光学光刻中英文对照外文翻译文献

合集下载

mno2薄膜 光刻

mno2薄膜 光刻

mno2薄膜光刻英文回答:MnO2 thin film lithography is a process used in the fabrication of electronic devices and integrated circuits.It involves the use of light to pattern a thin film of MnO2, which is a type of manganese dioxide, into desired shapes and structures.The first step in the lithography process is the preparation of the MnO2 thin film. This can be done by depositing a layer of MnO2 onto a substrate usingtechniques such as physical vapor deposition or chemical vapor deposition. The thickness of the film can vary depending on the specific application.Once the thin film is prepared, the next step is to pattern it using lithography. This involves exposing thefilm to light through a mask or a photomask, which has a pattern of transparent and opaque areas. The light passesthrough the transparent areas of the mask and exposes the MnO2 film, while the opaque areas block the light and protect the underlying film.After exposure, the film is developed to remove the unexposed areas. This can be done by using a developer solution that selectively removes the unexposed MnO2. The exposed areas remain intact and form the desired pattern.The final step in the lithography process is the etching of the patterned MnO2 film. Etching is used to selectively remove the MnO2 in the exposed areas, leaving behind the patterned structures. This can be done using wet etching or dry etching techniques, depending on thespecific requirements of the application.MnO2 thin film lithography is widely used in various applications, such as the fabrication of microelectromechanical systems (MEMS), sensors, and integrated circuits. It offers high resolution and precision, allowing for the creation of complex patterns and structures.中文回答:MnO2薄膜光刻是电子器件和集成电路制造中的一种工艺。

资料:光电显示技术外文翻译

资料:光电显示技术外文翻译

外文文献阅读及翻译译文及原稿译文题目通过电沉积法制造的有机光导器件原稿题目Organic photoconductive device fabricated by electrospray deposition method姓名曹广炜学号31302010班级电科1301通过电沉积法制造的有机光导器件福田武,隆铃木良平小林善太郎本田,蒲田彦功能材料科学,埼玉大学,255下落久保系,樱区市,埼玉县338-8570,日本摘要我们证实通过电沉积方法制造的蓝敏有机光导器件。

聚[9,9-二辛基芴-2,7-二基] - 共- 1,4-苯并(2,1,3)- 噻二唑(F8BT)被选择作为蓝色敏感的聚合物,以及最大外量子效率的0.22%在3.9毫瓦/厘米2的照射光强度来实现的。

