最新高考全国卷Ⅰ文科数学立体几何汇编

合集下载

2024年9-10月新高考数学名校模拟大题汇编:立体几何(解析版)

2024年9-10月新高考数学名校模拟大题汇编:立体几何(解析版)

2024年9-10月新高考数学名校大题汇编:立体几何大题必备基础知识梳理【知识点一:空间向量及其加减运算】(1)空间向量在空间,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模.空间向量也可用有向线段表示,有向线段的长度表示向量的模,若向量a 的起点是A ,终点是B ,则向量a也可以记作AB ,其模记为a或AB .(2)零向量与单位向量规定长度为0的向量叫做零向量,记作0.当有向线段的起点A 与终点B 重合时,AB=0.模为1的向量称为单位向量.(3)相等向量与相反向量方向相同且模相等的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.空间任意两个向量都可以平移到同一个平面,成为同一平面内的两个向量.与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为-a .(4)空间向量的加法和减法运算①OC=OA+OB=a +b ,BA=OA-OB=a -b.如图所示.②空间向量的加法运算满足交换律及结合律a +b =b +a ,a +b +c =a +b +c【知识点二:空间向量的数乘运算】(1)数乘运算实数λ与空间向量a 的乘积λa 称为向量的数乘运算.当λ>0时,λa 与向量a方向相同;当λ<0时,向量λa 与向量a 方向相反.λa 的长度是a的长度的λ 倍.(2)空间向量的数乘运算满足分配律及结合律λa +b =λa +λb ,λμa =λμ a .(3)共线向量与平行向量如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,a 平行于b ,记作a ⎳b.(4)共线向量定理对空间中任意两个向量a ,b b ≠0,a ⎳b的充要条件是存在实数λ,使a =λb.(5)直线的方向向量如图8-153所示,l 为经过已知点A 且平行于已知非零向量a 的直线.对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP =OA +ta ①,其中向量a 叫做直线l 的方向向量,在l 上取AB =a ,则式①可化为OP =OA +tAB =OA +t OB -OA =1-t OA +tOB ②①和②都称为空间直线的向量表达式,当t =12,即点P 是线段AB 的中点时,OP =12OA +OB ,此式叫做线段AB 的中点公式.(6)共面向量如图8-154所示,已知平面α与向量a ,作OA=a,如果直线OA 平行于平面α或在平面α内,则说明向量a 平行于平面α.平行于同一平面的向量,叫做共面向量.(7)共面向量定理如果两个向量a ,b不共线,那么向量p 与向量a,b共面的充要条件是存在唯一的有序实数对x ,y ,使p =xa +yb.推论:①空间一点P 位于平面ABC 内的充要条件是存在有序实数对x ,y ,使AP =xAB +yAC;或对空间任意一点O ,有OP-OA=xAB+yAC,该式称为空间平面ABC 的向量表达式.②已知空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP =xOA +yOB +zOC (其中x +y +z =1)的点P 与点A ,B ,C 共面;反之也成立.【知识点三:空间向量的数量积运算】(1)两向量夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA =a ,OB =b ,则∠AOB 叫做向量a ,b 的夹角,记作a ,b ,通常规定0≤a ,b ≤π,如果a ,b =π2,那么向量a ,b 互相垂直,记作a ⊥b .(2)数量积定义已知两个非零向量a ,b ,则a b cos a ,b 叫做a ,b 的数量积,记作a ⋅b ,即a ⋅b =a b cos a,b.零向量与任何向量的数量积为0,特别地,a ⋅a =a 2.(3)空间向量的数量积满足的运算律:λa ⋅b =λa ⋅b ,a ⋅b =b ⋅a (交换律);a ⋅b +c =a ⋅b +a ⋅c(分配律).【知识点四:空间向量的坐标运算及应用】(1)设a =a 1,a 2,a 3 ,b=b 1,b 2,b 3 ,则a +b=a 1+b 1,a 2+b 2,a 3+b 3 ;a -b=a 1-b 1,a 2-b 2,a 3-b 3 ;λa=λa 1,λa 2,λa 3 ;a ⋅b=a 1b 1+a 2b 2+a 3b 3;a ⎳b b ≠0⇒a 1=λb 1,a 2=λb 2,a 3=λb 3;a ⊥b⇒a 1b 1+a 2b 2+a 3b 3=0.(2)设A x 1,y 1,z 1 ,B x 2,y 2,z 2 ,则AB =OB -OA=x 2-x 1,y 2-y 1,z 2-z 1 .这就是说,一个向量在直角坐标系中的坐标等于表示该向量的有向线段的终点的坐标减起点的坐标.(3)两个向量的夹角及两点间的距离公式.①已知a =a 1,a 2,a 3 ,b =b 1,b 2,b 3 ,则a =a 2=a 12+a 22+a 32;b =b2=b 12+b 22+b 32;a ⋅b=a 1b 1+a 2b 2+a 3b 3;cos a ,b =a 1b 1+a 2b 2+a 3b 3a 12+a 22+a 32b 12+b 22+b 32;②已知A x 1,y 1,z 1 ,B x 2,y 2,z 2 ,则AB=x 1-x 22+y 1-y 2 2+z 1-z 2 2,或者d A ,B =AB.其中d A ,B 表示A 与B 两点间的距离,这就是空间两点的距离公式.(4)向量a 在向量b 上的投影为a cos a ,b=a ⋅b b.【知识点五:法向量的求解与简单应用】(1)平面的法向量:如果表示向量n 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作n ⊥α,如果n⊥α,那么向量n叫做平面α的法向量.几点注意:①法向量一定是非零向量;②一个平面的所有法向量都互相平行;③向量n 是平面的法向量,向量m 是与平面平行或在平面内,则有m ⋅n =0.第一步:写出平面内两个不平行的向a=x 1,y 1,z 1 ,b=x 2,y 2,z 2 ;第二步:那么平面法向量n=x , y , z ,满足n ⋅a=0n ⋅b =0⇒xx 1+yy 1+zz 1=0xx 2+yy 2+zz 2=0.(2)判定直线、平面间的位置关系①直线与直线的位置关系:不重合的两条直线a ,b 的方向向量分别为a ,b.若a ∥b,即a =λb,则a ∥b ;若a ⊥b,即a ⋅b=0,则a ⊥b .②直线与平面的位置关系:直线l 的方向向量为a ,平面α的法向量为n ,且l ⊥α.若a ∥n ,即a =λn ,则l ⊥α;若a ⊥n ,即a ⋅n =0,则a ∥α.(3)平面与平面的位置关系平面α的法向量为n 1,平面β的法向量为n 2.若n 1∥n 2,即n 1=λn 2,则α∥β;若n 1⊥n 2,即n 1⋅n 2=0,则α⊥β.【知识点六:空间角公式】(1)异面直线所成角公式:设a ,b分别为异面直线l 1,l 2上的方向向量,θ为异面直线所成角的大小,则cos θ=cos a,b =a ⋅b a b.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n为平面α的法向量,θ为l 与α所成角的大小,则sin θ=cos a ,n=a ⋅na n.(3)二面角公式:设n 1,n 2分别为平面α,β的法向量,二面角的大小为θ,则θ=n 1 ,n 2 或π-n 1 ,n 2(需要根据具体情况判断相等或互补),其中cos θ =n 1 ⋅n 2n 1 n 2.【知识点七:空间中的距离】求解空间中的距离(1)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线a ,b 的公垂线的方向向量为n ,这时分别在a ,b 上任取A ,B 两点,则向量在n上的正射影长就是两条异面直线a ,b 的距离.则d =AB ⋅n |n |=|AB ⋅n ||n|即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(2)点到平面的距离A 为平面α外一点(如图),n为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|AH |=|AB |⋅sin θ=|AB |⋅|cos <AB ,n >|=|AB ||AB ⋅n |AB ⋅n =|AB ⋅n|nd =|AB ⋅n||n|【必考题型汇编】1.(湖南省长沙市2025届高三六校九月大联考解析第16题)如图,四边形ABCD 与四边形ADEF 均为等腰梯形,BC ⎳AD ,EF ⎳AD ,AD =4,AB =2,BC =EF =2,AF =11,FB ⊥平面ABCD ,M 为AD 上一点,且FM ⊥AD ,连接BD 、BE 、BM .