ZnO压敏陶瓷的研究进展

合集下载

乳胶体系流延片叠层制备ZnO压敏陶瓷材料研究

乳胶体系流延片叠层制备ZnO压敏陶瓷材料研究
技术参数
流延 宽 度 / mm 流延有效长度/m c
膜带
规格
O~ l 6 0~1 O 0 1 0 o x 2 0 0 m 0 mm x 1 00 um 0. 1~0. 8
机溶剂体系 , 如甲苯 、 甲苯 等 , 二 它们易燃且具有 一定的毒性 ,
易导致生产条件恶化 , 造成 环境 污染 , 而且 成本 也较 高_ J l 。
第 5期 20 0 8年 1 月 0
文 章 编 号 :0 38 1 (0 8 0 —0 70 10 —2 3 20 )50 2 —3
微 细 J -技 术 jr  ̄
MI CROFABRI CA TI N O TECHN OLOGY
№ . 5 Oc ., 00 t 2 8
乳 胶 体 系 流 延 片叠 层 制 备 Z O压 敏 陶 瓷 材 料 研 究 n
延 工 艺 所 用 乳 胶 粘 结 剂 本 身 的压 敏 胶 粘 性 进 行 叠 层 , 么 就 那
传 送 速 度 / m・ i ) ( mn
3 实验 结 果 与讨 论
3 1 流 延 生 带 材 料 的 性 能 .
可以简化工艺 , 同时还可减 少有机 物 的带入量 _I 34。笔 者前 J
作者简介 : 华伟 ̄(9 2 , 1 8 一)江苏苏州人 , 硕士 ; 崔学  ̄(9 1 , 17 一)教授 , 主要从事先进无机非金属材料制备及精细工艺研究 。
*通 讯 作 者
2 8
微 细 加 工 技 术
20 0 8证
构 , 图中可 以发现 Z O和 掺杂 氧化物 被乳 胶包 裹较 好 , 从 n 表 面光 滑 , 没有气孔缺 陷存 在 , 这从宏观上就表 现为 流延 生带 均 匀平整 ; 了保证流延 片的强度和韧性 , 为 流延浆料 配方 中加 入 了较 多的粘结剂 , 因此 该生带 材料具 有较 高的强度 和较好 的

ZnO压敏陶瓷的研究进展概要

ZnO压敏陶瓷的研究进展概要

ZnO压敏陶瓷的研究进展摘要:ZnO压敏陶瓷是众多压敏陶瓷中性能最优异的一种,它是以ZnO为主原料,通过掺杂Bi2O3、TiO2、Co2O3、MnO2、Cr2O3和Nb2O5等氧化物改性烧结而成。

本文通过介绍ZnO粉体的合成方法、掺杂改性等方面入手,对ZnO压敏陶瓷的发展趋势进行探讨,并针对某些共性问题提出自己的一些看法。

关键词:ZnO压敏陶瓷;掺杂;制备;发展趋势The development trends of ZnO varistor ceramic Abstract: The ZnO varistor ceramic is one of the varistor ceramics which with best properties. The main raw material is ZnO, then mixed with some oxides ,such as Bi2O3、TiO2、Co2O3、MnO2、Cr2O3、Nb2O5 and so on ,to change it’s properties and sinter it .This text briefly described the methods of producing ZnO powder and mixing something to change the properties of it .Present situation in development of varistor ceramic as well as its developing tendency was also analyzed .Some suggestions and opinions were proposed for problems on common characteristics. Key words: ZnO varistor ceramic; mixed; produce; developing tendency1.前言ZnO压敏陶瓷是一种多功能新型陶瓷材料,它是以ZnO主为体,添加若干其他改性金属氧化物的烧结体材料。

低温制备ZnO压敏陶瓷及其电性能研究

低温制备ZnO压敏陶瓷及其电性能研究

0 引言随着电子-电力设备的高速发展 以及电路设备的功耗逐渐增大,多层式压敏电阻在电器设备中所起的作用越来越大。

ZnO压敏陶瓷作为一种多功能的N型半导体电子材料,具有较宽的禁带宽度(3.37 eV)、高的非线性系数、高通流容量、优异的能量吸收能力以及低成本等特性,被低温制备ZnO压敏陶瓷及其电性能研究11211周波 鲁加加 吴龙 马雪 李良锋(1. 西南科技大学材料科学与工程学院 绵阳 621010;2. 青岛市产品质量监督检验研究院 青岛 266101)摘 要 ZnO压敏陶瓷作为电压保护以及抗浪涌设备中电子元器件的核心材料,其高非线性系数,高通流容量,强浪涌吸收能力等性能研究以及低温烧结制备技术受到广泛关注。