F8BT整齐薄膜的吸收光谱表明,在蓝色波长区域的光谱响应的选择性足以划分入射光分成蓝色分量良好。

这些结果表明,一个颜色分离的未经由绿色和红色敏感有机光导设备的组合用于高分辨率摄像机的棱镜的可能性。

关键词:有机光导器件,电沉积,聚合物介绍因为有机器件可通过溶液工艺制造,存在有在为未来的可印刷电子有机器件得到了长足的利益。

特别是,有机光导装置(OPDS)吸引从重量轻,很薄的观点备受关注,相比于其他传统的图像传感器,互补金属氧化物半导体传感器和电荷耦合器件。

近日,S相原等人提出了一种新的类型的图像传感器的重叠具有三个有机光电导膜,它们是单独地敏感只有一个初级颜色分量,分别为蓝,绿和红光。

这些设备用常规的热蒸发工艺被制造,并且报道蒸发为基础的设备分别实现良好的可靠性和高器件的性能。

然而,使用有机材料的动机通过在无机材料几个特殊的优势,例如大衬底格式,机械柔性,易于加工,在低的成本,此外巨大的潜力不同的有机器件的单片集成到一个公共的基底。

为了实现更大的光导区域生产力较低的成本,我们需要开发的解决方案处理光导装置。

到现在为止,很少有人知道色彩分离的有机通过溶液法制造的光电导器件。

(完整word版)光学外文文献及翻译

(完整word版)光学外文文献及翻译

学号2013211033 昆明理工大学专业英语专业光学姓名辜苏导师李重光教授分数导师签字日期2015年5月6日研究生部专业英语考核In digital holography, the recording CCD is placed on the ξ-ηplane in order to register the hologramx ',y 'when the object lies inthe x-y plane. Forthe reconstruction ofthe information ofthe object wave,phase-shifting digital holography includes two steps:(1) getting objectwave on hologram plane, and (2) reconstructing original object wave.2.1 Getting information of object wave on hologram plateDoing phase shifting N-1 times and capturing N holograms. Supposing the interferogram after k- 1 times phase-shifting is]),(cos[),(),(),,(k k b a I δηξφηξηξδηξ-⋅+= (1) Phase detection can apply two kinds of algorithms:synchronous phase detection algorithms [9]and the least squares iterative algorithm [10]. The four-step algorithm in synchronous phase detection algorithm is in common use. The calculation equation is)2/3,,(),,()]2/,,()0,,([2/1),(πηξπηξπηξηξηξiI I iI I E --+=2.2 Reconstructing original object wave by reverse-transform algorithmObject wave from the original object spreads front.The processing has exact and clear description and expression in physics and mathematics. By phase-shifting technique, we have obtained information of the object wave spreading to a certain distance from the original object. Therefore, in order to get the information of the object wave at its initial spreading position, what we need to do is a reverse work.Fig.1 Geometric coordinate of digital holographyexact registering distance.The focusing functions normally applied can be divided into four types: gray and gradient function, frequency-domain function, informatics function and statistics function. Gray evaluation function is easy to calculate and also robust. It can satisfy the demand of common focusing precision. We apply the intensity sum of reconstruction image as the evaluation function:min ),(11==∑∑==M k Nl l k SThe calculation is described in Fig.2. The position occurring the turning point correspondes to the best registration distanced, also equals to the reconstructing distance d '.It should be indicated that if we only need to reconstruct the phase map of the object wave, the registration distance substituted into the calculation equation is permitted having a departure from its true value.4 Spatial resolution of digital holography4.1 Affecting factors of the spatial resolution of digital holographyIt should be considered in three respects: (1) sizes of the object and the registering material, and the direction of the reference beam, (2) resolution of the registering material, and (3) diffraction limitation.For pointx2on the object shown in Fig.3, the limits of spatial frequency are λξθλθθ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-'-=-=-0211maxmax tan sin sin sin sin z x f R R Fig.2 Determining reconstructing distanceλξθλθθ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-'-=-=-211minmintansinsinsinsin zxfRRFrequency range isλξξ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-'-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-=∆--211211tansintansinzxzxfso the range is unrelated to the reference beam.Considering the resolution of registering material in order to satisfy the sampling theory, phase difference between adjacent points on the recording plate should be less than π, namely resolution of the registration material.cfff=∆η21)(minmaxπ4.2 Expanding the spatial resolution of reconstruction imageExpanding the spatial resolution can be realized at least in three ways: (1) Reducing the registration distance z0 can improve the reconstruction resolution, but it goes with reduction of the reconstruction area at the same ratio.Therefore, this method has its limitation. (2) Increasing the resolution and the imaging size of CCD with expensive price. (3) Applying image-synthesizing technique[11]CCD captures a few of images between which there is small displacement (usually a fraction of the pixel size) vertical to the CCD plane, shown in Fig.4(Schematic of vertical moving is the same).This method has two disadvantages. First, it is unsuitable for dynamic testing and can only be applied in the static image reconstruction. Second, because the pixel size is small (usually 5μm to 10μm) and the displacement should a fraction of this size (for example 2μm), it needs a moving table with high resolution and precision. Also it needs high stability in whole testing.In general, improvement of the spatial resolution of digital reconstruction is Fig.3 Relationship between object and CCDstill a big problem for the application of digital holography.5 Testing resultsFig.5 is the photo of the testing system. The paper does testing on two coins. The pixel size of the CCD is 4.65μm and there are 1 392×1 040 pixels. The firstis one Yuan coin of RMB (525 mm) used for image reconstruction by phase-shifting digital holography. The second is one Jiao coin of RMB (520 mm) for the testing of deformation measurement also by phase-shifting digital holography.5.1 Result of image reconstructionThe dimension of the one Yuancoin is 25 mm. The registrationdistance measured by ruler isabout 385mm. We capture ourphase-shifting holograms andreconstruct the image byphase-shifting digital holography.Fig.6 is the reconstructed image.Fig.7 is the curve of the auto-focusFig.4 Image capturing by moving CCD along horizontal directionFig.5 Photo of the testing systemfunction, from which we determine the real registration distance 370 mm. We can also change the controlling precision, for example 5mm, 0.1 mm,etc., to get more course or precision reconstruction position.5.2 Deformation measurementIn digital holography, the method of measuring deformation measurement differs from the traditional holography. It gets object wave before and after deformation and then subtract their phases to obtain the deformation. The study tested effect of heating deformation on the coin of one Jiao. The results are shown in Fig.8, Where (a) is the interferential signal of the object waves before and after deformation, and (b) is the wrapped phase difference.5.3 Improving the spatial resolutionFor the tested coin, we applied four sub-low-resolution holograms to reconstruct the high-resolution by the image-synthesizing technique. Fig.9 (a) is the reconstructed image by one low-resolution hologram, and (b) is the high-resolution image reconstructed from four low-resolution holograms.Fig.6 Reconstructed image Fig.7 Auto-focus functionFig.8 Heating deformation resultsFig.9 Comparing between the low and high resolution reconstructed image6 SummaryDigital holography can obtain phase and amplitude of the object wave at the same time. Compared to other techniques is a big advantage. Phase-shifting digital holography can realize image reconstruction and deformation with less noise. But it is unsuitable for dynamic testing. Applying the intensity sum of the reconstruction image as the auto-focusing function to evaluate the registering distance is easy, and computation is fast. Its precision is also sufficient. The image-synthesizing technique can improve spatial resolution of digital holography, but its static characteristic reduces its practicability. The limited dimension and too big pixel size are still the main obstacles for widely application of digital holography.外文文献译文:标题:图像重建中的相移数字全息摘要:相移数字全息术被用来研究研究艺术品的内部缺陷。

本科毕业设计外文翻译(中文)

本科毕业设计外文翻译(中文)

本科生毕业设计(论文)外文翻译外文原文题目:Real-time interactive optical micromanipulation of a mixture of high- and low-index particles中文翻译题目:高低折射率微粒混合物的实时交互式光学微操作毕业设计(论文)题目:阵列光镊软件控制系统设计姓名:任有健学院:生命学院班级:06210501指导教师:李勤高低折射率微粒混合物的实时交互式光学微操作Peter John Rodrigo Vincent Ricardo Daria Jesper Glückstad丹麦罗斯基勒DK-4000号,Risø国家实验室光学和等离子研究系jesper.gluckstad@risoe.dkhttp://www.risoe.dk/ofd/competence/ppo.htm摘要:本文论证一种对于胶体的实时交互式光学微操作的方法,胶体中包含两种折射率的微粒,与悬浮介质(0n )相比,分别低于(0L n n <)、高于(0H n n >)悬浮介质的折射率。

球形的高低折射率微粒在横平板上被一批捕获激光束生成的约束光势能捕获,捕获激光束的横剖面可以分为“礼帽形”和“圆环形”两种光强剖面。

这种应用方法在光学捕获的空间分布和个体几何学方面提供了广泛的可重构性。

我们以实验为基础证实了同时捕获又独立操作悬浮于水(0 1.33n =)中不同尺寸的球形碳酸钠微壳( 1.2L n ≈)和聚苯乙烯微珠( 1.57H n =)的独特性质。