(1)证明:BC ⊥平面BFM ;(2)求平面ABF 与平面DBE 的夹角的余弦值.方法提供与解析:(1)解析:因为FB ⊥平面ABCD ,又AD ⊂平面ABCD ,所以FB ⊥AD .又FM ⊥AD ,且FB ∩FM =F ,所以AD ⊥平面BFM .因为BC ⎳AD ,所以BC ⊥平面BFM .(2)解析:作EN ⊥AD ,垂足为N ,则FM ⎳EN .又EF ⎳AD ,所以四边形FMNE 是平行四边形,又EN ⊥AD ,所以四边形FMNE 是矩形,又四边形ADEF 为等腰梯形,且AD =4,EF =2,所以AM =1.由(1)知AD ⊥平面BFM ,所以BM ⊥AD .又AB =2,所以BM =1.在Rt △AFM 中,FM =AF 2-AM 2=10.在Rt △FMB 中,∴FB =FM 2-BM 2=3.由上可知,能以BM 、BC 、BF 所在的直线分别为x 轴、y 轴、z 轴建立如图所示空间直角坐标系.则A -1,-1,0 ,B 0,0,0 ,F 0,0,3 ,D -1,3,0 ,E 0,2,3 ,所以,AB =1,1,0 ,BF =0,0,3 ,BD =-1,3,0 ,BE=0,2,3 ,设平面ABF 的法向量为m=x 1,y 1,z 1 ,由m ⋅AB=0m ⋅BF =0,得x 1+y 1=0z 1=0 ,可取m =1,-1,0 ;设平面BDE 的法向量为n=x 2,y 2,z 2 ,由n ⋅BD=0n ⋅BE =0,得-x 2+3y 2=0-2y 2+3z 2=0 ,可取n=9,3,2 .因此,cos ‹m ,n›=m ⋅n m ⋅n=9-31+1⋅81+9+4=34747.依题意可知,平面ABF 与平面DBE 的夹角的余弦值为34747.2.(辽宁省沈阳市郊联体2024年高三上学期开学联考解析第17题)如图,已知斜三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C ⊥侧面AA 1B 1B ,侧面BB 1C 1C 是矩形,侧面AA 1B 1B 是菱形,∠BAA 1=60°,AB =2BC =2,点E ,F ,G 分别为棱AA 1,A 1C ,BB 1的中点.(1)证明:FG ⎳平面ABC ;(2)求二面角A 1-B 1C -E 的余弦值.方法提供与解析:解析:(1)证明:因为点E ,F ,G 分别为棱AA 1,A 1C ,BB 1的中点,连接EF ,EG ,则EF ⎳AC ,EG ⎳AB ,又因为EF ⊄平面ABC ,AC ⊂平面ABC ,所以EF ⎳平面ABC ,同理可得EG ⎳平面ABC ,因为EF ∩EG =E ,EF ⊂平面EFG ,EG ⊂平面EFG ,所以平面EFG ⎳平面ABC ,因为FG ⊂平面EFG ,所以FG ⎳平面ABC .(2)解:侧面BB 1C 1C 是矩形,所以BC ⊥BB 1,又因为平面BB 1C 1C ⊥平面AA 1B 1B ,平面BB 1C 1C ∩平面AA 1B 1B =BB 1,所以BC ⊥平面AA 1B 1B ,又BE ⊂平面AA 1B 1B ,因此BC ⊥BE .在菱形AA 1B 1B 中,∠BAA 1=60°,因此△AA 1B 是等边三角形,又E 是AA 1的中点,所以BE ⊥AA 1,从而得BE ⊥BB 1.如图,以B 为坐标原点,BE ,BB 1,BC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.因为AB =2BC =2,所以BE =AB sin60°=3,因此B 10,2,0 ,A 13,1,0 ,E 3,0,0 ,C 0,0,1 ,所以B 1C =0,-2,1 ,B 1E =3,-2,0 ,B 1A 1=3,-1,0 ,设平面EB 1C 的法向量为m=x 1,y 1,z 1 ,由m⊥B 1C,得-2y 1+z 1=0 ,令y 1=1,得m =23,1,2设平面A 1B 1C 的法向量为n=x 2,y 2,z 2 ,由n ⊥B 1Cn ⊥B 1A 1,得-2y 2+z 2=03x 2-y 2=0 ,令y 2=1,得n =33,1,2 ,cos ‹m ,n ›=m ⋅n m ⋅n =23+1+4193⋅163=171976,即二面角A 1-B 1C -E 的余弦值为171976.3.如图,在四棱柱ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,底面ABCD 为梯形,AD ⎳BC ,BC =4,AB =AD =DC =AA 1=2,Q 为AD 的中点.(1)在A 1D 1上是否存在点P ,使直线CQ ⎳平面AC 1P ,若存在,请确定点P 的位置并给出证明,若不存在,请说明理由;(2)若(1)中点P 存在,求平面AC 1P 与平面ABB 1A 1所成的锐二面角的余弦值.方法提供与解析:(1)解析:(几何法)存在,证明如下:在四棱柱ABCD -A 1B 1C 1D 1中,因为平面ABCD ⎳平面A 1B 1C 1D 1,所以可在平面A 1B 1C 1D 1内作C 1P ⎳CQ ,由平面几何知识可证△C 1D 1P ≅△CDQ ,所以D 1P =DQ ,可知P 是A 1D 1中点,因为C 1P ⊂平面AC 1P ,所以CQ ⎳平面AC 1P .即存在线段A 1D 1的中点,满足题设条件.满足条件的点只有一个,证明如下:当CQ ⎳平面AC 1P 时,因为CQ ⎳平面A 1B 1C 1D 1,所以过C 1作平行于CQ 的直线既在平面A 1C 1P 内,也在平面A 1B 1C 1D 1内,而在平面A 1B 1C 1D 1内过C 1只能作一条直线C 1P ⎳CQ ,故满足条件的点P 只有唯一一个.所以,有且只有A 1D 1的中点为满足条件的点P ,使直线CQ ⎳平面AC 1P .(2)解析:(坐标法)过点D 作DF ⊥BC ,垂足为F ,又因为DD 1⊥平面ABCD ,以D 为坐标原点,分别以DA ,DF ,DD 1所在直线为x 轴,y 轴,z 轴建立如图的空间直角坐标系D -xyz ,则A 2,0,0 ,P 1,0,2 ,C 1-1,3,2 ,A 12,0,2 ,B 3,3,0 ,P A =1,0,-2 ,PC 1 =-2,3,0 ,AB =1,3,0 ,AA 1=0,0,2设平面P AC 1的法向量为n=x ,y ,z ,则有n ⋅P A=0,n ⋅PC 1 =0,即x -2z =0,-2x +3y =0. 令x =23,得y =4,z =3,所以n=23,4,3 .设平面ABB 1A 1的法向量为m=x ,y ,z .则有AB ⋅m =0,AA 1 ⋅m =0,即x +3y =0,2z =0. 令x =3,得y =-1,z =0,所以m=3,-1,0 .所以cos n ,m =n ⋅m n m=6-4+0231=3131.故平面AC 1P 与平面ABB 1A 1所成的锐二面角的余弦值为3131.4.(福建泉州市2025届高中毕业班模拟检测(一)解析第16题)4:如图,在四棱锥P -ABCD 中,PD =PC =CB =BA =12AD =2,AD ⎳CB ,∠CPD =∠ABC =90°,平面PCD ⊥平面ABCD ,E 为PD 中点.(1)求证:PD ⊥平面PCA ;(2)点Q 在棱P A 上,CQ 与平面PDC 所成角的正弦值为63,求平面PCD 与平面CDQ 夹角的余弦值.方法提供与解析:(1)解析:由题意:BC =AB =2,∠ABC =90°,AC =AB 2+BC 2=22同理CD =22,又AD =4,CD 2+AC 2=AD 2,CD ⊥AC .而CD =22=PD 2+PC 2,即PC ⊥PD ,又平面PCD ⊥平面ABCD ,平面PCD ∩平面ABCD =CD ,AC ⊂平面ABCD ,AC ⊥平面PCD ,PD ⊂平面PCD ,PD ⊥AC ,又PC ⊥PD ,且PC ⊂面PCA ,AC ⊂面PCA ,PC ∩AC =C ,PD ⊥平面PCA .(2)解析:以C 为原点,建立如图所示的空间直角坐标系,则C 0,0,0 ,A 0,22,0 ,D 22,0,0 ,P 2,0,2 ,所以CD =22,0,0 ,CP =2,0,2 ,P A=-2,22,-2 ,设PQ =λP A 0<λ<1 ,有CQ =CP +λP A=21-λ ,22λ,21-λ ,取面PCD 的一个法向量m =0,1,0 ,则cos CQ ,m =22λ41-λ 2+8λ2=63,λ=12,故CQ =22,2,22.令n=x ,y ,z 是平面CDQ 的一个法向量,则n ⋅CD =0n ⋅CQ =0,即22x =022x +2y +22z =0,令y =1,有n =0,1,-2 ,则cos ‹n ,m › =n ⋅m n m=55,故平面PCD 与平面CDQ 夹角的余弦值为55.5.(长沙市雅礼中学2025届高三上学期(9月)综合自主测试解析第17题)5:如图(1),在△ABC 中,CD ⊥AB ,BD =2CD =2AD =4,点E 为AC 的中点.将△ACD 沿CD 折起到△PCD 的位置,使DE ⊥BC ,如图(2).图(1)图(2)(1)求证:PB ⊥PC ;(2)在线段BC 上是否存在点F ,使得CP ⊥DF ?若存在,求二面角P -DF -E 的余弦值;若不存在,说明理由。