通过掺杂烧结助剂BST(Bi O∶SiO∶TiO摩尔比为6∶4∶3),2322于875 ℃烧结制备了性能优异的ZnO压敏陶瓷。

主要探究了烧结助剂的掺量对ZnO压敏陶瓷的物相组成、微观结构、体积密度以及压敏性能的影响。

结果表明:BST掺杂会导致晶粒细化,有效地提高样品的致密度及压敏性能。

当BST掺量摩尔分数3为0.25%时,获得样品的综合性能最佳,体积密度为5.63 g/cm,相对密度为97.4%,非线性系数最大为38.9,电压梯度为最2小值301.2 V/mm,漏电流密度为最小值0.028 m A/cm。

关键词 ZnO压敏陶瓷;低温烧结;压敏性能;非线性系数中图分类号:TQ174 文献标识码:A 文章编号:1003-1987(2020)07-0016-0Low Temperature Preparation and Electrical Properties of ZnO Varistor Ceramics11211ZHOU Bo, LU Jiajia, WU Long, MA Xue, LI Liangfeng(1. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;2. Qingdao Product Quality Supervision and Testing Research Center, Qingdao 266101, China)Abstract: As the core material of electronic components in voltage protection and anti-surge equipment, ZnO varistor ceramic has attracted wide attention due to its high nonlinear coefficient, high current capacity, strong surge absorption capacity and other low-temperature sintering preparation technologies. ZnO varistorceramics with excellent properties were prepared by doping sintering aid BST the molar ratio of Bi O-23 SiO-TiO is 6∶4∶3at 875 °C. The effects of the content of sintering aids on the phase composition, 22microstructure, density, and electrical properties of ZnO varistor ceramics were mainly investigated. The results show that BST doping will lead to grain refinement, which can effectively increase the density and electrical properties of the sample. When the BST content is 0.25mol%, the comprehensive performance of3the obtained sample is the best. The bulk density is 5.63g/cm, relative density is 97.4%,the minimum2voltage gradient is 301.2V/mm, and the leakage current density is 0.028 μA/cm.Key Words: ZnO varistor, low-temperature sintering, electrical property, nonlinear coefficient5——————————作者简介:周波(1995-),男,硕士 。

ZnO压敏陶瓷液相低温烧结技术的研究进展

ZnO压敏陶瓷液相低温烧结技术的研究进展
维普资讯
第 3 卷 (06第 4 4 20 ) 期
计算机与数字工程
ll O
Z O压 敏 陶瓷 液 相低 温 烧结 技 术 的研 究 进 展 n
叶祖勋 吕文中 汪小红 梁 飞
武汉
朱建华
407) 3 4 0
( 中科技大学 电子科学与技术 系 华 摘
e d.
Ke r s mut a e h p v r tr o mp rtr itr g i ud p ae sne n y wo d : l ly r i a so ,lw t e a e s e n ,l i h s itr g i c i e u n i q i
YeZa u L W e z o g W a gXio o g Ia gF i Z u Ja h a xn u nhn n a h n a n e h in u
( eatet f l t n c neadTcnl y H S , hn 407 ) D pr n o Ee r i Si c n eho g , U T Wua 304 m co c e o
坌 H 生 壁 I 堡
2 Z O压 敏 陶瓷 烧结 过 程 中的 液相 n
传质机构 。
通过 在 ZO压 敏 基 料 中 掺 杂低 熔 点 的烧 结 助 n
图 1 M V的生产 工艺流 程 L
量轻 、 压敏电压低 ( 最低可至 2 )响应速度快( — v、 1
5s、 n)温度特性好 、 通流通量大、 耐湿 、 寿命长 、 可靠
Ad a c si eh d fL w m p r t r i u d P a e S t rn n Va itr C r mis v n e M t o s o o Te e a u e L q i h s i e i g Z O rso e a c n n