©2004 美国光学学会光学分类与标引体系编码:(140.7010)捕获、(170.4520)光学限制与操作和(230.6120)空间光调制器。

1 引言光带有动量和角动量。

伴随于光与物质相互作用的动量转移为我们提供了在介观量级捕获和操作微粒的方法。

过去数十年中的巨大发展已经导致了在生物和物理领域常规光学捕获的各种应用以及下一代光学微操作体系的出现[1-5]。

光学外文文献及翻译

光学外文文献及翻译

学号********** 昆明理工大学专业英语专业光学姓名辜苏导师李重光教授分数导师签字日期2015年5月6日研究生部专业英语考核In digital holography, the recording CCD is placed on the ξ-ηplane in order to register the hologramx ',y 'when the object lies inthe x-y plane. Forthe reconstruction ofthe information ofthe object wave,phase-shifting digital holography includes two steps:(1) getting objectwave on hologram plane, and (2) reconstructing original object wave.2.1 Getting information of object wave on hologram plateDoing phase shifting N-1 times and capturing N holograms. Supposing the interferogram after k- 1 times phase-shifting is]),(cos[),(),(),,(k k b a I δηξφηξηξδηξ-⋅+= (1) Phase detection can apply two kinds of algorithms:synchronous phase detection algorithms [9]and the least squares iterative algorithm [10]. The four-step algorithm in synchronous phase detection algorithm is in common use. The calculation equation is)2/3,,(),,()]2/,,()0,,([2/1),(πηξπηξπηξηξηξiI I iI I E --+=2.2 Reconstructing original object wave by reverse-transform algorithmObject wave from the original object spreads front.The processing has exact and clear description and expression in physics and mathematics. By phase-shifting technique, we have obtained information of the object wave spreading to a certain distance from the original object. Therefore, in order to get the information of the object wave at its initial spreading position, what we need to do is a reverse work.Fig.1 Geometric coordinate of digital holographyexact registering distance.The focusing functions normally applied can be divided into four types: gray and gradient function, frequency-domain function, informatics function and statistics function. Gray evaluation function is easy to calculate and also robust. It can satisfy the demand of common focusing precision. We apply the intensity sum of reconstruction image as the evaluation function:min ),(11==∑∑==M k Nl l k SThe calculation is described in Fig.2. The position occurring the turning point correspondes to the best registration distanced, also equals to the reconstructing distance d '.It should be indicated that if we only need to reconstruct the phase map of the object wave, the registration distance substituted into the calculation equation is permitted having a departure from its true value.4 Spatial resolution of digital holography4.1 Affecting factors of the spatial resolution of digital holographyIt should be considered in three respects: (1) sizes of the object and the registering material, and the direction of the reference beam, (2) resolution of the registering material, and (3) diffraction limitation.For pointx2on the object shown in Fig.3, the limits of spatial frequency are λξθλθθ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-'-=-=-0211maxmax tan sin sin sin sin z x f R R Fig.2 Determining reconstructing distanceλξθλθθ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-'-=-=-0211minmin tan sin sin sin sin z x f R R Frequency range isλξξ⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-'-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=∆--02110211tan sin tan sin z x z x f so the range is unrelated to the reference beam.Considering the resolution of registering material in order to satisfy the sampling theory, phase difference between adjacent points on the recording plate should be less than π, namely resolution of the registration material.c f f f =∆η21)(min max 4.2 Expanding the spatial resolution of reconstruction imageExpanding the spatial resolution can be realized at least in three ways: (1) Reducing the registration distance z 0 can improve the reconstruction resolution, but it goes with reduction of the reconstruction area at the same ratio.Therefore, this method has its limitation. (2) Increasing the resolution and the imaging size of CCD with expensive price. (3) Applying image-synthesizing technique [11]CCD captures a few of images between which there is small displacement (usually a fraction of the pixel size) vertical to the CCD plane, shown in Fig.4(Schematic of vertical moving is the same).This method has two disadvantages. First, it is unsuitable for dynamic testing and can only be applied in the static image reconstruction. Second, because the pixel size is small (usually 5μm to 10μm) and the displacement should a fraction of this size (for example 2μm), it needs a moving table with high resolution and precision. Also it needs high stability in whole testing.In general, improvement of the spatial resolution of digital reconstruction isFig.3 Relationship between object and CCDstill a big problem for the application of digital holography.Fig.4 Image capturing by moving CCD along horizontal direction5 Testing resultsFig.5 is the photo of the testing system. The paper does testing on two coins. The pixel size of the CCD is 4.65μm and there are 1 392×1 040 pixels. The firstis one Yuan coin of RMB (525 mm) used for image reconstruction by phase-shifting digital holography. The second is one Jiao coin of RMB (520 mm) for the testing of deformation measurement also by phase-shifting digital holography.Fig.5 Photo of the testing system5.1 Result of image reconstructionThe dimension of the one Yuancoin is 25 mm. The registrationdistance measured by ruler isabout 385mm. We capture ourphase-shifting holograms andreconstruct the image byphase-shifting digital holography.Fig.6 is the reconstructed image.Fig.7 is the curve of the auto-focusfunction, from which we determine the real registration distance 370 mm. We can also change the controlling precision, for example 5mm, 0.1 mm,etc., to get more course or precision reconstruction position.Fig.6 Reconstructed image Fig.7 Auto-focus function5.2 Deformation measurementIn digital holography, the method of measuring deformation measurement differs from the traditional holography. It gets object wave before and after deformation and then subtract their phases to obtain the deformation. The study tested effect of heating deformation on the coin of one Jiao. The results are shown in Fig.8, Where (a) is the interferential signal of the object waves before and after deformation, and (b) is the wrapped phase difference.Fig.8 Heating deformation results5.3 Improving the spatial resolutionFor the tested coin, we applied four sub-low-resolution holograms to reconstruct the high-resolution by the image-synthesizing technique. Fig.9 (a) is the reconstructed image by one low-resolution hologram, and (b) is the high-resolution image reconstructed from four low-resolution holograms.Fig.9 Comparing between the low and high resolution reconstructed image6 SummaryDigital holography can obtain phase and amplitude of the object wave at the same time. Compared to other techniques is a big advantage. Phase-shifting digital holography can realize image reconstruction and deformation with less noise. But it is unsuitable for dynamic testing. Applying the intensity sum of the reconstruction image as the auto-focusing function to evaluate the registering distance is easy, and computation is fast. Its precision is also sufficient. The image-synthesizing technique can improve spatial resolution of digital holography, but its static characteristic reduces its practicability. The limited dimension and too big pixel size are still the main obstacles for widely application of digital holography.外文文献译文:标题:图像重建中的相移数字全息摘要:相移数字全息术被用来研究研究艺术品的内部缺陷。