高考文科数学立体几何汇编与答案学生版汇编

高考文科数学立体几何汇编与答案学生版汇编

全国卷1.一个正方体被一个平面截取一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.81 B.71 C.61 D.51 2.已知A 、B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点. 若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A. 36πB. 64πC. 144πD. 256π3.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .1727B .59C .1027D .134.正三棱柱ABC -A 1B 1C 1的底面边长为2,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( ) A .3B .32C .1D5.一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1, 0, 1), (1, 1, 0), (0, 1, 1), (0, 0, 0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )6.如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) A .6B .9C .12D .187.平面α截球O 的球面所得圆的半径为1,球心O 到平面α则此球的体积为( ) AπB .C .πD .9.已知正四棱锥O-ABCDO为球心,OA 为半径的球的表面积为________.11.如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线B. C. D.围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由); (Ⅱ)求平面α把该长方体分成的两部分体积的比值.12.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设AP=1,AD =3,三棱锥P -ABD 的体积V =43,求A点到平面PBD 的距离.13.如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点. (Ⅰ)证明:1//BC 平面1ACD ; (Ⅱ)设12AA AC CB ===,AB =1C A DE -的体积.14.如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,112AC BC AA ==,D 是棱AA 1的中点.(I) 证明:平面BDC 1⊥平面BDC ;(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.全国卷13.某几何函数的三视图如图所示,则该几何的体积为( )(A )168π+ (B )88π+1BAC DB 1C 1A 1(C )1616π+ (D )816π+4.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱6.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )8 7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π 8.平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为(A )2 (B )2 (C )3 (D )1310.如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=。

