杂化轨道理论简介分子的立体结构教案
新人教版高二化学选修3:2.2分子的立体结构(第2课时)教案

第二课时教学目标1、认识杂化轨道理论的要点2、进一步了解有机化合物中碳的成键特征3、能根据杂化轨道理论判断简单分子或离子的构型4、采用图表、比较、讨论、归纳、综合的方法进行教学5、培养学生分析、归纳、综合的能力和空间想象能力教学重点:杂化轨道理论的要点教学难点:分子的立体结构,杂化轨道理论教学过程:碳的价电子构型是什么样的?甲烷的分子模型表明是空间正四面体,分子中的C—H键是等同的,键角是109°28′。
说明什么?[结论]碳原子具有四个完全相同的轨道与四个氢原子的电子云重叠成键。
师:碳原子的价电子构型2s22p2,是由一个2s轨道和三个2p轨道组成的,为什么有这四个相同的轨道呢?为了解释这个构型Pauling提出了杂化轨道理论。
板书:三、杂化轨道理论1、杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。
[思考与交流]甲烷分子的轨道是如何形成的呢?形成甲烷分子时,中心原子的2s和2p x,2p y,2p z等四条原子轨道发生杂化,形成一组新的轨道,即四条sp3杂化轨道,这些sp3杂化轨道不同于s轨道,也不同于p 轨道。
根据参与杂化的s轨道与p轨道的数目,除了有sp3杂化轨道外,还有sp2杂化和sp杂化,sp2杂化轨道表示由一个s轨道与两个p轨道杂化形成的,sp杂化轨道表示由一个s轨道与一个p轨道杂化形成的。
[讨论交流]:[总结评价]:引导学生分析、归纳、总结多原子分子立体结构的判断规律,完成下[讨论]:怎样判断有几个轨道参与了杂化?(提示:原子个数)[结论]:中心原子的孤对电子对数与相连的其他原子数之和,就是杂化轨道数。
[讨论总结]:三种杂化轨道的轨道形状,SP杂化夹角为180°的直线型杂化轨道,SP2杂化轨道为120°的平面三角形,SP3杂化轨道为109°28′的正四面体构型。
轨道杂化和分子空间构型的确定教案

[小结]
杂化理论的基本要点:
1.在形成分子时,由于原子间的相互作用,若干不同类型、能量相近的原子轨道混合起来,重新组成一组新的轨道,这种重新组合的过程叫杂化。所形成的新轨道称为杂化轨道。
2.杂化轨道的数目与组成杂化轨道的各原子轨道的数目相等。
3.杂化轨道成键时,要满足化学键间最小排斥原理。
4.杂化轨道可分为等性杂化和不等性杂化。
[典型例题]
1.CH3+是重要的有机反应中间本,已知:CH3+中四个原子共平面,三个键角相等,则CH3+的键角应是;它的电子式是;中心碳原子的杂化类型为。
2.如何杂化理论来解释乙炔、乙烯的结构。
[课后练习]
教学过程
教学内容
教法与学法
[导入]
观察下表,谈谈你的看法:
分子
CO2
CH4
H2O
NH3
键角
180°
109.5°
104.5°
107.3°
[知识梳理]
一、轨道杂化知识
1.杂化:杂化是指原子在相互结合成键过程中,原来能量接近的原子轨道要重新混合,形成新的原子轨道。这种轨道重新组合的过程叫做杂化。所形成的新的轨道叫杂化轨道。
其中中心原子的价电子数等于中心原子的最外层电子数,配位原子中卤原子、氢原子提供1个价电子,氧原子和硫原子按不提供价电子计算。
分子
BeCl2
BF3
CH4
价电子对数
几何构型
说明:如果分子中存在孤对电子对,由于孤对电子对比成键电子对更靠近原子核,它对相邻成键电子对的排斥作用较大,因而使相应的键角变小。
[知识拓展]——等电子原理
杂化轨道理论简介-分子的立体结构教案

教学目标
1.认识杂化轨道理论的要点