Litho Process 中文

Litho Process 中文

0.18um的DRAM
套刻精度规格 ★Gate to Field 0.05um Bit line Bit con. Capacitor ★Cell con. To Gate 0.374mm 0.05um ★Capacitor to Cell con. 0.05um ★Bit con. To Cell con. 0.05um ★Bit line to Bit con. 0.08um
1.什么光刻工艺 2.在半导体制造工艺中光刻工程所处位置 3.光刻工艺中个别工程的具体说明
3.1 涂胶工艺 3.2 曝光工艺 3.3 显影工艺 3.4 检测工艺
4.光刻技术的根本及发展方向
4.1 曝光工艺的改善 4.2 光学原理 4.3 光刻胶原理 4.2 光学对准原理
5.光刻区域常见的缺陷
Confidential
光刻(PR)技术
定义:把设计回路的图形通过光刻胶转移到硅基板上,作为 下一次加工的Mask(掩模). 其转移过程要遵循精确(线宽大小 忠实于设计)与无偏差(和下层图形之间无偏差)的两大原则.
Confidential
精确与无偏差
设计回路
曝光光源
掩模板
光刻胶 硅片(下层 图形)
Confidential
SHOT排列计算 把图形曝到硅片上
曝光
Alignment位置计测
Confidential
3.光刻工艺中个别工程的具体说明
Nikon光刻机外观图
NSR-2205i12D
Confidential
3.光刻工艺中个别工程的具体说明
曝光装置的变迁
曝光波长 436nm(g线) 水银灯 365nm(i线) 一次性曝光 (传统方式) 1/5 光源 曝光方式 投影倍率 解像度 低

光电信息专业英语单词句子中英翻译

光电信息专业英语单词句子中英翻译

词汇Ray Optics射线光学Refraction 折射Reflection 反射Index of Refraction 折射率Optical spectrum 光谱Dispersion 色散lens 透镜Total Internal Reflection全内反射Prisms棱镜right isosceles triangles正等腰三角形Spherical refracting surface 球面折射面sign convention符号法则paraxial approximation近轴近似aberration像差chromatic aberration色差collimated平行的;使平行critical angle临界角defect缺点,缺陷incident入射的inclination倾斜角;偏向magnitude数量级virtual image 虚像Diffraction 衍射Interference 干涉aperture 孔径complex exponential function复指数函数complex conjugate复共轭monochromatic单色的optical path difference 光程差polarization 偏振resonator谐振器resolution分辨率Holography 全息术wavelength 波长microscope 显微镜beam splitter 分束器Rainbow holography彩虹全息术Volume holograms 体全息图Computer-generated holography 计算机全息术Spatial Filtering空间滤波gratings光栅harmonics interferogram谐波干涉图pupil function 光瞳函数principal maxima 主极大值Mode Locking 波模锁定;振荡型同步Transverse modes 横向模式Laser rangefinder激光测距仪navigation 导航Photodetector光电检测器photomultiplier光电倍增管Photon 光子Optical Fiber Communication 光纤通信fiber 纤维Optical Loss 光学损失Group集体velocity 速度nonlinearity非线性anomalous-dispersion反常色散Stimulated Raman Scattering 受激拉曼散射Self-Phase Modulation 相位调制效应Cross-Phase Modulation 交叉相位调制bandwidth 带宽optical switches光开关Photodetectors光电探测器crystal 晶体Birefringence 双折射electron 电子Mechanical and thermal strength 机械和热强度surface 表面Bandgap 能带carrier concentration 载体浓度discharge 放电photovoltaic 光伏Optical Thin Film Technology光学薄膜技术Photolithography 光刻, biophotonics生物光子学,3D Display Technology 3 d显示技术,Infrared Detection Technology红外探测技术exposure 曝光irradiation 辐照nanoparticle纳米颗粒句子We treat light beams as rays that propagate along straight lines, except at interfaces between dissimilar materials, where the rays may be bent or refracted. This approach, which had been assumed to be completely accurate before the discovery of the wave nature of light, leads to a great many useful results regarding lens optics and optical instruments.我们将光束处理为沿着直线传播的光线,除了在不同材料之间的界面处,其中光线可以被弯曲或折射。