高考文科数学新课标试题分类汇编-立体几何

高考文科数学新课标试题分类汇编-立体几何

立体几何(2021 年新课标1卷〕6、?九章算术?是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问〞积及为米几何?〞其意思为:“在屋内墙角处堆放米〔如图,米堆为一个圆锥的四分之一〕,米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?〞1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米有〔〕〔A〕14斛〔B〕22斛〔C〕36斛〔D〕66斛(2021 年新课标1卷〕11、圆柱被一个平面截去一局部后与半球〔半径为r〕组成一个几何体,该几何体的三视图中的正视图和俯视图如下图,假设该几何+,那么r=( )体的外表积为1620π〔A〕1〔B〕2〔C〕4〔D〕8(2021 年文科新课标2卷)6.一个正方体被一个平面截去一局部后,剩余局部的三视图如右图,那么截去局部体积与剩余局部体积的比值为(2021 年文科新课标2卷)10.BA,是球O的球面上两点,AOB,C为该球面上的动点。

假设三棱锥ABCO-体积的最大值=︒∠90为36,那么球O 的外表积为A 、π36B 、 π64C 、π144D 、 π256(2021年文科新课标1卷〕8、如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,那么这个几何体是〔 〕A.三棱锥B.三棱柱C.四棱锥D.四棱柱( 2021年文科新课标2卷)〔6〕如图,网格纸上正方形小格的边长为1〔表示1cm 〕,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,那么切削掉局部的体积与原来毛坯体积的比值为〔A 〕1727 〔B 〕 59 〔C 〕1027 (D) 13( 2021年文科新课标2卷)(7)正三棱柱111ABC A BC -的底面边长为2,侧棱长为3,D 为BC 终点,那么三棱锥111A A BC -的体积为 〔A 〕3 〔B 〕32 〔C 〕1 〔D 〕32(2021年文科新课标1卷)11.某几何体的三视图如下图,那么该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π(2021年文科新课标1卷)15.H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,那么球O 的外表积为______.(2021年文科新课标2卷)9.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,那么得到的正视图可以为( ).(2021年文科新课标2卷)15.正四棱锥O-ABCD的体积为2,底面边长为,那么以O为球心,OA为半径的球的外表积为__________.(2021年文科新课标2卷)18. (本小题总分值12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(2021年文科新课标卷)7、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,那么此几何体的体积为〔A〕6〔B〕9〔C〕12〔D〕18(2021年文科新课标卷)8、平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,那么此球的体积为〔A〕6π〔B〕43π〔C〕46π〔D〕63π(2021年文科新课标卷)16.两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.假设圆锥底面面积是这个球面面积的316,那么这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.(2021年文科新课标卷)8.在一个几何体的三视图中,正视图与俯视图如右图所示,那么相应的侧视图可以为(2021年文科新课标卷) (7) 设长方体的长、宽、高分别为2a 、a 、a,其顶点都在一个球面上,那么该球的外表积为 〔A 〕3πa 2 〔B 〕6πa 2 〔C 〕12πa 2 〔D 〕 24πa 2 (2021年文科新课标卷) (15)一个几何体的正视图为一个三角形,那么这个几何体可能是以下几何体中的_______(填入所有可能的几何体前的编号)①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱 (2021年文科新课标卷) (16)在ABC ∆中,D 为BC 边上一点,3BC BD =,2AD =,135ADB ο∠=.假设2AC AB =,那么BD=_____。

2012-2020年全国卷高考立体几何大题汇编(文科)

2012-2020年全国卷高考立体几何大题汇编(文科)

立体几何大题汇编(文科)1.(2020年全国一卷文19)如图、为圆锥曲线的顶点,底面的内接正三角形,为上一点,(1平面(2)设,圆锥的侧面积为,求三棱锥2.(2020年全国二卷文20的底面是正三角形,侧面是矩形,分别为,的中点,为上一点,过和的平面交于,交于(1)证明:面(2)设为的中心,若,面,且求四棱锥3.(2020年全国三卷文19)如图、在长方体中,点分别在棱,(1)证明:当时,(2)证明:点在平面内4.(2019年全国一卷文19)如图,直四棱柱的底面是棱形,,,,,分别是,的中点(1(2)求点到平面的距离5.(2019年全国二卷文科17)如图,长方体的底面是正方形,点在棱(1平面(2,,求四棱锥6.(2019年全国三卷文科19)图是矩形组成的一个平面图形,其中,将其沿,折起使得与重合,连接,如图(1)证明:图平面(2)求图中的四边形的面积7.(2018年全国三卷文科19)如图,边长为的正方形所在的平面与半圆弧所在平面垂直,是上异于的点(1(2)在线段上是否存在点?请说明理由8.(2018年全国二卷文科19)如图,在三棱锥中,,,为的中点(1(2)若点在棱,求点到平面的距离9.(2018年全国一卷文科18)如图,在平行四边形中,,以到达点(1平面(2)为线段上一点,为线段上一点,且,求三棱锥的体积10.(2017年全国三卷文科19)如图,在四面体是正三角形,(1(2)是直角三角形,,若为棱上与不重合的点,求四面体与四面体的体积比11.(2017年全国二卷文科18)如图,四棱锥中,侧面为等边三角形且垂直于底面,(1(2,求四棱锥的体积12.(2017年全国一卷文科18)如图,在四棱锥,,且(1平面(2)若,求该四棱锥的侧面积13.(2016年全国三卷文科19)如图,底面,,,,为线段,为的中点(1(2的体积14.(2016年全国二卷文科19)如图,菱形的对角线与交于点,点分别在,上,交于点(1(2)若,,15.(2016年全国一卷文科18)如图,的侧面是直角三角形,,顶点在平面内正投影为点,在平面内的正投影为点,连接并延长交于点(1)证明:是的中点(2)大答题卡第题中作出点在平面内的正投影(说明作法及理由),并求四面体的体积16.(2015年全国二卷文科19)如图,长方体中,,,点,分别在,上,,过点,的平面与此长方体的面相交,交线围成一个正方形。

(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题07立体几何(2)文(含解析)

(新课标全国I卷)2010_2019学年高考数学真题分类汇编专题07立体几何(2)文(含解析)