2.进一步了解有机化合物中碳的成键特征
3.能根据杂化轨道理论判断简单分子或离子的构型教学重点
杂化轨道理论的要点
教学难点
分子的立体结构,杂化轨道理论
教学方法
采用图表、比较、讨论、归纳、综合的方法进行教学教学过程
(2)sp 2杂化——平面三角形:sp 2
杂化轨道是由一个ns 轨
道和两个np 轨道组合而成的,每个sp 2
杂化轨道都含有31
s
和2p 成分,杂化轨道间的夹角为120°,呈平面三角形如:
(3)sp 3
杂化——四面体形:sp 3
杂化轨道是由一个ns 轨道和
三个np 轨道组合而成,每个sp 3
杂化轨道都含有41s 和43
p 的成
分,sp 3
杂化轨道间的夹角为109°28’。
空间构型为四面体形。
如CH 4分子的结构如(图2—24和图2—25)。
(学生思考,总结)。
人教版化学选修三2.2《分子的立体构型-杂化轨道理论简介》课程教学设计

第二章第二节分子的立体构型杂化轨道理论简介教课方案【教课目的】1.知识与技术:理解杂化轨道的观点及其重点,运用这一理论剖析和解说分子立体构型。
2.过程与方法:在学习过程中,培育空间抽象思想能力、逻辑辩证思想能力、总结概括能力、合作协调能力和着手实践能力。
学习从宏观到微观,从现象到实质的认识事物的科学方法。
3.感情目标:培育思疑、务实、创新的科学精神;激发学习兴趣,加强集体凝集力。
【教课重点】1.2. 杂化轨道理论的重点运用杂化轨道理论判断分子立体构造。
【教课难点】1.2.3. 杂化轨道理论依据杂化轨道理论判断分子立体构造有机化合物中碳的成键特色。
【教课方法】1.采纳动画演示,自制黏土混淆演示,自制气球模型,自制球棍模型,图片展现等把抽象的杂化过程和分子立体构造形象化,易学易懂,生动风趣。
2.3. 充足调换小组合作学习,小组竞比,激发学习热忱。
合时总结概括知识,练习落实,提升学习能力。
【学习方式】组内议论、合作共学;组间PK 、互补共进;老师组织、评论解惑;课后检测、查漏补缺。
【学情剖析】1.知识方面:学生刚才学习了第二节的“林林总总的分子”和“价层电子对互斥理论”,有必定的价键理论知识。
2.能力方面:高二的学生具备必定的空间想象能力和学习研究能力,但还不够。
教课时利用小组合做模型,把抽象的知识形象化,利用小组互帮互帮,优扶差共同进步。
3.学习模式方面:班级小组合作学习模式还在试行研究阶段,需要不停创新,激发小组激情。
【学习过程】开课:明确学习目标和学习方式,激励小组互帮,小组竞争学习,激发学习热忱。
活动一:检查预教案,复习旧知识,发现新问题指引学生复习甲烷的构造特色和 C 的价电子排布图,从键数、键能、键长、键角、构型各方面察看,发现 C 的价电子排布与CH4的构造之间的矛盾之处。
趁势引出杂化轨道理论。
注意:充足考虑学生学习能力,设计教案时,设置多空仔细指引,谆谆教导,让学生经过指引和议论成功发现 C 的价电子排布与CH4的构造之间的矛盾之处。
“分子的立体结构之杂化轨道理论”教学处理-

“分子的立体结构之杂化轨道理论”教学处理?杂化轨道理论是高中化学课程的难点之一,要求学生具有较强的空间结构理解能力。
在讲授这部分内容时,以问题导入课程,引出杂化的概念,并通过图片直观展示杂化轨道。
这样的课程设计有助于学生理解分子的立体结构和杂化轨道理论,形成有关物质结构的基本观念。
标签:分子立体结构;杂化轨道理论;教学处理一、教材与学情分析《杂化轨道理论》选自《物质结构与性质--选修3》,是《分子结构与性质》这一章的重要内容。
该课程从物质结构决定性质的视角解释分子的某些性质,并预测物质的有关性质,有助于培养学生的空间结构思维能力。