常用光学期刊英文缩写

常用光学期刊英文缩写

常用光学期刊英文缩写Acta Optica SinicaActa Photonica SinicaAIP CONFERENCE PROCEEDINGSAIP CONF PROCAPPLIED OPTICSAPPL. OPTICSAPPLIED PHYSICS LETTERSAPPL PHYS LETTChinese Journal of LasersChinese J. LasersHigh Power Laser and Particle BeamsIEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINEIEEE AERO EL SYS MAGIEEE ANNALS OF THE HISTORY OF COMPUTINGIEEE ANN HIST COMPUTIEEE ANTENNAS AND PROPAGATION MAGAZINEIEEE ANTENNAS PROPAGIEEE CIRCUITS & DEVICESIEEE CIRCUITS DEVICEIEEE CIRCUITS AND DEVICES MAGAZINEIEEE CIRCUIT DEVICIEEE COMMUNICATIONS LETTERSIEEE COMMUN LETTIEEE COMMUNICATIONS MAGAZINEIEEE COMMUN MAGIEEE COMPUTATIONAL SCIENCE & ENGINEERINGIEEE COMPUT SCI ENGIEEE COMPUTER APPLICATIONS IN POWERIEEE COMPUT APPL POWIEEE COMPUTER GRAPHICS AND APPLICATIONSIEEE COMPUT GRAPHIEEE COMPUTER GROUP NEWSIEEE COMPUT GROUP NIEEE CONCURRENCYIEEE CONCURRIEEE CONTROL SYSTEMS MAGAZINEIEEE CONTR SYST MAGIEEE DESIGN & TEST OF COMPUTERSIEEE DES TEST COMPUTIEEE ELECTRICAL INSULATION MAGAZINEIEEE ELECTR INSUL MIEEE ELECTROMAGNETIC COMPATIBILITY SYMPOSIUM RECORD IEEE ELECTROMAN COMPIEEE ELECTRON DEVICE LETTERSIEEE ELECTR DEVICE LIEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE IEEE ENG MED BIOLIEEE EXPERT-INTELLIGENT SYSTEMS & THEIR APPLICATIONS IEEE EXPERTIEEE INDUSTRY APPLICATIONS MAGAZINEIEEE IND APPL MAGIEEE INSTRUMENTATION & MEASUREMENT MAGAZINEIEEE INSTRU MEAS MAGIEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONSIEEE INTELL SYST APPIEEE INTERNET COMPUTINGIEEE INTERNET COMPUTIEEE JOURNAL OF OCEANIC ENGINEERINGIEEE J OCEANIC ENGIEEE JOURNAL OF QUANTUM ELECTRONICSIEEE J QUANTUM ELECTIEEE JOURNAL OF ROBOTICS AND AUTOMATIONIEEE T ROBOTIC AUTOMIEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS IEEE J SEL TOP QUANTIEEE JOURNAL OF SOLID-STATE CIRCUITSIEEE J SOLID-ST CIRCIEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONSIEEE J SEL AREA COMMIEEE MICROIEEE MICROIEEE MICROWAVE AND GUIDED WAVE LETTERSIEEE MICROW GUIDED WIEEE MULTIMEDIAIEEE MULTIMEDIAIEEE NETWORKIEEE NETWORKIEEE PARALLEL & DISTRIBUTED TECHNOLOGYIEEE PARALL DISTRIBIEEE PERSONAL COMMUNICATIONSIEEE PERS COMMUNIEEE PHOTONICS TECHNOLOGY LETTERSIEEE PHOTONIC TECH LIEEE ROBOTICS & AUTOMATION MAGAZINEIEEE ROBOT AUTOM MAGIEEE SIGNAL PROCESSING LETTERSIEEE SIGNAL PROC LETIEEE SIGNAL PROCESSING MAGAZINEIEEE SIGNAL PROC MAGIEEE SOFTWAREIEEE SOFTWAREIEEE SPECTRUMIEEE SPECTRUMIEEE TECHNOLOGY AND SOCIETY MAGAZINEIEEE TECHNOL SOC MAGIEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING IEEE T ACOUST SPEECHIEEE TRANSACTIONS ON ADVANCED PACKAGINGIEEE TRANS ADV PACKIEEE TRANSACTIONS ON AEROSPACEIEEE T AEROSPIEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMSIEEE T AERO ELEC SYSIEEE TRANSACTIONS ON AEROSPACE AND NAVAL ELECTRONICSIEEE T AERO NAV ELECIEEE TRANSACTIONS ON AEROSPACE AND NAVIGATIONAL ELECTRONICS IEEE TRANS AEROSP NIEEE TRANSACTIONS ON ANTENNAS AND PROPAGATIONIEEE T ANTENN PROPAGIEEE TRANSACTIONS ON APPLICATIONS AND INDUSTRYIEEE T APPL INDIEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITYIEEE T APPL SUPERCONIEEE TRANSACTIONS ON AUDIOIEEE TRANS AUDIOIEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICSIEEE T ACOUST SPEECHIEEE TRANSACTIONS ON AUTOMATIC CONTROLIEEE T AUTOMAT CONTRIEEE TRANSACTIONS ON BIOMEDICAL ENGINEERINGIEEE T BIO-MED ENGIEEE TRANSACTIONS ON BROADCAST AND TELEVISION RECEIVERS IEEE T BROADC TELEVIEEE TRANSACTIONS ON BROADCASTINGIEEE T BROADCASTIEEE TRANSACTIONS ON CIRCUIT THEORYIEEE T CIRCUITS SYSTIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMSIEEE T CIRCUITS SYSTIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGYIEEE T CIRC SYST VIDIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS IEEE T CIRCUITS-IIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING IEEE T CIRCUITS-IIIEEE TRANSACTIONS ON COMMUNICATION AND ELECTRONICSIEEE T COMMUN ELECTRIEEE TRANSACTIONS ON COMMUNICATION TECHNOLOGYIEEE T COMMUN TECHNIEEE TRANSACTIONS ON COMMUNICATIONSIEEE T COMMUNIEEE TRANSACTIONS ON COMMUNICATIONS SYSTEMSIEEE T COMMUN SYSTIEEE TRANSACTIONS ON COMPONENT PARTSIEEE T COMPON PARTSIEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIESIEEE T COMPON PACK TIEEE TRANSACTIONS ON COMPONENTS HYBRIDS AND MANUFACTURING TECHNOLOGYIEEE T COMPON HYBRIEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY PART A IEEE T COMPON PACK AIEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY PART B-ADVANCED PACKAGINGIEEE T COMPON PACK BIEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS IEEE T COMPUT AID DIEEE TRANSACTIONS ON COMPUTERSIEEE T COMPUTIEEE TRANSACTIONS ON CONSUMER ELECTRONICSIEEE T CONSUM ELECTRIEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGYIEEE T CONTR SYST TIEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATIONIEEE T DIELECT EL INIEEE TRANSACTIONS ON EDUCATIONIEEE T EDUCIEEE TRANSACTIONS ON ELECTRICAL INSULATIONIEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITYIEEE T ELECTROMAGN CIEEE TRANSACTIONS ON ELECTRON DEVICESIEEE T ELECTRON DEVIEEE TRANSACTIONS ON ELECTRONIC COMPUTERSIEEE TRANS ELECTRONIEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURINGIEEE T ELECTRON PA MIEEE TRANSACTIONS ON ENERGY CONVERSIONIEEE T ENERGY CONVERIEEE TRANSACTIONS ON ENGINEERING MANAGEMENTIEEE T ENG MANAGEIEEE TRANSACTIONS ON ENGINEERING WRITING AND SPEECHIEEE T PROF COMMUNIEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATIONIEEE T EVOLUT COMPUTIEEE TRANSACTIONS ON FUZZY SYSTEMSIEEE T FUZZY SYSTIEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSINGIEEE T GEOSCI REMOTEIEEE TRANSACTIONS ON GEOSCIENCE ELECTRONICSIEEE T GEOSCI ELECTIEEE TRANSACTIONS ON HUMAN FACTORS IN ELECTRONICSIEEE TRANS HUM FACTIEEE TRANSACTIONS ON HUMAN FACTORS IN ENGINEERINGIEEE T HUM FACT ENGIEEE TRANSACTIONS ON IMAGE PROCESSINGIEEE T IMAGE PROCESSIEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICSIEEE T IND ELECTRONIEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS AND CONTROL INSTRUMENTATION IEEE T IND EL CON INIEEE TRANSACTIONS ON INDUSTRY AND GENERAL APPLICATIONSIEEE TRANS IND GEN AIEEE TRANSACTIONS ON INDUSTRY APPLICATIONSIEEE T IND APPLIEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINEIEEE T INF TECHNOL BIEEE TRANSACTIONS ON INFORMATION THEORYIEEE T INFORM THEORYIEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENTIEEE T INSTRUM MEASIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERINGIEEE TRANSACTIONS ON MAGNETICSIEEE T MAGNIEEE TRANSACTIONS ON MAN-MACHINE SYSTEMSIEEE T MAN MACHINEIEEE TRANSACTIONS ON MANUFACTURING TECHNOLOGYIEEE T MANUF TECHIEEE TRANSACTIONS ON MEDICAL IMAGINGIEEE T MED IMAGINGIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUESIEEE T MICROW THEORYIEEE TRANSACTIONS ON MILITARY ELECTRONICSIEEE T MIL ELECTRONIEEE TRANSACTIONS ON NEURAL NETWORKSIEEE T NEURAL NETWORIEEE TRANSACTIONS ON NUCLEAR SCIENCEIEEE T NUCL SCIIEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMSIEEE T PARALL DISTRIEEE TRANSACTIONS ON PARTS HYBRIDS AND PACKAGINGIEEE T PARTS HYB PACIEEE TRANSACTIONS ON PARTS MATERIALS AND PACKAGINGIEEE TR PARTS MATERIEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE IEEE T PATTERN ANALIEEE TRANSACTIONS ON PLASMA SCIENCEIEEE T PLASMA SCIIEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMSIEEE T POWER AP SYSTIEEE TRANSACTIONS ON POWER DELIVERYIEEE T POWER DELIVERIEEE TRANSACTIONS ON POWER ELECTRONICSIEEE T POWER ELECTRIEEE TRANSACTIONS ON POWER SYSTEMSIEEE T POWER SYSTIEEE TRANSACTIONS ON PRODUCT ENGINEERING AND PRODUCTIONIEEE T PROD ENG PRODIEEE TRANSACTIONS ON PROFESSIONAL COMMUNICATIONIEEE T PROF COMMUNIEEE TRANSACTIONS ON REHABILITATION ENGINEERINGIEEE T REHABIL ENGIEEE TRANSACTIONS ON RELIABILITYIEEE T RELIABIEEE TRANSACTIONS ON ROBOTICS AND AUTOMATIONIEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURINGIEEE T SEMICONDUCT MIEEE TRANSACTIONS ON SIGNAL PROCESSINGIEEE T SIGNAL PROCESIEEE TRANSACTIONS ON SOFTWARE ENGINEERINGIEEE T SOFTWARE ENGIEEE TRANSACTIONS ON SONICS AND ULTRASONICSIEEE T SON ULTRASONIEEE TRANSACTIONS ON SPACE ELECTRONICS AND TELEMETRYIEEE T SPACE EL TELIEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSINGIEEE T SPEECH AUDI PIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICSIEEE T SYST MAN CYBIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANSIEEE T SYST MAN CY AIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICSIEEE T SYST MAN CY BIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS IEEE T SYST MAN CY CIEEE TRANSACTIONS ON SYSTEMS SCIENCE AND CYBERNETICSIEEE T SYST SCI CYBIEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROLIEEE T ULTRASON FERRIEEE TRANSACTIONS ON VEHICULAR COMMUNICATIONSIEEE T VEH COMMUNIEEE TRANSACTIONS ON VEHICULAR TECHNOLOGYIEEE T VEH TECHNOLIEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION VLSI SYSTEMSIEEE T VLSI SYSTIEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICSIEEE T VIS COMPUT GRIEEE VEHICULAR TECHNOLOGY GROUP-ANNUAL CONFERENCEIEEE VEH TECHNOL GRIEEE-ACM TRANSACTIONS ON NETWORKINGIEEE ACM T NETWORKIEEE-ASME TRANSACTIONS ON MECHATRONICSIEEE-ASME T MECHJournal of Optoelectronics . LaserJ. Optoelectronics . LaserJOURNAL OF THE OPTICAL SOCIETY OF AMERICAJ OPT SOC AMJOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION J OPT SOC AM AJOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICSJ OPT SOC AM BOPTICAL TECHNOLOGYOPT. TECHNOL.OPTICS LETTERSOPT LETTOPTICAL TECHNICSOPT. TECH.OPTICS AND PRECISION ENGINEERINGOPT. PRECISION ENG.OPTICA ACTAOPT ACTAOPTICA APPLICATAOPT APPLOPTICAL AND QUANTUM ELECTRONICSOPT QUANT ELECTRONOPTICAL ENGINEERINGOPT ENGOPTICAL FIBER TECHNOLOGYOPT FIBER TECHNOLOPTICAL IMAGING OF BRAIN FUNCTION AND METABOLISM 2ADV EXP MED BIOLOPTICAL INFORMATION SYSTEMSOPT INF SYSTOPTICAL MATERIALSOPT MATEROPTICAL PROPERTIES OF SEMICONDUCTOR QUANTUM DOTS SPRINGER TR MOD PHYSOPTICAL REVIEWOPT REVOPTICAL SPECTRAOPT SPECTRAOPTICS & PHOTONICS NEWSOPT PHOTONICS NEWSOPTICS AND LASER TECHNOLOGYOPT LASER TECHNOLOPTICS AND LASERS IN ENGINEERINGOPT LASER ENGOPTICS AND SPECTROSCOPYOPT SPECTROSC+OPTICS AND SPECTROSCOPY-USSROPT SPECTROSC-USSROPTICS COMMUNICATIONSOPT COMMUNOPTICS EXPRESSOPT EXPRESSOPTICS LETTERSOPT LETTOPTIKOPTIKOPTIKA I SPEKTROSKOPIYAOPT SPEKTROSK+PATTERN ANALYSIS AND APPLICATIONSPATTERN ANAL APPLPATTERN FORMATION IN GRANULAR MATERIALS SPRINGER TR MOD PHYSPATTERN RECOGNITIONPATTERN RECOGNPATTERN RECOGNITION LETTERSPATTERN RECOGN LETTPROGRESS IN OPTICSPROG OPTICSPROGRESS IN OPTICS, VOL 33PROG OPTICSPROGRESS IN OPTICS, VOL 35PROG OPTICSPROGRESS IN OPTICS, VOL 38PROG OPTICSPROGRESS IN OPTICS, VOL XLPROG OPTICSPROGRESS IN OPTICS, VOL XXXIIPROG OPTICSPROGRESS IN OPTICS, VOL XXXIXPROG OPTICSPROGRESS IN OPTICS, VOL XXXVIPROG OPTICSPROGRESS IN OPTICS, VOL. 37PROG OPTICSSpacecraft Recovery & Remote SensingSOLAR ENERGY MATERIALSSOL ENERG MATERSOLAR ENERGY MATERIALS AND SOLAR CELLS SOL ENERG MAT SOL CVISION RESEARCHVISION RESVISION TECNOLOGICA VIS TECNOL。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学光刻中英文对照外文翻译文献译文:光刻投影镜头多闭环温度控制系统摘要:图像质量是光学光刻工具的最重要指标之一,尤其易受温度、振动和投影镜头(PL)污染的影响。