专题7 立体几何(2)立体几何大题:10年10考,每年1题.第1小题多为证明垂直问题,第2小题多为体积计算问题(2014年是求高).1.(2019年)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.【解析】(1)连结B1C,ME,∵M,E分别是BB1,BC的中点,∴ME∥B1C,又N为A1D的中点,∴ND=12A1D,由题设知A1B1//DC,∴B1C//A1D,∴ME//ND,∴四边形MNDE是平行四边形,∴MN∥ED,又MN⊄平面C1DE,∴MN∥平面C1DE.(2)过C作C1E的垂线,垂足为H,由已知可得DE⊥BC,DE⊥C1C,∴DE⊥平面C1CE,故DE⊥CH,∴CH⊥平面C1DE,故CH的长即为C到时平面C1DE的距离,由已知可得CE=1,CC1=4,∴C1E,故CH,∴点C 到平面C 1DE . 2.(2018年)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA . (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q ﹣ABP 的体积.【解析】(1)∵在平行四边形ABCM 中,∠ACM =90°,∴AB ⊥AC , 又AB ⊥DA .且AD ∩AC =A , ∴AB ⊥面ADC ,∵AB ⊂面ABC , ∴平面ACD ⊥平面ABC ;(2)∵AB =AC =3,∠ACM =90°,∴AD =AM =∴BP =DQ =23DA = 由(1)得DC ⊥AB ,又DC ⊥CA ,∴DC ⊥面ABC ,∴三棱锥Q ﹣ABP 的体积V =11DC 33S ∆ABP ⨯ =C 121DC 333S ∆AB ⨯⨯=12113333323⨯⨯⨯⨯⨯⨯=1. 3.(2017年)如图,在四棱锥P ﹣ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,且四棱锥P ﹣ABCD 的体积为83,求该四棱锥的侧面积.【解析】(1)∵在四棱锥P ﹣ABCD 中,∠BAP =∠CDP =90°, ∴AB ⊥PA ,CD ⊥PD , 又AB ∥CD ,∴AB ⊥PD , ∵PA ∩PD =P ,∴AB ⊥平面PAD , ∵AB ⊂平面PAB ,∴平面PAB ⊥平面PAD .(2)设PA =PD =AB =DC =a ,取AD 中点O ,连结PO , ∵PA =PD =AB =DC ,∠APD =90°,平面PAB ⊥平面PAD ,∴PO ⊥底面ABCD ,且AD ,PO =2a , ∵四棱锥P ﹣ABCD 的体积为83, 由AB ⊥平面PAD ,得AB ⊥AD ,∴V P ﹣ABCD =CD 13S AB ⨯⨯PO 四边形=1D 3⨯AB⨯A ⨯PO =132a a ⨯⨯=313a =83, 解得a =2,∴PA =PD =AB =DC =2,AD =BC =PO ,∴PB =PC∴该四棱锥的侧面积:S 侧=S △PAD +S △PAB +S △PDC +S △PBC=1D 2⨯PA⨯P +12⨯PA⨯AB +1D DC 2⨯P ⨯+1C 2⨯B=11112222222222⨯⨯+⨯⨯+⨯⨯+⨯=6+4.(2016年)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【解析】(1)∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(2)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG . 由题设可得PC ⊥平面PAB ,DE ⊥平面PAB ,所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且PA =6,可得DE =2,PG =PE = 在等腰直角三角形EFP 中,可得EF =PF =2. 所以四面体PDEF 的体积V =13×DE ×S △PEF =13×2×12×2×2=43.5.(2015年)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ﹣ACD【解析】(1)∵四边形ABCD 为菱形, ∴AC ⊥BD , ∵BE ⊥平面ABCD , ∴AC ⊥BE , 则AC ⊥平面BED , ∵AC ⊂平面AEC , ∴平面AEC ⊥平面BED ;(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,得AG =GC ,GB =GD =2x,∵BE ⊥平面ABCD ,∴BE ⊥BG ,则△EBG 为直角三角形,∴EG =12AC =AG =2x ,则BE x ,∵三棱锥E ﹣ACD 的体积V =11C GD 32⨯A ⨯⨯BE 3x 解得x =2,即AB =2, ∵∠ABC =120°,∴AC 2=AB 2+BC 2﹣2AB •BC cos ABC =4+4﹣2×1222⎛⎫⨯⨯-⎪⎝⎭=12,即AC =在三个直角三角形EBA ,EBD ,EBC 中,斜边AE =EC =ED , ∵AE ⊥EC ,∴△EAC 为等腰三角形, 则AE 2+EC 2=AC 2=12, 即2AE 2=12, ∴AE 2=6,则AE ,∴从而得AE =EC =ED ,∴△EAC 的面积S =11C 22⨯EA⨯E =3, 在等腰三角形EAD 中,过E 作EF ⊥AD 于F ,则AE ,AF =1D 2A =1212⨯=,则EF =∴△EAD 的面积和△ECD 的面积均为S =122⨯故该三棱锥的侧面积为3+6.(2014年)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.【解析】(1)连接BC1,则O为B1C与BC1的交点,∵侧面BB1C1C为菱形,∴BC1⊥B1C,∵AO⊥平面BB1C1C,∴AO⊥B1C,∵AO∩BC1=O,∴B1C⊥平面ABO,∵AB⊂平面ABO,∴B1C⊥AB;(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,∵BC⊥AO,BC⊥OD,AO∩OD=O,∴BC⊥平面AOD,∴OH⊥BC,∵OH⊥AD,BC∩AD=D,∴OH⊥平面ABC,∵∠CBB1=60°,∴△CBB1为等边三角形,∵BC=1,∴OD∵AC ⊥AB 1,∴OA =12B 1C =12,由OH •AD =OD •OA ,可得AD ,∴OH =14,∵O 为B 1C 的中点,∴B 1到平面ABC ,∴三棱柱ABC ﹣A 1B 1C 1的高7.7.(2013年)如图,三棱柱ABC ﹣A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60° (1)证明:AB ⊥A 1C ; (2)若AB =CB =2,A 1C =,求三棱柱ABC ﹣A 1B 1C 1的体积.【解析】(1)如图,取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,160∠BAA =,故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C ;(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以1C O =OA =.又1C A =,则22211C C A =O +OA ,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC ﹣A 1B 1C 1的高.又△ABC 的面积C S ∆AB故三棱柱ABC ﹣A 1B 1C 1的体积C 1V 3S ∆AB =⨯OA ==.8.(2012年)如图,三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【解析】(1)由题意知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C , ∴BC ⊥平面ACC 1A 1,又DC 1⊂平面ACC 1A 1, ∴DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,∴∠CDC 1=90°,即DC 1⊥DC ,又DC ∩BC =C , ∴DC 1⊥平面BDC ,又DC 1⊂平面BDC 1, ∴平面BDC 1⊥平面BDC ;(2)设棱锥B ﹣DACC 1的体积为V 1,AC =1,由题意得V 1=1121132+⨯⨯⨯=12,又三棱柱ABC ﹣A 1B 1C 1的体积V =1, ∴(V ﹣V 1):V 1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.9.(2011年)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD=1,求棱锥D﹣PBC的高.【解析】(1)因为∠DAB=60°,AB=2AD,由余弦定理得BD D,从而BD2+AD2=AB2,故BD⊥AD,又PD⊥底面ABCD,可得BD⊥PD,所以BD⊥平面PAD.故PA⊥BD.(2)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(1)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD,PB=2.根据DE•PB=PD•BD,得DE即棱锥D﹣PBC10.(2010年)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(1)证明:平面PAC⊥平面PBD;(2)若AB,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.。