学生已有的知识结构包括共价键、价层电子对互斥理论等。
教学对象是高二理科班的学生,其特点是学习兴趣比较浓厚,具有一定的分析问题和解决问题的能力。
但由于年龄和认知的限制,还存在一些不足,例如对分子或离子的中心原子价层电子对数计算不够熟练,在杂化轨道类型的判断上容易出现错误。
二、教学目标根据教学大纲的要求,通过本课程的学习,使学生理解和掌握化学变化中物质组成、结构和性质的关系,初步从宏观和微观的不同角度理解化学变化的基本特征。
主要包括以下几个教学目标:知识目标:1.掌握杂化轨道理论的要点。
2.能根据杂化轨道理论判断简单分子或离子的构型。
能力目标:通过抽象概念的学习,逐步掌握类比、归纳、判断、推理等科学方法。
情感目标:使学生感受到在分子水平上进一步形成有关物质结构的基本观念,能从物质结构决定性质的视角解释分子的某些性质,并预测物质的有关性质,体验科学的魅力,从而形成科学的价值观。
三、教学重难点教学重点:杂化轨道理论的要点。
教学难点:分子的立体结构与杂化轨道理论。
四、教学方法本课程采用讲授法、探究法、多媒体辅助教学法、对比归纳等多种方法进行教学。
五、教学过程(第二课时)教学步骤教学内容学生活动设计意图复习巩固 1.用价电子对互斥理论预测,甲烷分子的空间构型如何?键角为多少?2.写出碳原子的价层电子排布式和价层电子排布图。
教学设计2:2.2.2杂化轨道理论

师生活动[复习]共价键类型:σ、π键,价层电子对互斥模型。
[质疑] 我们已经知道,甲烷分子呈正四面体形结构,它的4个C--H键的键长相同,H—C--H的键角为109~28°。
按照我们已经学过的价键理论,甲烷的4个C--H单键都应该是π键,然而,碳原子的4个价层原子轨道是3个相互垂直的2p轨道和1个球形的2s轨道,用它们跟4个氢原子的ls原子轨道重叠,不可能得到四面体构型的甲烷分子。
为什么?[讲]碳原子具有四个完全相同的轨道与四个氢原子的电子云重叠成键。
[引入]碳原子的价电子构型2s22p2,是由一个2s轨道和三个2p轨道组成的,为什么有这四个相同的轨道呢?为了解释这个构型Pauling提出了杂化轨道理论。
[板书]三、杂化轨道理论简介1、杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。
[讲]杂化轨道理论是一种价键理论,是鲍林为了解释分子的立体结构提出的。
为了解决甲烷分子四面体构型,鲍林提出了杂化轨道理论,它的要点是:当碳原子与4个氢原子形成甲烷分子时,碳原子的2s轨道和3个2p轨道会发生混杂,混杂时保持轨道总数不变,却得到4个相同的轨道,夹角109°28′,称为sp3杂化轨道,表示这4个轨道是由1个s轨道和3个p轨道杂化形成的。
当碳原子跟4个氢原子结合时,碳原子以4个sp3杂化轨道分别与4个氢原子的ls轨道重叠,形成4个C--Hσ键,因此呈正四面体的分子构型。
[投影][讲]杂化轨道理论认为:在形成分子时,通常存在激发、杂化、轨道重叠等过程。
但应注意,原子轨道的杂化,只有在形成分子的过程中才会发生,而孤立的原子是不可能发生杂化的。
同时只有能量相近的原子轨道才能发生杂化,而1s轨道与2p轨道由于能量相差较大,它是不能发生杂化的。
[讲]我们需要格外注意的是,杂化轨道只用于形成σ键或者用来容纳孤对电子剩余的p轨道可以形成π键[投影] sp3杂化轨道[板书]2、杂化轨道的类型:(1) sp3杂化:1个s轨道和3个p轨道会发生混杂,得到4个相同的轨道,夹角109°28′,称为sp3杂化轨道。
分子的立体构型----杂化轨道理论教学设计-【通用,经典教学资料】