高电位梯度ZnO压敏陶瓷的制备、性能及机理研究的开题报告

高电位梯度ZnO压敏陶瓷的制备、性能及机理研究的开题报告

高电位梯度ZnO压敏陶瓷的制备、性能及机理研究的开题报告1. 研究背景随着现代电子技术的发展,压敏材料在电子元器件中的应用越来越广泛。

因此,对压敏材料的研究和制备变得越来越重要。

高电位梯度ZnO压敏陶瓷作为一种性能优异的压敏材料,具有灵敏度高、稳定性好、可靠性高等优点,同时也能够适应不同的使用环境。

因此,对高电位梯度ZnO压敏陶瓷的制备、性能、机理等方面开展研究具有重要意义。

2. 研究目的和意义本研究旨在深入探究高电位梯度ZnO压敏陶瓷的制备、性能及机理,并寻求制备高性能高电位梯度ZnO压敏陶瓷的方法。

通过对高电位梯度ZnO压敏陶瓷进行理论分析和实验研究,将有助于提高高电位梯度ZnO压敏陶瓷的制备工艺,探究高电位梯度ZnO压敏陶瓷的性能和机理,同时也为相关领域的学术研究提供新的思路和方法。

3. 研究内容和方案(1) 高电位梯度ZnO压敏陶瓷的制备方案:选择适合的制备方法,对材料制备条件进行控制,确保材料的高纯度、均匀性和致密度。

(2) 高电位梯度ZnO压敏陶瓷的性能测试方案:对制备好的高电位梯度ZnO压敏陶瓷进行性能测试,包括电学性能、力学性能等方面的测试。

(3) 高电位梯度ZnO压敏陶瓷机理分析方案:通过分析材料的晶体结构、成分分析、界面结构等方面的数据,深入探究高电位梯度ZnO压敏陶瓷的机理。

4. 研究进度安排预计本研究将于一年内完成。

第1-2个月:文献调研和理论研究。

第3-6个月:高电位梯度ZnO压敏陶瓷的制备和实验研究。

第7-8个月:高电位梯度ZnO压敏陶瓷的性能测试。

第9-10个月:机理分析和数据处理。

第11-12个月:研究结果分析、结论撰写和论文写作。

5. 预期成果(1) 高电位梯度ZnO压敏陶瓷的制备工艺及性能测试数据。

(2) 高电位梯度ZnO压敏陶瓷的机理分析。

(3) 发表本研究相关的学术论文。

(4) 提高高电位梯度ZnO压敏陶瓷的制备工艺,推动相关领域的研究发展。

ZnO压敏陶瓷材料排胶工艺研究7-3-A

ZnO压敏陶瓷材料排胶工艺研究7-3-A

98
失重0.92%(图1a),而未加聚乙烯醇的粉料样品热失重 仅0.4%(图1b),这个失重差别主要是由于前者发生聚乙 烯醇分解挥发。聚乙烯醇在200℃以上分解生成醋酸、乙 醛、丁烯醇和水[1],这些分解产物在220会迅速挥发。
图1a显示,500 ̄600℃,加聚乙烯醇的粉料样品还有 热失重0.56%,这主要由于试验时升温速率太大,导致部 分聚乙烯醇来不及分解生成了共轭双键的聚合物,这类 聚合物在较高温度会碳化燃烧并以二氧化碳和水蒸气的 形式排出[1]。本文的热分析试验是在空气环境中进行,
摘 要:本文研究了ZnO压敏陶瓷材料的排胶工艺热过程,通过差示扫描量热法(DSC)和热重法(TG)分析了高中低压三种压敏电压梯度材料 从室温至600℃热过程中的物理化学反应情况,结果显示,除了粘合剂分解挥发外,氧化锌压敏电阻材料的排胶过程中还存在其他重要 的物理化学反应,且成分不同差别很大。在多种氧化物添加材料中,氧化锑在排胶工艺过程中会发生较强烈的物理化学反应,因此,在 配方成分中添加有较多氧化锑的中高压压敏材料的排胶过程应特别注意控制温度曲线,以避免产品烧结后变形和电性能分散。
TG/%
针对上述第(1)项分析结果,在300℃左右的放热 峰应该是三个试样共同的化学成分造成,氧化锌本身在 这个温度附近并无明显物理化学反应(见图3a),氧化 铋在此温度范围无放热吸热反应[2],氧化镍在358℃有个 较小吸热谷[2],在加热温升速率较大的时候,碳酸锰的 分解反应会持续较大温度区间,因此,300℃左右的放热峰 应该与Co3O4有关。
DSC/(mW/mg)
↑放热 0.6
质量变化:-0.21%
0.5
质量变化:-0.44%
0.4 [1]
0.3 质量变化:-0.23%