三年 (2020-2022 ) 新高考数学真题汇编 专题04立体几何

三年 (2020-2022 ) 新高考数学真题汇编 专题04立体几何

新高考专题04立体几何【2022年新高考1卷】1.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m . 2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯【答案】C 【解析】 【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出. 【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V . 棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯+'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .【2022年新高考1卷】2.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤则该正四棱锥体积的取值范围是( )A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C 【解析】 【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∴ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h , 则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l ≤0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.【2022年新高考2卷】3.已知正三棱台的高为1,上、下底面边长分别为则该球的表面积为( ) A .100π B .128π C .144π D .192π【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d 2d =故121d d -=或121d d +=,1=1=,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .【2021年新高考1卷】4)A .2B .C .4D .【答案】B 【解析】 【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求. 【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=解得l = 故选:B.【2021年新高考2卷】5.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A.20+B .C .563D 【答案】D 【解析】 【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解. 【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高h下底面面积116S =,上底面面积24S =,所以该棱台的体积((121116433V h S S =+=+ 故选:D.【2020年新高考1卷(山东卷)】6.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°【答案】B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.【2022年新高考1卷】7.已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒ D .直线1BC 与平面ABCD 所成的角为45︒【答案】ABD【分析】数形结合,依次对所给选项进行判断即可. 【详解】如图,连接1B C 、1BC ,因为11//DA B C ,所以直线1BC 与1B C 所成的角即为直线1BC 与1DA 所成的角,因为四边形11BB C C 为正方形,则1B C ⊥1BC ,故直线1BC 与1DA 所成的角为90︒,A 正确;连接1A C ,因为11A B ⊥平面11BB C C ,1BC ⊂平面11BB C C ,则111A B BC ⊥, 因为1B C ⊥1BC ,1111A B B C B =,所以1BC ⊥平面11A B C ,又1AC ⊂平面11A B C ,所以11BC CA ⊥,故B 正确; 连接11A C ,设1111AC B D O =,连接BO ,因为1BB ⊥平面1111D C B A ,1C O ⊂平面1111D C B A ,则11C O B B ⊥, 因为111C O B D ⊥,1111B D B B B ⋂=,所以1C O ⊥平面11BB D D , 所以1C BO ∠为直线1BC 与平面11BB D D 所成的角,设正方体棱长为1,则1C O =1BC 1111sin 2C O C BO BC ∠==, 所以,直线1BC 与平面11BB D D 所成的角为30,故C 错误;因为1C C ⊥平面ABCD ,所以1C BC ∠为直线1BC 与平面ABCD 所成的角,易得145C BC ∠=,故D 正确. 故选:ABD【2022年新高考2卷】8.如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】 【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可. 【详解】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACDV ED Sa a a =⋅⋅=⋅⋅⋅=, ()232111223323ABCV FB Sa a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ==,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ==,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFMS EM FM =⋅=,AC =, 则33123A EFM C EFM EFMV V V AC S a --=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确. 故选:CD.【2021年新高考1卷】9.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD 【解析】 【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【详解】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB BC λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1A ⎫⎪⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则112A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误; 对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,0A ⎫⎪⎪⎝⎭,所以01,2AP y ⎛⎫=- ⎪ ⎪⎝⎭,11,12A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确. 故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.【2021年新高考2卷】10.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是( )A .B .C .D .【答案】BC 【解析】 【分析】根据线面垂直的判定定理可得BC 的正误,平移直线MN 构造所考虑的线线角后可判断AD 的正误. 【详解】设正方体的棱长为2,对于A ,如图(1)所示,连接AC ,则//MN AC , 故POC ∠(或其补角)为异面直线,OP MN 所成的角,在直角三角形OPC ,OC =1CP =,故tanPOC ∠== 故MN OP ⊥不成立,故A 错误.对于B ,如图(2)所示,取NT 的中点为Q ,连接PQ ,OQ ,则OQ NT ⊥,PQ MN ⊥, 由正方体SBCM NADT -可得SN ⊥平面ANDT ,而OQ ⊂平面ANDT , 故SN OQ ⊥,而SNMN N =,故OQ ⊥平面SNTM ,又MN ⊂平面SNTM ,OQ MN ⊥,而OQ PQ Q =,所以MN ⊥平面OPQ ,而PO ⊂平面OPQ ,故MN OP ⊥,故B 正确.对于C ,如图(3),连接BD ,则//BD MN ,由B 的判断可得OP BD ⊥, 故OP MN ⊥,故C 正确.对于D ,如图(4),取AD 的中点Q ,AB 的中点K ,连接,,,,AC PQ OQ PK OK , 则//AC MN ,因为DP PC =,故//PQ AC ,故//PQ MN ,所以QPO ∠或其补角为异面直线,PO MN 所成的角,因为正方体的棱长为2,故12PQ AC ==OQ ==PO =222QO PQ OP <+,故QPO ∠不是直角,故,PO MN 不垂直,故D 错误. 故选:BC.【2020年新高考1卷(山东卷)】11.已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∴BAD =60°.以1D 球面与侧面BCC 1B 1的交线长为________.. 【解析】 【分析】根据已知条件易得1D E =1D E ⊥侧面11B C CB ,可得侧面11B C CB 与球面的交线上的点到E 可得侧面11B C CB 与球面的交线是扇形EFG 的弧FG ,再根据弧长公式可求得结果. 【详解】 如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以∴111D B C 为等边三角形,所以1D E 111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E =||EP ==所以侧面11B C CB 与球面的交线上的点到E因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG , 因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2FG π==.. 【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题. 【2020年新高考2卷(海南卷)】12.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________ 【答案】13【解析】 【分析】利用11A NMD D AMN V V --=计算即可. 【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点 所以11111112323A NMD D AMN V V --==⨯⨯⨯⨯=故答案为:13【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些. 【2022年新高考1卷】13.如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面11ABB A ,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111112211433333A A BC A A ABC A ABC AB BC C C B V Sh h V S A A V ---=⋅===⋅==,解得h =所以点A 到平面1A BC (2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥, 又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =2BC =, 则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1A C 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c =,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩, 可取()0,1,1n =-, 则11cos ,22m n m n m n⋅===⨯⋅,所以二面角A BD C --.【2022年新高考2卷】14.如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值. 【答案】(1)证明见解析 (2)1113【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA OB =,再根据直角三角形的性质得到AO DO =,即可得到O 为BD 的中点从而得到//OE PD ,即可得证; (2)建立适当的空间直角坐标系,利用空间向量法求出二面角的余弦的绝对值,再根据同角三角函数的基本关系计算可得. (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P ABC -的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC , 所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒, 所以ODA OAD ∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD , 又OE ⊄平面PAC ,PD ⊂平面PAC , 所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立平面直角坐标系, 因为3PO =,5AP =,所以4OA ==,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD,AB = 所以12AC =,所以()O,()B,()P ,()0,12,0C ,所以32E ⎛⎫ ⎪⎝⎭,则332AE ⎛⎫= ⎪⎝⎭,()4AB =,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则3y =-,0x =,所以()0,3,2n =-;设平面AEC 的法向量为(),,m a b c =,则33302120m AE ab c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a =6c =-,0b =,所以()3,0,6m =-;所以cos ,13n m n m n m⋅-===设二面角C AE B --的大小为θ,则43cos cos ,=13n m θ=,所以11sin 13θ==,即二面角C AE B --的正弦值为1113.【2021年新高考1卷】15.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)证明见解析; 【解析】【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可. 【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥, 因为OA ⊂平面ABD ,平面ABD ⊥平面BCD , 且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD . 因为CD ⊂平面BCD ,所以OA CD ⊥. (2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=,设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--.又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD -[方法二]【最优解】:作出二面角的平面角 如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG 为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =. 由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCDBOCV SO S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒, 记二面角E BC D --为θ.据题意,得45θ=︒. 对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.∴使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα.∴ 将∴∴两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =, 结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速. 【2021年新高考2卷】16.在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B QD A --的平面角的余弦值. 【答案】(1)证明见解析;(2)23. 【解析】 【分析】(1)取AD 的中点为O ,连接,QO CO ,可证QO ⊥平面ABCD ,从而得到面QAD ⊥面ABCD . (2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,建如图所示的空间坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值. 【详解】(1)取AD 的中点为O ,连接,QO CO . 因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA ==2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥, 因为OCAD O =,故QO ⊥平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥, 结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=-.设平面QBD 的法向量(),,n x y z =,则00n BQ n BD ⎧⋅=⎨⋅=⎩即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭.而平面QAD 的法向量为()1,0,0m =,故12cos ,3312m n ==⨯.二面角B QD A --的平面角为锐角,故其余弦值为23. 【2020年新高考1卷(山东卷)】17.如图,四棱锥P -ABCD 的底面为正方形,PD ∴底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ∴平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)利用线面垂直的判定定理证得AD ⊥平面PDC ,利用线面平行的判定定理以及性质定理,证得//AD l ,从而得到l ⊥平面PDC ;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>的最大值,即为直线PB 与平面QCD 所成角的正弦值的最大值. 【详解】 (1)证明:在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥ 因为CD PD D =,所以l ⊥平面PDC . (2)[方法一]【最优解】:通性通法因为,,DP DA DC 两两垂直,建立空间直角坐标系D xyz -,如图所示:因为1PD AD ==,设(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-, 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则 1cos ,3n PB n PB n PB⋅+<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于|cos ,|n PB <>==≤,当且仅当1m =时取等号,所以直线PB 与平面QCD . [方法二]:定义法如图2,因为l ⊂平面PBC ,Q l ∈,所以Q ∈平面PBC .在平面PQC 中,设PB QC E =.在平面PAD 中,过P 点作PF QD ⊥,交QD 于F ,连接EF . 因为PD ⊥平面,ABCD DC ⊂平面ABCD ,所以DC PD ⊥. 又由,,DC AD ADPD D PD ⊥=⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .又PF ⊂平面PAD ,所以DC PF ⊥.又由,,PF QD QDDC D QD ⊥=⊂平面,QOC DC ⊂平面QDC ,所以PF ⊥平面QDC ,从而FEP ∠即为PB 与平面QCD 所成角.设PQ a =,在PQD △中,易求PF =由PQE 与BEC △相似,得1PE PQ a EB BC ==,可得PE =所以sin FEP ∠=≤1a =时等号成立. [方法三]:等体积法如图3,延长CB 至G ,使得BG PQ =,连接GQ ,GD ,则//PB QG ,过G 点作GM ⊥平面QDC ,交平面QDC 于M ,连接QM ,则GQM ∠即为所求.设PQ x =,在三棱锥Q DCG -中,111()(1)326Q DCG V PD CD CB BG x -=⋅⋅+=+.在三棱锥G QDC -中,111323G QDC V GM CD QD GM -=⋅⋅=由Q DCG G QDC V V --=得11(1)63x GM +=解得GM ==, 当且仅当1x =时等号成立.在Rt PDB △中,易求PB QG ==,所以直线PB 与平面QCD 所成角的正弦值的最大值为sin MQG ∠== 【整体点评】(2)方法一:根据题意建立空间直角坐标系,直线PB 与平面QCD 所成角的正弦值即为平面QCD 的法向量n 与向量PB 的夹角的余弦值的绝对值,即cos ,n PB <>,再根据基本不等式即可求出,是本题的通性通法,也是最优解;方法二:利用直线与平面所成角的定义,作出直线PB 与平面QCD 所成角,再利用解三角形以及基本不等式即可求出;方法三:巧妙利用//PB QG ,将线转移,再利用等体积法求得点面距,利用直线PB 与平面QCD 所成角的正弦值即为点面距与线段长度的比值的方法,即可求出. 【2020年新高考2卷(海南卷)】18.如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.【答案】(1)证明见解析;(2. 【解析】 【分析】(1)利用线面平行的判定定理以及性质定理,证得//AD l ,利用线面垂直的判定定理证得AD ⊥平面PDC ,从而得到l ⊥平面PDC ;(2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>,即可得到直线PB 与平面QCD 所成角的正弦值.【详解】 (1)证明:在正方形ABCD 中,//AD BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =, 所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥ 且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥ 因为CD PD D = 所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,因为QB 1m = 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y x z =⎧⎨+=⎩,令1x =,则1z =-,所以平面QCD 的一个法向量为(1,0,1)n =-,则2cos ,1n PB n PB n PB⋅<>==== 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于6|cos ,|3n PB <>=所以直线PB 与平面QCD 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定和性质,线面垂直的判定和性质,利用空间向量求线面角,利用基本不等式求最值,属于中档题目.。

