射击,直到击中目标为止,
观察其射击次数;
E4 在一大批灯泡中任取一只,测试其寿命.
结果有可能出现正面也可能出现反面. 实例2 “抛掷一枚骰子,观察出现的点数”.
结果有可能为: “1”, “2”, “3”, “4”, “5” 或 “6”.
实例3 “从一批含有正品和次品的产品中任意抽取
一个产品”.
其结果可能为: 正品 、次品.
实例4 “一只新灯泡的寿命” 可长可短.
不确定性现象的特征
例:写出下列试验的样本点与样本空间
E1 : 抛掷一枚均匀的硬币
1 “正面”, 2 “反面” {1, 2}
E2 : 抛掷一枚均匀的骰子 令 i 表示骰子出现i 个点, 则
样本空间为 {1点, 2点, 3点,4点,5点,6点} 或 {1, 2, 3,4,5,6}
在一次试验中出现,则称事件A发生. 记作 A.
注意:样本空间也是一个事件. 由于在每次试验中样本空间(事件)必然发生, 所以
称样本空间为必然事件. 另外, 还有一个特殊事件, 即不可能发生的事件
称为不可能事件, 记为 .
必然事件和不可能事件实际上已经失去了随机性. 因而本质上不是随机事件. 它只是随机事件的两个极 端情况.
和总要大于第三边;……
❖ 随机现象:在一定条件下可能发生也可能不发
生的现象,其结果的出现呈现出一定的偶然性.
如 在相同条件下,抛同一枚硬币,其结果可能是正面
朝上,也可能是反面朝上,并且在抛掷之前无法肯定抛 掷的结果是什么;用同一门炮向同一目标射击,各次弹 着点不尽相同,在一次射击之前无法预测弹着点的确切 位置;飞机失事,股指涨跌,彩票中奖;……
条件不能完全决定结果.
说明
1.不确定性现象揭示了条件和结果之间的非确定
性联系 ,其数量关系无法用函数的形式加以描述.
概率论与数理统计是 2.研究随机现象统计规律的一门数学分科.
一 随机现象
❖ 必然现象:在一定条件下必然发生或必然不发
生的现象,又称确定性现象.
如 四季变化;上抛物体一定会掉下来;三角形两边之
一、随机现象
当人们在一定的条件下对它加以观察或进行试验时,观 察或试验的结果是多个可能结果中的某一个.而且在每次 试验或观察前都无法确知其结果,即呈现出偶然性.或者 说,出现哪个结果“凭机会而定”.
➢ 随机现象即带有随机性、偶然性的现象.
试问:随机现象是不是没有规律可言? 否!
如:一门火炮在一定条件下进行射击,个别炮弹的弹 着点可能偏离目标而有随机性的误差,但大量炮弹的弹 着点则表现出一定的规律性,如一定的命中率,一定的 分布规律等等.
(3)每次试验总是恰好出现这些可能结果中的一个, 但在一次试验之前却不能肯定这次试验出现哪 一个结果.
则称这样的试验是一个随机试验.
随机试验对应的现象称为随机现象.
二、随机现象的统前
不能肯定试验会出现哪一个结果,就一次试验看不出有什么
规律,但是,“大数次” 地重复这个试验,实验结果又遵 某循些规律,这种规律称之为“统计规律”.
第1章 随机事件与概率
§1.1 随机事件 一、概率论与数理统计概述
1、研究对象-------随机现象
确定性现象 两类现象
(不确定)随机现象
如何来研究随机现象? 随机现象是通过随机试验来研究的.
在我们所生活的世界上,充满了 不确定性
从扔硬币、掷骰子和玩扑克等简单的 机会游戏,到复杂的社会现象;从婴儿的 诞生,到世间万物的繁衍生息;从流星坠 落,到大自然的千变万化……,我们无时 无刻不面临着不确定性和随机性.
特点:能在相同条件下重复进行;能事先明确试验的全
部可能结果,或虽不能确切知道试验的全部可能果,但 可知道它不超过某个范围;而且事先不能肯定会出现哪一 个结果。
重复性、明确性、随机性
随机试验
一个试验如果满足下述条件: (1)试验可以在相同的条件下重复进行 ;
(2)试验的所有可能的结果是明确可知道的,并且 不止一个;
这种现象骤看似乎没有规律可寻,但是实践或直观告诉 我们,如果我们从盒子中反复多次取球(每次取一球后记录 球的颜色仍把球放回盒子中搅匀),总可以观察到一个事实: 当试验次数 n 相当大时,出现白球的次数n白与出现黑球的次
数n黑是很接近的,比值 n白/ n 会逐渐稳定在1/2.
参看课本P2表1.1:历史上抛掷硬币试验的记录
概率论与数理统计 就是研究和揭示随机现象统计规律的数学学科.
高等数学侧重于理论和公式的应用,特别注重 解题思路和技巧的培养;
线性代数侧重于对理论的理解应用;
概率论非常强调对基本概念、定理、公式的 深入理解,并对实际问题进行分析,建立数 学模型.
❖ 初学者对概念的理解有难度.
推荐参考书:盛骤主编:概率论与数理统计
下面看两个简单的试验:
试验1:一个盒子之中有10个完全相同的白球,搅匀后 从中任意的摸取一球.
试验2:一个盒子中有10个相同的球,但5个是白色的,另外 5个是黑色的,搅匀后从中任取一球.
试验1的结果是显然的,在没有摸球以前就知道是白球,
是确定的.
试验2的结果在没有摸球以前是不确定的,可能是白球,也 可能是黑球,是不确定的.
基本概念
1 基本事件(样本点): 试验的每一个可能的结果
称为基本事件. 记作 .
2 样本空间: 所有基本事件构成的集合称为样本空间.
记作 .
3 随机事件: 由若干个“有某些特征”的基本事件形成 (事件) 的集合称为随机事件.
随机事件常用大写英文字母A, B, C… 表示. 4 事件A 发生(发生):若事件A中某一个基本事件
(1)确定性现象 在一定条件下必然发生的现象.
实例
“太阳从东边升起,西边下,”
“水从高处流向低处”,
“在标准大气压下,液态水 温度超过100摄氏度会汽 化,在0摄氏度会结冰”,
确定性现象的特征
条件完全决定结果.
(2)不确定性现象
在一定条件下可能出现也可能不出现的现象 实例1 “在相同条件下掷一枚均匀的硬币”.
相关文档
最新文档