第二节分子的立体构型----杂化轨道理论教学设计一、教材分析1.教材的地位与作用本章比较系统地介绍了分子的结构和性质,内容比较丰富。
而本节课在共价键概念的基础上,介绍了分子的立体构型,并根据价层电子对互斥理论和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释;并根据上述理论判断简单分子或离子的构型。
与前一节相比,它们在知识的认知水平上是渐进的,前一节是后一节的基础和铺垫。
2.教材处理⑴从H 、C、 N 、O的原子结构,依据共价键的饱和性和方向性,用电子式和结构式描述常见分子的结构,为本节学习做好铺垫。
⑵从甲烷分子分子中碳原子的价电子构型,对照甲烷分子的构型,引出问题:如何解释甲烷正四面体构型。
二、学情分析在学习本节课之前,学生已经在《化学必修2》介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程,为本节的学习做了铺垫。
学生比较容易用电子云和原子轨道进一步认识和理解共价键。
三、三维目标、重难点的确立及确立依据1.三维目标的确立及确立依据根据新课标的评价建议及教学目标的要求,结合本教材的内容及学生特点,我确定如下的教学目标:⑴知识与技能:认识杂化轨道理论的要点,能根据杂化轨道理论判断简单分子和离子的杂化类型,进一步了解化合物中原子的成键特征,提高归纳能力和空间想象能力⑵过程与方法:采用图表、比较、讨论的方法学习新知;通过观察原子轨道的图片和模型来理解抽象的概念。
⑶情感态度与价值观:通过了解杂化轨道理论提出的背景,激发投身科学、追求真理的积极情感,体验科学探究的艰辛与愉悦2.重难点的确立及确立依据:重点:杂化轨道理论的要点难点:对杂化轨道理论的理解确立依据:弱电解质的电离平衡应用到平衡理论,掌握若电解质电离平衡的学习方法,对今后学习盐类的水解平衡和沉淀的溶解平衡奠定了基础。
并且在运用已学知识分析、推导新知识的过程中,提高分析问题和总结知识的能力。
四、教学流程1.引入:自然科学的研究在许多时候产生于人们对一些既定的科学事实的解释,例如上节课我们所学习的价层电子对互斥理论,它很好地解释并预测了分子的立体构型。
杂化轨道理论教案

杂化轨道理论教案新洲区实验高中高二化学教案编制:杨吉启 2010.12.29第二章:分子的结构与性质杂化轨道不同于s轨道,也不同于p轨道。
322第二节:分子的立体结构(第二课时) 根据参与杂化的s轨道与p轨道的数目,除了有sp杂化轨道外,还有sp 杂化和sp杂化,sp 杂化轨教学目标道表示由一个s轨道与两个p轨道杂化形成的,sp杂化轨道表示由一个s轨道与一个p 轨道杂化形成的。
1、了解杂化轨道理论的要点,认识化合物成键特征,能根据杂化轨道理论判断简单分子或离子的构型。
(投影演示原子杂化轨道的形成)重点内容(注意成键的方向性)22、采用图表、比较、讨论、归纳、综合的方法进行教学,培养学生分析、归纳、综合的能力和空间想讨论总结:三种杂化轨道的轨道形状,SP杂化轨道为180?的直线形,SP 杂化轨道为120?的平面三3象能力。
角形,SP杂化轨道为109?28′的正四面体构型。
23)通过对分子结构的学习,让学生知道对事物的认识是逐步深入的,只有不懈地探索,才能发现事物讲述:课本P40 应当注意的是:SP和 SP两种杂化形式中还有未参与杂化的P轨道,可用于形成π键,的奥秘。
而杂化轨道只用于形成σ键或者用来容纳未参与成键的孤电子对。