高考全国卷Ⅰ文科数学解析几何汇编

高考全国卷Ⅰ文科数学解析几何汇编

新课标全国卷Ⅰ文科数学汇编解 析 几 何一、选择题【2020, 5】已知F 是双曲线22:13y C x -=的右焦点, P 是C 上一点, 且PF 与x 轴垂直, 点A 的坐标是(1,3), 则APF ∆的面积为( )A .13 B .12 C .23 D .32【解法】选D .由2224c a b =+=得2c =, 所以(2,0)F , 将2x =代入2213y x -=, 得3y =±, 所以3PF =, 又A 的坐标是(1,3), 故APF 的面积为133(21)22⨯⨯-=, 选D . 【2020, 12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点, 若C 上存在点M 满足∠AMB =120°, 则m 的取值范围是( ) A .(0,1][9,)+∞U B .(0,3][9,)+∞U C .(0,1][4,)+∞U D .(0,3][4,)+∞U【解法】选A .图 1图 2解法一:设E F 、是椭圆C 短轴的两个端点, 易知当点M 是椭圆C 短轴的端点时AMB ∠最大, 依题意只需使0120AEB ∠≥.1.当03m <<时, 如图1, 03tantan 6032AEB a b m∠==≥= 解得1m ≤, 故01m <≤; 2. 当3m >时, 如图2, 0tantan 60323AEB a m b ∠==≥ 解得9m ≥. 综上可知, m 的取值范围是(0,1][9,)+∞U , 故选A .解法二:设E F 、是椭圆C 短轴的两个端点, 易知当点M 是椭圆C 短轴的端点时AMB ∠最大, 依题意只需使0120AEB ∠≥.1.当03m <<时, 如图1, 01cos ,cos1202EA EB ≤=-u u u r u u u r , 即12EA EB EA EB⋅≤-u u u r u u u ru u u r u u u r ,带入向量坐标, 解得1m ≤, 故01m <≤;2. 当3m >时, 如图2, 01cos ,cos1202EA EB ≤=-u u u r u u u r , 即12EA EB EA EB⋅≤-u u u r u u u ru u u r u u u r ,带入向量坐标, 解得9m ≥.综上可知, m 的取值范围是(0,1][9,)+∞U , 故选A .【2016, 5】直线l 经过椭圆的一个顶点和一个焦点, 若椭圆中心到l 的距离为其短轴长的14, 则该椭圆的离心率为( )A .13B .12 C .23D .34解析:选B . 由等面积法可得1112224bc a b ⨯=⨯⨯⨯, 故12c a =, 从而12c e a ==.故选B . 【2015, 5】已知椭圆E 的中心为坐标原点, 离心率为12, E 的右焦点与抛物线C : y 2=8x , 的焦点重合, A ,B 是C 的准线与E 的两个交点, 则|AB |=( ) A .3 B .6 C .9 D .12解:选B .抛物线的焦点为(2,0), 准线为x =-2, 所以c=2, 从而a=4, 所以b 2=12, 所以椭圆方程为2211612x y +=, 将x =-2代入解得y=±3, 所以|AB |=6, 故选B 【2014, 10】10.已知抛物线C :y 2=x 的焦点为F , A (x 0,y 0)是C 上一点, |AF |=054x , 则x 0=( )A A .1 B .2 C .4 D .8 解:根据抛物线的定义可知|AF |=001544x x +=, 解之得x 0=1. 故选A 【2014, 4】4.已知双曲线)0(13222>=-a y a x 的离心率为2, 则a=( ) D A .2 B .26 C .25 D .1 解:2222232c a b a e a a a ++====, 解得a=1, 故选D【2013, 4】已知双曲线C :2222=1x y a b-(a >0, b >0)5则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x解析:选C .∵52e =, ∴52c a =, 即2254c a =.∵c 2=a 2+b 2, ∴2214b a =.∴12b a =.∵双曲线的渐近线方程为b y x a =±, ∴渐近线方程为12y x =±.故选C .【2013, 8】O 为坐标原点, F 为抛物线C :y 2=42x 的焦点, P 为C 上一点, 若|PF |=42, 则△POF的面积为( ).A .2B .22C .23D .4 答案:C解析:利用|PF |=242P x +=, 可得x P =32, ∴y P =26±.∴S △POF =12|OF |·|y P |=23. 故选C .【2012, 4】4.设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点, P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形, 则E 的离心率为( )A .12 B .23C .34D .45【解析】如图所示, 21F PF ∆是等腰三角形,212130F F P F PF ∠=∠=︒, 212||||2F P F F c ==, 260PF Q ∠=︒, 230F PQ ∠=︒, 2||F Q c =,又23||2a F Q c =-, 所以32a c c -=, 解得34c a =, 因此34c e a ==, 故选择C . 【2012, 10】10.等轴双曲线C 的中心在原点, 焦点在x 轴上,C 与抛物线216y x =的准线交于A , B 两点,||43AB =, 则C 的实轴长为( )A .2B .22C .4D .8【解析】设等轴双曲线C 的方程为22221x y a a-=, 即222x y a -=(0a >),抛物线216y x =的准线方程为4x =-, 联立方程2224x y a x ⎧-=⎨=-⎩, 解得2216y a =-,因为||43AB =, 所以222||(2||)448AB y y ===, 从而212y =, 所以21612a -=, 24a =,2a =, 因此C 的实轴长为24a =, 故选择C .【2011, 4】椭圆221168x y +=的离心率为( )A .13 B .12C 3D 2【解析】选D .因为221168x y +=中, 2216,8a b ==, 所以2228c a b =-=, 所以22242c e a ===.【2011, 9】已知直线l 过抛物线的焦点, 且与C 的对称轴垂直, l 与C 交于A , B 两点, 12AB =,P 为C 的准线上一点, 则ABP △的面积为( ).A .18B .24C .36D .48【解析】不妨设抛物线的标准方程为()220y px p =>, 由于l 垂直于对称轴且过焦点, 故直线l 的方程为2p x =.代入22y px =得y p =±, 即2AB p =, 又12AB =, 故6p =, 所以抛物线的准线方程为3x =-, 故1612362ABP S =⨯⨯=△.故选C .二、填空题【2016, 15】设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点, 若23AB = 则圆C 的面积为 .解析:4π.由题意直线即为20x y a -+=, 圆的标准方程为()2222x y a a +-=+, 所以圆心到直线的距离2ad =, 所以()22222a AB a ⎛⎫=+- ⎪⎝⎭222232a =+=, 故2224a r +==, 所以24S r =π=π.故填4π.【2015, 16】已知F 是双曲线C :2218y x -=的右焦点, P 是C 左支上一点, (0,66)A , 当ΔAPF 周长最小时, 该三角形的面积为 .解:126 a =1, b 2=8, ⇒ c =3, ∴F (3,0).设双曲线的的左焦点为F 1, 由双曲线定义知|PF |=2+|PF 1|,∴ΔAPF 的周长为|P A |+|PF |+|AF |=|P A |+|AF |+|PF 1|+2, 由于|AF |是定值, 只要|P A |+|PF 1|最小, 即A ,P ,F 1共线, ∵(0,66)A , F 1 (-3,0), ∴直线AF 1的方程为1366x +=-, 联立8x 2-y 2=8消去x 整理得y 2+66y -96=0, 解得y =26y =86-舍去), 此时S ΔAPF =S ΔAFF 1-S ΔPFF 13(666)6=⨯=三、解答题【2020, 20】设A , B 为曲线C :42x y =上两点, A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点, C 在M 处的切线与直线AB 平行, 且BM AM ⊥, 求直线AB 的方程. 解析:第一问:【解法1】设 1122(,),(,)A x y B x y ,AB 直线的斜率为k , 又因为A,B 都在曲线C 上, 所以 4/211x y = ①4/222x y = ②②-①得2221122121()()44x x x x x x y y -+--==由已知条件124x x += 所以, 21211y yx x -=-即直线AB 的斜率k=1.【解法2】设 ),(),,(2211y x B y x A ,AB 直线的方程为y=kx+b,所以⎩⎨⎧=+=4/2x y b kx y整理得:,4,044212k x x b kx x =+∴=--且421=+x x 所以k=1第二问:设 00(,)M x y 所以200/4y x =① 又12y x =所以00011,2,12k x x y ==∴== 所以M (2,1), 11(2,1)MA x y =--, 22(2,1)MB x y =--, 且AM BM ⊥, 0AM BM =g 即05)()(221212121=++-++-y y y y x x x x ②, 设AB 直线的方程为y x b =+,,4/2⎩⎨⎧=+=x y bx y化简得0442=--b x x , 所以2212121,24,4b y y b y y b x x =+=+-=由②得0772=--b b 所以b=7或者b=-1(舍去) 所以AB 直线的方程为y=x+7【2016,20】在直角坐标系xOy 中, 直线:(0)l y t t =≠交y 轴于点M,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N , 连结ON 并延长交C 于点H .(1)求OH ON;(2)除H 以外, 直线MH 与C 是否有其他公共点?请说明理由.解析 (1)如图, 由题意不妨设0t >, 可知点,,M P N 的坐标分别为()0,M t , 2,2t P t p ⎛⎫⎪⎝⎭, 2,N t t p ⎛⎫⎪⎝⎭,HNPM Oyx从而可得直线ON 的方程为y x p t =, 联立方程22p x ty px y ⎧==⎪⎨⎪⎩, 解得22x t p =, 2y t =. 即点H 的坐标为22,2t t p ⎛⎫ ⎪⎝⎭, 从而由三角形相似可知22H N OH y tON y t ===.(2)由于()0,M t , 22,2t H t p ⎛⎫⎪⎝⎭, 可得直线MH 的方程为22ty t x t p-=, 整理得2220ty px t --=, 联立方程222202ty y px t px--==⎧⎪⎨⎪⎩, 整理得22440ty y t -+=,则2216160t t ∆=-=, 从而可知MH 和C 只有一个公共点H .【2015, 20】已知过点A (0, 1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (Ⅰ)求k 的取值范围; (Ⅱ)u u u u r u u u rOM ON ⋅=12, 其中O 为坐标原点, 求|MN |. 解:(Ⅰ)依题可设直线l 的方程为y=kx +1, 则圆心C (2,3)到的l 距离211d k=<+. 解得474733k -<<.所以k 的取值范围是4747(33-. (Ⅱ)将y=kx +1代入圆C 的方程整理得 (k 2+1)x 2-4(k +1)x +7=0.设M (x 1, y 1),N (x 2, y 2), 则1212224(1)7,.11k x x x x k k ++==++所以u u u u r u u u rOM ON ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+1)(kx 2+1)=(1+k 2)x 1x 2+k (x 1+x 2)+124(+1)8+1k k k =+=12, 解得k =1=1k , 所以l 的方程为y=x +1. 故圆心在直线l 上, 所以|MN |=2.【2013, 21】已知圆M :(x +1)2+y 2=1, 圆N :(x -1)2+y 2=9, 动圆P 与圆M 外切并且与圆N 内切, 圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P , 圆M 都相切的一条直线, l 与曲线C 交于A , B 两点, 当圆P 的半径最长时, 求|AB |.解:由已知得圆M 的圆心为M (-1,0), 半径r 1=1;圆N 的圆心为N (1,0), 半径r 2=3.设圆P 的圆心为P (x , y ), 半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知, 曲线C 是以M , N 为左、右焦点, 长半轴长为2, 3(左顶点除外), 其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x , y ), 由于|PM |-|PN |=2R -2≤2, 所以R ≤2, 当且仅当圆P 的圆心为(2,0)时, R =2. 所以当圆P 的半径最长时, 其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°, 则l 与y 轴重合, 可得|AB |=23若l 的倾斜角不为90°, 由r 1≠R 知l 不平行于x 轴, 设l 与x 轴的交点为Q , 则1||||QP RQM r =, 可求得Q (-4,0), 所以可设l :y =k (x +4).由l 与圆M 21k +=1, 解得k =2±当k 2时, 将22y x =+22=143x y +, 并整理得7x 2+8x -8=0, 解得x 1,2462-±, 所以|AB |21k +x 2-x 1|=187.当k =2 由图形的对称性可知|AB |=187.综上, |AB |=23|AB |=187.【2011, 20】在平面直角坐标系xOy 中, 曲线261y x x =-+与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线0x y a -+=交于A , B 两点, 且OA OB ⊥, 求a 的值. 【解析】(1)曲线261y x x =-+与y 轴的交点为(0,1), 与x 轴的交点为()322,0,+()322,0-.故可设C 的圆心为()3,t , 则有()(22223122t t +-=+,解得1t =.则圆C ()22313t +-=, 所以圆C 的方程为()()22319x y -+-=.(2)设()11,A x y , ()22,B x y , 其坐标满足方程组()()220,319.x y a x y -+=⎧⎪⎨-+-=⎪⎩ 消去y , 得方程()22228210x a x a a +-+-+=.由已知可得, 判别式2561640a a ∆=-->, 因此()21,282561644a a a x ---=,从而124x x a +=-, 212212a a x x -+=.由于OA OB ⊥, 可得12120x x y y +=. 又11y x a =+, 22y x a =+所以212122()0x x a x x a +++=. ②由①②得1a =-, 满足0∆>, 故1a =-.【2012, 20】设抛物线C :py x 22=(0>p )的焦点为F , 准线为l , A 为C 上一点, 已知以F 为圆心, FA 为半径的圆F 交l 于B , D 两点。