本地温度控制的传统方法更容易引入振动和污染,因此研发多闭环温度控制系统来控制PL内部温度,并隔离振动和污染的影响。

一个新的远程间接温度控制(RITC)方案,提出了利用冷却水循环完成对PL的间接温度控制。

嵌入温度控制单元(TCU)的加热器和冷却器用于控制冷却水的温度,并且,TCU必须远离PL,以避免震动和污染的影响。

一种包含一个内部级联控制结构(CCS)和一个外部并行串联控制结构(PCCS)的新型多闭环控制结构被用来防止大惯性,多重迟滞,和RITC系统的多重干扰。

一种非线性比例积分(PI)的算法应用,进一步提高收敛速度和控制过程的精度。

不同的控制回路和算法的对比实验被用来验证对控制性能的影响。

结果表明,精度达到0.006℃规格的多闭环温度控制系统收敛率快,鲁棒性强,自我适应能力好。

该方法已成功地应用于光学光刻工具,制作了临近尺寸(CD)100纳米的模型,其性能令人满意。

关键词:投影镜头,远程间接温度串级控制结构,并行串连控制结构,非线性比例积分(PI)的算法1简介由于集成电路缩小,更小的临界尺寸(CD)要求,生产过程的控制越来越严格。

作为最重要的制造工艺设备,先进的光学光刻工具需要更严格的微控制环境[1],如严格控制其温度、洁净度、气压、湿度等。

温度波动,特别是导致图像失真和平面图像转变,成为了光学光刻工具对图像质量影响的一个关键因素。

投影镜头(PL)内的温度精度要求一个光刻工具在接近0.01℃制造一个小于100 nm的模型。

另外需要PL内部温度收敛率快以降低光刻技术的所有权(CoD)的成本. 然而,实现这些目标是一个很大的挑战,因为加热器和冷却器控制温度要求操作远离PL[2], 否则其性能将被它们的振动和污染所破坏。