低温烧结ZnO-玻璃系压敏陶瓷的研究

低温烧结ZnO-玻璃系压敏陶瓷的研究
雷 鸣 等:低温烧结 ZnO-玻璃系压敏陶瓷的研究
1327
低温烧结 ZnO-玻璃系压敏陶瓷的研究


鸣,成鹏飞,李盛涛
(西安交通大学 电力设备电气绝缘国家重点实验室,陕西 西安 710049) 摘 要: 研究了不同硼硅玻璃配方及相关工艺对低温
烧结(1000℃和 1050℃下烧结)ZnO 玻璃系压敏陶 瓷致密化过程和电气性能的影响。发现含较多 PbO 和少量 ZnO 的 G1 玻璃具有较合适的软化点温度和较 好的晶粒润湿性,对应试样的电气性能最好;坯体初 始密度、保温时间、降温速率和烧结气氛都显著影响 着试样的烧结性能和电气性能。 关键词:ZnO 压敏陶瓷;硼硅玻璃;致密化;电气性能 中图分类号:TM28 文章编号:1001-9731(2004)增刊 文献标识码:A
2+
雷 鸣 等:低温烧结 ZnO-玻璃系压敏陶瓷的研究
1329
晶粒润湿性差,使得试样 S2.1 晶粒尺寸最小,平均 击穿场强 EB 最大。然而,烧结过程中硼硅玻璃会在 晶界处重结晶,产生 5ZnO·2B2O3 和 2ZnO·SiO2 晶界 相[6,10]。因此,G2 玻璃可能会产生更多的 2ZnO·SiO2 相,使玻璃结晶度上升,从而引起晶界势垒高度 φB 和非线性指数 α 上升[10];这样就解释了尽管 G2 玻璃 润湿性不如 G1, 但 S2.1 的非线性并不明显差于 S1.1。 综上可见,G1 玻璃具有较为合适的软化点温度,因 此对应试样的晶粒较均匀,电性能较好。 表3 玻璃配方对试样电性能的影响 图 3 试样初始密度对最小气孔率的影响 Fig 3 Influence of green density on the minimal porosity 我们将初始密度为 3.18 g/cm3 的试样的致密化过 程延长至 1150℃,发现气孔率甚至上升至 15%以上。 这表明:当坯体的气孔率到达最小值时,瓷体内大部 分气孔都已成为闭气孔,此时若继续升高温度,瓷体 中低熔点物质挥发后将无法顺利排出, 导致瓷体内部 气孔率显著上升。 3.3 保温时间的影响 以试样 S1.6 为例, 在 1000℃时其烧成密度随保 温时间的变化如图 4。 Table 3 Influence of glass compositions on the samples’ performance

激光诱发ZnO压敏陶瓷组织及性能研究的开题报告

激光诱发ZnO压敏陶瓷组织及性能研究的开题报告

激光诱发ZnO压敏陶瓷组织及性能研究的开题报告摘要:本文旨在研究激光诱发ZnO压敏陶瓷的组织及性能。

首先对ZnO压敏陶瓷的基本特性进行了简要介绍,分析了目前研究中存在的问题和发展方向。

其次,介绍了激光处理技术的基本原理、激光装置的构成与参数选择,探究了激光与陶瓷的相互作用机理。

接着,详细论述了激光诱发ZnO压敏陶瓷的制备工艺,包括激光处理参数的优化和对组织性能的分析。

最后,对目前工作的意义和未来研究方向作了阐述。

关键词:激光诱发、ZnO压敏陶瓷、组织性能一、研究背景ZnO压敏陶瓷具有灵敏的电学响应、宽工作频率范围、瞬态响应速度等优良特性,应用广泛于电力装置、通信设备、自动化系统等领域。