(版)高考试题汇编文科数学立体几何

(版)高考试题汇编文科数学立体几何

〔2021全国1文〕16. ACB 90,P为平面ABC外一点,PC 2,点P到ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为 .答案:2解答:如图,过P点做平面ABC的垂线段,垂足为O,那么PO的长度即为所求,再做PE CB,PF CA,由线面的垂直判定及性质定理可得出OE CB,OF CA,在RtPCF中,由PC 2,PF 3,可得出CF 1,同理在RtPCE中可得出CE 1,结合 ACB 90,OE CB,OF CA可得出OE OF 1,OC2,PO PC2OC2 2〔2021全国1文〕19.如图直四棱柱ABCD A1B1C1D1的底面是菱形,AA14,AB 2,BAD60o,E,M,N分别是BC,BB1,A1D的中点.1〕证明:MN//平面C1DE2〕求点C到平面C1DE的距离.答案:见解析解答:〔1〕连结AC,BD相交于点,再过点M作MH//CE交BC于点,再连结GH,NG.1111111E,M,N分别是BC,BB1,A1D的中点.于是可得到NG//C1D,GH//DE,于是得到平面NGHM//平面C1DE,由QMN平面NGHM,于是得到MN//平面C1DE1/19〔2〕QE为BC中点,ABCD为菱形且BAD60oDE BC,又QABCD A1B1C1D1为直四棱柱,DECC1DEC1E,又QAB2,AA14,DE3,C1E17,设点C到平面C1DE的距离为h 由V CC1DE V C1DCE得11317113432h1 432解得h1717所以点C 417到平面C1DE的距离为17〔2021全国2文〕7.设,为两个平面,那么//的充要条件是()A.内有无数条直线与平行B.内有两条相交直线与平行C.,平行于同一条直线D.,垂直于同一平面答案:B解析:根据面面平行的判定定理易得答案.〔2021全国2文〕16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体〞〔图1〕.半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体表达了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的外表上,且此正方体的棱长为 1.那么该半正多面体共有个面,其棱长为.(此题第一空2分,第二空3分.)2/19答案: 262 1解析:由图2 结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解 .〔2021全国2文〕17.如图,长方体ABCDA 1B 1C 1D 1的底面ABCD是正方形,点E 在棱AA 1上,BE ⊥EC 1.〔1 〕证明:BE 平面EB 1C1〔2 〕假设AEAE 1,AB3,求四棱锥EBB 1C 1C 的体积.答案: 看解析 看解析解答:〔1〕证明:因为B 1C 1C 面A 1B 1BA ,BE面A 1B 1BA∴B 1C 1⊥BE 又C 1EB 1C 1 C 1,∴BE平面EB 1C 1;〔2〕设AA2a 那么BE2922222a ,C 1E18+a ,C 1B94a1222∴a,∴11 因为C 1B=BEC 1E3V EBB 1C 1CS BB 1C 1Ch363=18333/19(版)高考试题汇编文科数学立体几何〔2021全国3文〕8.如图,点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,那么〔〕A.BM EN,且直线B.BM EN,且直线C.BM EN,且直线D.BM EN,且直线【答案】B【解析】分析】BM,ENBM,ENBM,ENBM,EN是相交直线是相交直线是异面直线是异面直线利用垂直关系,再结合勾股定理进而解决问题.【详解】∵BDE ,N为BD中点M为DE中点,BM,EN共面相交,选项C DCD于O,,为错.作EO连接ON,过M作MF OD于F.连BF,Q平面CDE平面ABCD.EO CD,EO平面CDE,EO平面ABCD,MF平面ABCE,【MFB与EON均为直角三角形.设正方形边长为2,易知EO3,0N1EN2,MF3,BF2295BM3247.24244BM EN,应选B.【点睛】此题为立体几何中等问题,考查垂直关系,线面、线线位置关系.4/19〔2021全国3文〕16.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD A1B1C1D1挖去四棱锥O EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】【分析】根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量.【详解】由题意得,四棱锥O-EFGH的底面积为46412312cm2,其高为点O到底面BB1C1C的距12离为3cm,那么此四棱锥的体积为V112312cm2.又长方体ABCD A1B1C1D1的体积为3V2466144cm2,所以该模型体积为V V2V114412132cm2,其质量为132.【点睛】此题牵涉到的是3D打印新时代背景下的几何体质量,忽略问题易致误,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.〔2021全国3文〕19.图1是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB 1,BE BF 2,FBC60o,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.〔1〕证明图2中的A,C,G,D四点共面,且平面ABC平面BCGE;〔2〕求图2中的四边形ACGD的面积.【答案】(1)见详解;(2)4.5/19【解析】【分析】(1)因为折纸和粘合不改变矩形ABED ,RtVABC 和菱形BFGC 内部的夹角,所以 AD//BE ,BF//CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标全国卷Ⅰ文科数学汇编立 体 几 何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π 【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,αI平面ABCD m =,αI平面11ABB A n =,则,m n 所成角的正弦值为( )A .3 B .2 C .3 D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名着,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8【2015,11】 【2014,8】 【2013,11】【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8π B.8+8π C.16+16π D .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α,则此球的体积为( )AB .C .D .【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______.【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 的体积为63【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB ο求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A1C ;(2)若AB =CB =2,A 1C ,求三棱柱ABC -A 1B 1C 1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【2011,18】如图所示,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=o,2AB AD =,PD ⊥底面ABCD . (1)证明:PA BD ⊥;(2)若1PD AD ==,求棱锥D PBC -的高.DA 11CC 1解 析一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【解法】选A .由B ,AB∥MQ,则直线AB∥平面MNQ ;由C ,AB∥MQ,则直线AB∥平面MNQ ;由D ,AB∥NQ,则直线AB∥平面MNQ .故A 不满足,选A .【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ). A .17π B . 18π C . 20π D . 28π 解析:选A . 由三视图可知,该几何体是一个球截去球的18,设球的半径为R ,则37428ππ833R ⨯=,解得2R =.该几何体的表面积等于球的表面积的78,加上3个截面的面积,每个截面是圆面的14, 所以该几何体的表面积为22714π23π284S=⨯⨯+⨯⨯⨯14π3π17π=+=.故选A . 【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,αI平面ABCD m =,αI 平面11ABB A n =,则,m n 所成角的正弦值为( )A .32 B .22 C .33 D .13解析:选A . 解法一:将图形延伸出去,构造一个正方体,如图所示.通过寻找线线平行构造出平面α,即平面AEF ,即研究AE 与AF 所成角的正弦值,易知3EAF π∠=,所以其正弦值为32.故选A . 解法二(原理同解法一):过平面外一点A 作平面α,并使α∥平面11CB D ,不妨将点A 变换成B ,作β使之满足同等条件,在这样的情况下容易得到β,即为平面1A BD ,如图所示,即研究1A B 与BD 所成角的正弦值,易知13A BD π∠=,所以其正弦值为3.故选A .【2015,6】《九章算术》是我国古代内容极为丰富的数学名着,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) B A .14斛 B .22斛 C .36斛 D .66斛解:设圆锥底面半径为r ,依题11623843r r ⨯⨯=⇒=,所以米堆的体积为211163203()54339⨯⨯⨯⨯=,故堆放的米约为3209÷1.62≈22,故选B . 【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8解:该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为2πr 2+πr×2r+πr 2+2r×2r =5πr 2+4r 2=16+20π, 解得r=2,故选B .【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的 一个几何体的三视图,则这个几何体是( )B A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱 解:几何体是一个横放着的三棱柱. 故选B【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8π B.8+8π C.16+16π D .8+16π解析:选A .该几何体为一个半圆柱与一个长方体组成的一个组合体.V半圆柱=12π×22×4=8π,V长方体=4×2×2=16.所以所求体积为16+8π.故选A .【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15【解析】由三视图可知,该几何体为三棱锥A-BCD , 底面△BCD 为底边为6,高为3的等腰三角形,侧面ABD⊥底面BCD , AO⊥底面BCD , 因此此几何体的体积为11(63)3932V =⨯⨯⨯⨯=,故选择B . 【2012,8】8.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB .43πOBDAC .46πD .3π【解析】如图所示,由已知11O A =,12OO =在1Rt OO A ∆中,球的半径3R OA ==所以此球的体积34433V R ππ==,故选择B . 【点评】本题主要考察球面的性质及球的体积的计算.【2011,8】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( ) 【解析】由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形. 故选D .二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______.【解析】取SC 的中点O ,连接,OA OB ,因为,SA AC SB BC ==,所以,OA SC OB SC ⊥⊥, 因为平面SAC⊥平面SBC ,所以OA ⊥平面SBC ,设OA r =,3111123323A SBCSBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=,所以31933r r =⇒=, 所以球的表面积为2436r ππ=.【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.答案:9π2解析:如图,设球O 的半径为R ,则AH =23R ,OH =3R .又∵π·EH 2=π,∴EH=1.∵在Rt△OEH 中,R2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98. ∴S 球=4πR 2=9π2.【2011,16】已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .【解析】设圆锥底面半径为r ,球的半径为R ,则由223π4π16r R =⨯,知2234r R =. 根据球的截面的性质可知两圆锥的高必过球心O ,且两圆锥的顶点以及圆锥与球的交点是球的大圆上的点,因此PB QB ⊥.设PO x '=,QO y '=,则2x y R +=. ? 又PO B BO Q ''△∽△,知22r O B xy '==.即2234xy r R ==. ? 由??及x y >可得3,22Rx R y ==.则这两个圆锥中,体积较小者的高与体积较大者的高的比为13. 故答案为13. 三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积. 【解法】(1)Q 90BAP CDP ∠=∠=︒, ∴,AB AP CD DP ⊥⊥又QAB ∥CD ∴AB DP ⊥又AP ⊂平面PAD ,DP ⊂平面PAD ,且AP DP P =I ∴AB ⊥平面PADQAB ⊂平面PAB ,所以 平面PAB ⊥平面PAD(2)由题意:设=PA PD AB DC a === ,因为90APD ∠=︒ ,所以PAD ∆为等腰直角三角形即AD取AD 中点E ,连接PE ,则2PE a =,PE AD ⊥. 又因为平面PAB⊥平面PAD所以PE ⊥平面ABCD因为AB ⊥平面PAD ,AB ∥CD 所以AB ⊥AD ,CD ⊥AD又=AB DC a =所以四边形ABCD 为矩形所以311183333P ABCD V AB AD PE a a -====g g g g即2a =【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.解析 :(1)由题意可得ABC △为正三角形,故6PA PB PC ===. 因为P 在平面ABC 内的正投影为点D ,故PD ⊥平面ABC . 又AB ⊂平面ABC ,所以AB PD ⊥.因为D 在平面PAB 内的正投影为点E ,故DE ⊥平面PAB . 又AB ⊂平面PAB ,所以AB DE ⊥. 因为AB PD ⊥,AB DE ⊥,PD DE D =I,,PD DE ⊂平面PDG ,所以AB ⊥平面PDG .又PG ⊂平面PDG ,所以AB PG ⊥. 因为PA PB =,所以G 是AB 的中点.(2)过E 作EF BP ∥交PA 于F ,则F 即为所要寻找的正投影.理由如下,因为PB PA ⊥,PB EF ∥,故EF PA ⊥.同理EF PC ⊥, 又PA PC P =I ,,PA PC ⊂平面PAC ,所以EF ⊥平面PAC , 故F 即为点E 在平面PAC 内的正投影.所以13D PEFPEF V S DE -=⋅△16PF EF DE =⋅⋅. 在PDG △中,32PG =6DG =3PD =2DE =.由勾股定理知22PE =PEF △为等腰直角三角形知2PFEF ==,故43D PEF V -=. 【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 的体积为63解:(Ⅰ) ∵BE ⊥平面ABCD ,∴BE ⊥AC . ∵ABCD 为菱形,∴ BD ⊥AC ,∴AC ⊥平面BED ,又AC ?平面AEC ,∴平面AEC ⊥平面BED . …6分 (Ⅱ)设AB=x ,在菱形ABCD 中,由∠ABC =120°可得, 3x ,GB=GD=2x. 在RtΔAEC 中,可得EG 3x . ∴在RtΔEBG 为直角三角形,可得BE=22x . …9分 ∴3116632243E ACD V AC GD BE x -=⨯⋅⋅==, 解得x =2.由BA=BD=BC 可得6.∴ΔAEC 的面积为3,ΔEAD 的面积与ΔECD 5所以三棱锥E-ACD 的侧面积为3+25 …12分 18. 解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥. 又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =I ,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====,又120ABC∠=o ,所以3AG GC x ==,BG GD x ==.在AEC △中,90AEC∠=o ,所以132EG AC x ==, 所以在Rt EBG △中,222BE EG BG x -=,所以3116622sin12023233E ACDV x x x x -=⨯⨯⋅⋅==o ,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中, 可得6AE EC ED ===所以三棱锥的侧面积112256632522S =⨯⨯=+侧 【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB ο求三棱柱111C B A ABC -的高. 证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ?平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD , 又BC ?平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD ,作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD 3由于AC ⊥AB 1,∴11122OA B C ==,∴227AD OD OA =+=由 OH·AD=OD·OA ,可得,又O 为B 1C 的中点,所以点B 1到平面ABC 的,所以三棱柱ABC-A 1B 1C 1的高高为。

相关文档
最新文档