另一个原因是,PL内部结构复杂,它包含数十个镜头,会导致几个小时惯性,所以PL内部的温度反应相当缓慢,并需要很长时间去调整适应。

因此,一个新的结构和控制算法是PL内部温度控制的必要和重要部分。

许多温度控制结构已经被提出了。

著名的经典方法之一是被广泛应用于简单或低精度温度控制系统的单闭环回路控制结构【3】。

当被控对象变得更加复杂或产生分布式干扰时,串级控制结构(CCS)的提出改善了精度和收敛率【4,5】。

预测前馈控制结构已被证明具有更好的滞后系统性能。

另一种有效的方法,并行串级控制结构(PCCS),也开发了具有延迟分布式干扰的系统。

但是上述使用方法,很难实现PL 内部温度控制的高精确度和快收敛率。

在此,本文提出了一种新的方法,即多闭环温度控制系统,含有一个内部CCS 和一个外部PCCS。

本文大致分为四个部分。

第一部分解释了一个远程间接温度控制方法的应用。

第二部分是一个多闭环回路温度控制结构的分析。

第三部分,一个双进双出非线性比例积分(PI)算法的提出用来提高控制过程的收敛速度和精度。

在文章的最后一部分,对比实验验证了系统的有效性这种显示,最后,给出了结论。

2 远程间接温度控制方法为了防止震动和污染影响PL的性能,一个远程间接温度控制的方法被提出来控制PL内部温度。

不同于传统的直接加热和冷却控制对象的方法,它借助于冷却水和冷却套间的热交换使PL内部温度恒定。

冷却水通过长距离管道由TCU输送至冷却外壳。

TCU由水箱、温度传感器、温度控制器、加热器、冷却器和泵组成。

它用于调节冷却水的温度以达到需求值。

TCU和光刻工具放置在不同的洁净室,如图1所示。

理论上,这种方法属于开环结构。

除了PL,其他光刻技术的部分,如晶圆阶段、标线的阶段、标线交接、晶圆移交等,都在操作时产生热量。

TCU中的冷却水还用于冷却光刻技术的其他部件。

循环系统回收冷却水,节省最大能量,是很必要的。

图1展示了包括TCU、分离器、冷却套和管道的循环系统。

从储水中抽出冷却水通过管道和分离器进入冷却套,最后通过合成器、管道和冷却器流回储水箱。

对冷却水循环系统的分析表明了影响PL内部温度的三个主要因素:干扰多,迟滞多,还有惯性大。

干扰多,包括冷却水温度波动,PL内部热量散失,PL和外部介质之间的热交换。

冷却水温度波动是多种因素造成的,其中包括TCU内部自励温度震荡造成的非线性加热冷却,管道和周围气体之间的热传递,以及光刻工具其他地方产生的热量。

在这个循环系统中,冷却水温度波动达到0.1℃是最差的情形。

PL内部热量散失有两个原因,一个是当激光穿过透镜时,内部辐射和导热交换,另一个是在镜头和内部净化氮之间的导热和对流热交换。

至于激光,它的散热量大概是15W。

PL与外部介质之间热交换来自两个方面,一方面来自PL与其相邻零件之间的相互热交换,另一方面来自PL外部箱体和周围空气的导热和对流热交换。

但是,PL和外部介质之间交换的热量由于其复杂性,故难以计算。

迟滞多主要包括TCU 加热和冷却3秒迟滞,冷却水交换3分钟迟滞,还有PL和冷却套间热交换10分钟迟滞。

此外,PL的复杂结构导致不平衡热交换,而由于其体积大导致惯性在和小体积物体相比时,温度波动较小。

上述分析表明,仅仅通过开环结构使PL内部温度控制精度高和收敛速度快是非常难以实现的。

此外,在开环结构中还有很大的稳态误差。

在以下部分中,我们将介绍一个提高PL内部温度控制的控制结构,并解释如何提高温度控制精度和收敛率。

3多闭环控制结构多闭环温度控制结构由一个内部CCS和一个外部PCCS组成。

3.1 串连控制结构PL温度控制的内部CCS如图2所示。

有两个分别带有两个控制器的反馈回路。

主要回路用来控制PL内部的温度(T1)。

TCU水箱中的冷却水温度控制(Tw)形成了第二条回路. 分析这个系统的运作质量是很容易。

如果PL 内部温度偏离期望值(T s ),嵌入主控制器中的控制算法会通过比较温度的测量值T l 和期望值T s 之间的偏差而计算一个新的冷却水温度设定值(T t )。

然后,发送新的设定值T t 给TCU 的温度控制器。

随后根据温度测量值T w 和新的设定值T t 间的偏差,TCU 中的控制算法计算加热器和冷却器的输入值,并对TCU 中水箱里的冷却水进行加热或者降温,直到温度达到新的设定值。

PL 内部温度期望设定值通过一台机器连续地给出。

T i 控制回路是一个慢控制回路。

T w 控制回路是一个快速控制回路,能快速跟随主回路设定值T t 。

当一个新的设定值T t 发送到TCU ,它需要几分钟时间去调整TCU 水箱中的水温至设定值。

二次回路具有很强的抗内部干扰的能力。

此外,还可以减少对主回路非线性和迟滞的影响。

图3显示了关于上述描述串级控制系统的控制原理图。

在下面的图表和方程式,G t (s)表示加热器和冷却器传递函数,G p (s)表示管道传递函数,G l (s)表示PL 传递函数。

G m (s) G m (s)表示主控制回路传递函数,G s (s)表示二次控制回路传递函数。

H m (s)表示测量设备主回路传递函数,H s (s)表示测量设备二次回路传递函数。

表示TCU 水箱中冷却水迟滞,表示通过管道的冷却水迟滞,表示PL 内部热交换迟滞,N t (s)表示TCU 外部扰动,N p (s)表示管道外扰动,N c (s)表示PL 外部扰动,N n (s)表示PL 内部扰动,R l (s)表示PL 内部输入温度,R t (s)表示TCU 水箱中冷却水的输入温度,C 1(s)表示PL 内的输出温度,C t (s)表示TCU 水箱中冷却水的输出温度。

二次回路中的输入输出函数如下所示:根据二次回路的稳态,输出Ct (s)近似等于输入Rt(s)。

因此,主回路的输入输出函数可表示如下:在此早期的研究表明,PL的时间常数约为4h。

传递函数G1(s)为传递函数Gp(s)为对于简单的闭环系统CCS,很容易消除它的稳态误差。

然而,根据方程式(2)和(3),PL 里温度的收敛率从开始到稳态变慢,因为和的延迟。

而且,很难获得PL里面很精确的温度,因为和的扰动。

在定态的状态之下,由于的作用,当瞬时温度变动超过冷却水温度0.1℃时,PL 里的温度变动超过 0.O 1℃。

需要几个控制周期才达到下一个稳定状态。

因此介绍PCCS来提高控制特性。

3.2 并行串联控制结构图4是扩展的PCCS。

这个图省略了操作系统,在系统的框中确定了主要组成环。

与 CCS 相比较,也有两个控制环和两个控制器。

一个是PL里温度的主环,另一个是结合处冷却水温度的副环。

它们之间的不同是主控制对象和副控制对象之间是并行的。

副控制对象的输出不是主控制对象的输入。

在这个系统中,控制运算法则是主要的控制器根据和之间的偏差决定一个新的冷却水的最佳温度值。

然后辅助的控制器中的控制运算法则依照和之间的偏差计算TCU的输入。

控制环是一个慢的控制环。

控制环是一个快速控制环,它过去一直快速的预测结合处的冷却水最佳温度值。

当PL内的温度是想要的值时,结合处冷却水的温度就是最佳温度。

这个最佳温度将会保存为一个常数。

从扰动抑制的观点看,根据前馈控制相同的原则来控制辅助环。

他们之间的不同是扰动必须是可测量的前馈结构,而PCCS可应用于不可测量的扰动。

PCCS的另一个优点是它可加速主环的收敛率。

图5显示了上面提到的并行串联控制系统的详细原理图。

在下面的图表和方程式中,代表结合处冷却水的传递函数,代表副控制器的传递函数。

代表辅助环测量装置的传递函数,代表结合处冷却水的输入温度,代表结合处冷却水的输出温度。

副环的输入输出的传递函数如下:在副环的稳定状态下,输出和输入近似相等。

所以主环的输入和输出的传递函数可以简化为:比较方程(2)(3)和(7),我们可以得出扰动和延迟时间常数从主环分离,只有扰动和延迟时间常数仍在主环内。

所以辅助环获得了物理结构中互相延迟和互相扰动的分离,且隔离了主控制对象的非线性,互相延迟和互相扰动的影响。

这种结构也控制器设计的困难。

即使冷却水有温度的变动,他也能通过副控制器补偿。

因此,PL内的温度控制可具有高精度和快收敛率。

4非线性比例积分算法为了进一步提高系统的收敛率和精确度,一种具有非线性PI算法的二重输入和二重输出智能控制器被设计出来,如图六所示。

PL里的温度偏差和结合处冷却水的温度偏差都是控制器的输入端。

控制器的输出端是TCU里面冷却水温度值和结合处最佳冷却水温度值。

控制器里嵌有智能算法。

它包括两级且根据理想的动态响应分为五个控制阶段。

高级算法决定从我们先前介绍的五个阶段中选择[10]。

非线性PI算法在低级算法中使用,它将在后面的段落中介绍。

考虑到温度控制系统的相互扰动特点,PI算法代替了不同比例积分算法(PID),因为不同项目将引起高频率振动和增加系统稳定性误差。

相关文档
最新文档