随着电子技术的不断发展和应用需求的提高,ZnO压敏陶瓷的性能和组织结构已成为研究热点。

然而目前尚存在一些问题,如ZnO压敏陶瓷的抗压性能需要进一步提高,并完善其疲劳寿命和稳定性等。

激光处理技术在材料加工和表面改性方面具有独特的优势,其高功率、高精度、非接触性等特点正在被广泛应用。

本文旨在探究激光诱发ZnO压敏陶瓷组织改性的途径,为ZnO压敏陶瓷的性能提升提供新思路。

二、研究内容1. ZnO压敏陶瓷的基本特性2. 激光处理技术的基本原理及适用性3. 激光诱发ZnO压敏陶瓷制备工艺研究4. 结构和性能分析5. 意义和未来研究方向三、研究方法本文采用实验室制备的ZnO压敏陶瓷样品,利用激光处理技术对其进行组织和性能的改性。

研究中包括激光处理参数的优化和对组织性能的分析,使用SEM、XRD、电学参数测试等手段对样品进行实验研究。

四、研究预期结果1. 探究激光诱发ZnO压敏陶瓷的组织改性途径,解决其存在的问题。

2. 对激光诱发ZnO压敏陶瓷的制备工艺进行优化,获得性能更优的材料。

3. 通过结构和性能分析,得到ZnO压敏陶瓷激光处理后的特性。

4. 为ZnO压敏陶瓷的应用提供新的思路和方法。

五、研究意义本文的研究可以为激光处理技术在ZnO压敏陶瓷领域的应用提供一种新思路和方法,其研究结果可以为ZnO压敏陶瓷的性能提升和应用拓展提供理论和实践指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ZnO压敏陶瓷的研究进展摘要:ZnO压敏陶瓷是众多压敏陶瓷中性能最优异的一种,它是以ZnO为主原料,通过掺杂Bi2O3、TiO2、Co2O3、MnO2、Cr2O3和Nb2O5等氧化物改性烧结而成。

本文通过介绍ZnO粉体的合成方法、掺杂改性等方面入手,对ZnO压敏陶瓷的发展趋势进行探讨,并针对某些共性问题提出自己的一些看法。

关键词:ZnO压敏陶瓷;掺杂;制备;发展趋势The development trends of ZnO varistor ceramic Abstract: The ZnO varistor ceramic is one of the varistor ceramics which with best properties. The main raw material is ZnO, then mixed with some oxides ,such as Bi2O3、TiO2、Co2O3、MnO2、Cr2O3、Nb2O5 and so on ,to change it’s properties and sinter it .This text briefly described the methods of producing ZnO powder and mixing something to change the properties of it .Present situation in development of varistor ceramic as well as its developing tendency was also analyzed .Some suggestions and opinions were proposed for problems on common characteristics. Key words: ZnO varistor ceramic; mixed; produce; developing tendency1.前言ZnO压敏陶瓷是一种多功能新型陶瓷材料,它是以ZnO主为体,添加若干其他改性金属氧化物的烧结体材料。

它显示出优良的伏安特性,具有非线性系数大,耐大电流冲击,抗浪涌能力强等特点,能起到过压保护、抗雷击、抵制瞬间脉冲的作用,成为应用最广泛的压敏变阻器材料[1]。

ZnO压敏电阻器按其外形和结构的特征可分为[2]:单层结构压敏电阻器、多层结构压敏电阻器和避雷器用压敏电阻片(或阀片)。

ZnO压敏材料表现为由晶界阻抗所确定的具有高阻值的线性电阻性质,一旦电压超过就成为导体,表现为由晶粒和晶界共同确定的具有低阻值的非线性电阻性质,非线性系数α愈大,则保护性能愈好,对稳压元件来说,则电压稳定度起高。

ZnO压敏陶瓷是最为常见的压敏陶瓷,主要应用于航空、航天、邮电、铁路、汽车和家用电器等领域。

随着集成电路的快速发展,各种电子元器件的驱动电压及耐压值逐渐下降,由于ZnO压敏陶瓷电压较高和介电常数较低,限制了其在低压微电子领域的应用。

近年来,低压压敏电阻材料的发展受到了广泛的关注[3]。

2.掺杂对ZnO压敏陶瓷的影响ZnO压敏陶瓷是以ZnO为主原料,通过掺入多种氧化物,如Bi2O3、TiO2、Co2O3、MnO2、Cr2O3和Nb2O5等进行改性而得到的烧结体。