教学重点: (提出问题)杂化轨道理论的要点如何确定中心原子的杂化轨道类型,或者怎样判断参与杂化的轨道数目, 教学难点: (学生回答)分子的立体结构,杂化轨道理论根据价层电子对互斥理论和杂化轨道理论,可以先确定分子或离子的VSEPR模型,再确定中心原子的杂教学过程: 化轨道类型。
(知识回顾)价层电子对互斥模型探究:完成下列表格中心原子结中心原子的中心原子孤电子对数代表物分子的立体构型价层电子对数杂化轨道类型代表物合原子数孤对电子对数 VSEPR模型分子立体构型 CO 直线形 0+2 SP 22(σ键电子对数) 1?2(a-xb) CHO 平面三角形 0+3 SP 230 CH 正四面体 0+4 SP CO 2 0 直线形直线形 422中心原子 SO V形 1+2 SP 2CHO 3 0 平面三角形平面三角形 23无孤对电子 1 NH 三角锥形 1+3 SP 3CH 4 0 正四面体形正四面体形422 HO V形 1+2 SP 2HO 2 2 正四面体形 V形 2中心原子结论:根据价层电子对的相互排斥得到VSEPR模型,与对应的杂化轨道的轨道形状相同,可以用来确定有孤对电子杂化轨道类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节分子的立体结构
第二课时
教学目标
1.认识杂化轨道理论的要点
2.进一步了解有机化合物中碳的成键特征
3.能根据杂化轨道理论判断简单分子或离子的构型教学重点
杂化轨道理论的要点
教学难点
分子的立体结构,杂化轨道理论
教学方法
采用图表、比较、讨论、归纳、综合的方法进行教学
3. 由于ns,np能级接近,往往采用sp型杂化,几种?力和合作精5. 杂化轨而sp型杂化又分为:
道与分子的空间sp杂化一个s轨道和一个p轨道间的杂化神。
2轨道和两个这轨道间的杂化构型存在什么关一个sps 杂化3轨道和三个p轨道间的杂化sp 系呢?如何用杂杂化一个s化轨道理论解释(学生阅读课本第41和42页之后讨论、归纳整理分子的空间构得)
型? 4. 分子构型与杂化类型的关系
(1)杂 sp杂化——直线形:sp型杂化轨道是由解释sp一个化: ns
6. 放影图轨道和一个np轨道组合而成的,每个sp杂化轨道11片,适当给予解p的成分,轨道间的夹角为和含有180°呈直s22释。
线形。
如图2—21。
2杂解释sp22杂化轨道是由一杂化——平面三角形:2)spsp(化:2杂化每个sp 轨道和两个np轨道组合而成的,个ns12轨道都含有s和p成分,杂化轨道间的夹角为33120°,呈平面三角形如:BF分子(图2—22和图32—23)。
33杂化轨道是由一个变sp杂化——四面体形:sp抽放影图(3)3杂化轨道都含象每个sp片:为轨道和三个nsnp轨道组合而成,133sp解释直观,3杂化轨道间的夹角为sp和s109°28'。
p有的成分,44杂化于便空间构型为四面体形。
如CH分子的结构如(图2—24和4放影图生学图2—25)。
片:理解。
.
型以学致用存在什么问原子不论在何种情况下都能发
生杂化吗?加深注意:1. 题?杂化轨道理论认为:在形成分子时,通常对概存在激发、杂化、轨道重叠等过程。
但只有在形成分子的念、理过程中才会发生杂化,孤立的原子是不可能发生杂化的。
论的同时只有能量相近的原子轨道(如2s,2p等)才能发生理解
杂化。
2. 杂化轨道成键时,要满足化学键间最小排斥原理,键与键间排斥力大小决定于键的方向,即决定于杂化轨道间的夹角。
由于键角越大化学键之间的排斥能越小,对sp杂化来说,当键角为180°时,其排斥能最小,所以2杂化来说,当键spsp杂化轨道成键时分子呈直线形;对2杂化轨道成键时,sp角为120°时,其。