因此,掺杂元素的种类不同,对ZnO压敏陶瓷的电学性能的影响也不同。

根据添加剂的作用机理,可分为三类[4]:(1)、促进ZnO压敏陶瓷形成晶界结构。

如Bi2O3、BaO、SrO、PbO、Pr2O3等,它们的主要作用是促进液相烧结,形成陷阱和表面态。

该类添加剂具有大的离子半径,烧结时存在晶界偏析,从而形成一个高缺陷浓度的薄层,在界面处形成势垒,使制品呈非线性。

(2)、改善ZnO压敏陶瓷电学性能的非线性特性。

如Co2O3、MnO2、Al2O3、Ga2O3等,它们的一部分作为施主杂质固溶于ZnO内,提供载流子,其余部分则在晶界处形成陷阱和受主态,提高势垒高度。

例如,于宙[5]等人采用共沉淀方法制备了名义组分为Zn1- x,Mn x O(x=0.001,0.005,0.007,0.01)的Mn掺杂的ZnO基稀磁半导体材料,并研究了在大气气氛下经过不同温度退火后样品的结构和磁性的变化,结果表明:样品在600℃的大气条件下退火后,仍为单一的六方纤锌矿结构的ZnO颗粒材料;当样品经过800℃退火后,Mn掺杂量为0.007,0.01的样品中除了ZnO纤锌矿结构外还观察到ZnMnO3第二相的存在。

磁性测量表明,大气条件下600℃退火后的样品,呈现出室温铁磁性;而800℃退火后的样品,其室温铁磁性显著减弱,并表现为明显的顺磁性,结合对样品的光致发光谱的分析,认为合成样品的室温铁磁性是由于Mn离子对ZnO中的Zn离子的替代形成的。

(3)、提高可靠性。

如Sb2O3、Ce2O3、SiO2等,它们的主要作用是提高压敏陶瓷对电压负荷和环境的影响的稳定性。

总之,压敏陶瓷的电气性能主要取决于添加剂的种类及其在晶界处的分布特性。

例如,成鹏飞[6]等人在不同温度下测量了稀土氧化物Gd2O3和Ce2O3掺杂ZnO-Bi2O3系压敏陶瓷的介电频谱,发现稀土氧化物的掺杂引起介电损耗显著增大。

能过理论计算发现稀土氧化物掺杂后岛上填隙和氧空位浓度显著增大,而耗尽层宽度明显减小。

因此认为稀土氧化物引起施主性本征缺陷浓度的增大,导致肖脱基势垒变薄,从而引起泄露电流的增大及非线性指数的下降。

3. ZnO粉体的合成方法氧化锌压敏陶瓷的性能取决于粉料的制备和加工工艺。

粉料的制备是生产陶瓷材料的基础,其制备方法分为氧化物混合法(干法)和湿式化学合成法。

目前国内外几乎都采用干法工艺生产氧化锌压敏陶瓷粉体[7],此工艺简单实用、成本较低,但由于其采用多种固体氧化物粉末经过机械混合、压制和烧结来合成制品,很难保证成分均匀准确,且易产生研磨介质对粉料的污染,无法从根本上解决产品成分均匀性问题[8]。

为了获得匀质的ZnO压敏陶瓷,国内外很多科学工作者在用液相法合成陶瓷粉料上做了大量的研究。

目前常用的液相合成陶瓷粉料法有共沉淀法、包覆法、水热法、溶胶-凝胶法、液相包裹法及固相法等。

3.1共淀法共沉淀法是指在溶液中含有两种或多种阳离子,它们以均相存在于溶液中,加入沉淀剂,经沉淀反应后,可得到各种成分的均一的沉淀,它是制备含有两种或两种以上金属元素的复合氧化物超细粉体的重要方法。

通常是在溶液状态下将不同化学成分的物质混合,在混合液中加人适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。

共沉淀法的优点在于:其一是通过溶液中的各种化学反应直接得到化学成分均一的纳米粉体材料,其二是容易制备粒度小而且分布均匀的纳米粉体材料。

离子共沉淀分为吸附共沉淀、类质同晶(固溶悼)共沉淀和包裹夹杂共沉淀。

化学性质价态相同和离子半径相近的离子容易形成类质同晶共沉淀。

ZnO压敏陶瓷掺杂离子一般是2价或3价,性质差异较大,困此多为吸附共沉淀或包裹夹杂共沉淀,沉淀微粒带电荷情况与比表面大小对沉淀物性质有很大影响,也就是说,共沉淀时的温度、pH、表面活性剂、溶剂、加料情况及搅拌混合程度等都影响沉淀物组成、粒度及形状。

共沉淀法制备ZnO粉体的一般过程为:预先制备活性ZnO,然后在分散剂等作用下形成半胶体状态的溶液。

ZnO成为掺杂物沉淀包膜的晶格,控制其它因素可使性质差异较大的多种掺杂离子共同沉淀下来,悬浮在溶液中的ZnO微粒具有较强活性.起着“晶核”作用,掺杂离子除了部分自身形成晶核外,大多数掺杂离子均能沉积在活性ZnO颗粒表面形成包膜层,经一定时间反应后可得到组成恒定、粒度小分布均匀呈近似球形的粉料。

由于掺杂组分在制粉阶段就匀质地包裹覆盖在ZnO微粒表面形成一层薄膜,则烧结时有利于离子尽快扩散到ZnO晶粒表面形成富Bi2O3相和不连续的尖晶石相,成为典型的ZnO压敏电阻体结构。

另外ZnO的活性又直接影响烧结形成晶相的固-固、固-液反应温度和反应速度,活性好的ZnO有利于降低烧结温度,加快反应速度。

这对缩短烧结时间、改进烧结制度、降低能耗都是有意义的。

其次掺杂物质和ZnO晶棱紧密地结合比其固相法粉末的结合强度高得多.这也有利多相晶体形成。

其中,李春[9]等人重点研究了五元掺杂组分共沉淀包膜ZnO微粒的过程中各种因素对粉料mol%配比、粒度分布、颗粒形状及电性能的影响,优化工艺参数;对三种制锌方法的压敏陶瓷电性能进行了比较,在此基础上建立氧化锌压敏陶瓷制粉新方法。

3.2包覆法超细粉体表面包覆技术包括机械混合法、气相沉积法、超临界流体快速膨胀法以及液相化学法。

机械混合法是利用挤压、冲击、剪切、摩擦等机械力将改性剂均匀分布在粉体颗粒外表面,各种组分相互渗入和扩散,形成包覆。

目前主要应用的有球石研磨法、搅拌研磨法和高速气流冲击法。

其优点是处理时间短,反应进程容易控制,可连续手批量生产。

气相沉积法主要包括气相化学沉积法和雾化液滴沉积法,均是利用和体系中的改性剂在表面聚集而形成的对粉体的包覆。

超临界流体快速膨胀法是利用超临办液体在流化床的快速膨胀,使改性微核在颗表面形成均匀的薄膜包覆。

超临界流体在快速膨胀过程中,超临界相向气相的快速转变引发流体溶解度的急剧变化,在高频流动的膨胀射流场中瞬间均匀析出溶质微核,膨胀气流载带这些均匀微核与流化床中的颗碰撞产生均匀接触,从而在细颗粒表面形成均匀包覆。

液相化学法是利用湿环境中的化学反应形成改性添加对颗粒进行表面包覆。

与其他方法相比,易于形成核-壳结构。

该方法尤其适用于陶瓷材料的改性掺杂,工艺简单,成本低。

常用的液相包覆方法有沉淀法、溶胶-凝胶法、异相凝聚法、非均匀形核法、微乳液法、化学镀法等。

袁铁锤[10]等人通过对包覆法制备ZnO压敏陶瓷粉体的研究,证明包覆法可以制得恒定组成的复合粉体,该粉体经压制烧结后制成的ZnO压敏陶瓷,与用传统氧化物混合法制备的ZnO压敏陶瓷相比,其一致性更好、耐电流冲击能力更强、击穿电压更高,烧结密度达5.52g/cm3,明显高于传统机械混合法的5.40 g/cm3;制备出的压敏电阻片性能为:漏电流小于10μA,击穿电压为240V/mm,最大非线性系数为45。

3.3水热法水热与溶剂热[11]合成是指在一定温度(100℃~1000℃)和压强(1MPa~100MPa)条件下利用溶液中物质化学反应所进行的合成。

水热与溶剂热合成化学与溶液化学不同,它是研究物质在高温和密闭或高压条件下溶液中的化学行为与规律的化学分支。

因为合成反应在高温和高压下进行,所以产生对水热与溶剂热合成化学反应体系的特殊技术要求,如耐高温高压与化学腐蚀的反应釜等。

水热合成化学侧重于研究水热合成条件下物质的反应性、合成规律以及合成产物的结构与性质。

相关文档
最新文档