第3章 解线性方程组的迭代法

合集下载

计算方法3_线性方程组迭代解法

计算方法3_线性方程组迭代解法

计算方法3_线性方程组迭代解法线性方程组的迭代解法是解决线性方程组的一种常见方法,常用于大规模的线性方程组求解。

该方法通过不断迭代更新解的近似值,直到满足一定的收敛准则为止。

线性方程组的迭代解法有很多种,其中最经典的是雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法。

本文将分别介绍这三种迭代解法及其计算方法。

雅可比迭代法是一种比较简单的线性方程组迭代解法,它的基本思想是先将线性方程组转化为对角占优的形式,然后通过迭代求解逐渐接近精确解。

雅可比迭代法的迭代公式为:其中,x^(k+1)是第k+1次迭代的近似解,n是未知数的个数,a_ij 是系数矩阵A的元素,f_i是方程组的右端向量的元素。

雅可比迭代法的计算步骤如下:1.将线性方程组转化为对角占优的形式,即保证矩阵A的对角元素绝对值大于其它元素的绝对值。

2.初始化向量x^(0),设定迭代终止准则。

3.根据雅可比迭代公式,计算x^(k+1)。

4.判断迭代终止准则是否满足,如果满足,则停止迭代,返回近似解x^(k+1);否则,继续进行下一次迭代。

高斯-赛德尔迭代法是雅可比迭代法的改进方法,它的基本思想是在每次迭代计算x^(k+1)时,利用已经计算出的近似解作为x的一部分。

高斯-赛德尔迭代法的迭代公式为:其中,x^(k+1)_i是第k+1次迭代的近似解中第i个未知数的值,x^(k)_i是第k次迭代的近似解中第i个未知数的值。

高斯-赛德尔迭代法的计算步骤如下:1.将线性方程组转化为对角占优的形式。

2.初始化向量x^(0),设定迭代终止准则。

3.根据高斯-赛德尔迭代公式,计算x^(k+1)。

4.判断迭代终止准则是否满足,如果满足,则停止迭代,返回近似解x^(k+1);否则,继续进行下一次迭代。

超松弛迭代法是对高斯-赛德尔迭代法的一种改进方法,它引入了松弛因子ω,通过调整参数ω的值,可以加快迭代的收敛速度。

超松弛迭代法的迭代公式为:其中,0<ω<2,x^(k+1)_i是第k+1次迭代的近似解中第i个未知数的值,x^(k)_i是第k次迭代的近似解中第i个未知数的值。

数值分析第三章线性方程组迭代法

数值分析第三章线性方程组迭代法

数值分析第三章线性方程组迭代法线性方程组是数值分析中的重要问题之一,涉及求解线性方程组的迭代法也是该领域的研究重点之一、本文将对线性方程组迭代法进行深入探讨。

线性方程组的一般形式为AX=b,其中A是一个n×n的系数矩阵,x和b是n维向量。

许多实际问题,如电路分析、结构力学、物理模拟等,都可以归结为求解线性方程组的问题。

然而,当n很大时,直接求解线性方程组的方法计算量很大,效率低下。

因此,我们需要寻找一种更高效的方法来求解线性方程组。

线性方程组迭代法是一种基于迭代思想的求解线性方程组的方法。

其基本思想是通过构造一个序列{xn},使得序列中的每一项都逼近解向量x。

通过不断迭代,可以最终得到解向量x的一个近似解。

常用的线性方程组迭代法有雅可比迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法等。

雅可比迭代法是其中的一种较为简单的迭代法。

其基本思想是通过分解系数矩阵A,将线性方程组AX=b转化为x=Tx+c的形式,其中T是一个与A有关的矩阵,c是一个常向量。

然后,通过不断迭代,生成序列xn,并使序列中的每一项都逼近解向量x。

高斯-赛德尔迭代法是雅可比迭代法的改进方法。

其核心思想是利用当前迭代步骤中已经求得的近似解向量的信息。

具体而言,每次迭代时,将前一次迭代得到的近似解向量中已经计算过的分量纳入计算,以加速收敛速度。

相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。

逐次超松弛迭代法是高斯-赛德尔迭代法的改进方法。

其核心思想在于通过引入一个松弛因子ω,将高斯-赛德尔迭代法中的每次迭代变为x[k+1]=x[k]+ω(d[k+1]-x[k])的形式,其中d[k+1]是每次迭代计算得到的近似解向量的一个更新。

逐次超松弛迭代法可以根据问题的特点调整松弛因子的值,以获得更好的收敛性。

除了以上提到的三种迭代法,还有一些其他的线性方程组迭代法,如SOR迭代法、共轭梯度法等。

这些方法都具有不同的特点和适用范围,可以根据问题的具体情况选择合适的迭代法。

第3章3-06迭代法和收敛性

第3章3-06迭代法和收敛性

解 方程组化为等价的方程组 0.2 x2 + 0.1x3 + 0.3 x1 = + 0.1x3 + 1.5 x2 = 0.2 x1 x = 0.2 x + 0.4 x + 2 1 2 3 构造高斯 赛德尔迭代公式 高斯构造高斯-赛德尔迭代公式 ( ( x1( k +1) = 0.2 x2k ) + 0.1x3k ) + 0.3 ( k +1) ( x2 = 0.2 x1( k +1) + 0.1x3k ) + 1.5, k = 0,1, 2,L ( k +1) ( x3 = 0.2 x1( k +1) + 0.4 x2k +1) + 2
雅可比迭代公式
i −1 n 1 ( k +1) (k ) (k ) xi = (bi − ∑ aij x j − ∑ aij x j ) , (i = 1,2,L, n) aii j =1 j =i +1
分量形式
( k +1) 1 ( ( ( x1 = (b1 − a12 x2k ) − a13 x3k ) − L − a1n xnk ) ) a11 ( k +1) 1 ( ( x2 = (b2 − a21 x1( k ) − a23 x3k ) − L − a2 n xnk ) ) a22 LLLL ( k +1) 1 ( ( ) xn = (bn − an1 x1( k ) − an 2 x2k ) − L − ann −1 xnk 1 ) − ann
高斯-赛德尔 高斯 赛德尔(Seidel)迭代公式 赛德尔 迭代公式
i −1 n 1 ( k +1) ( k +1) (k ) xi = (bi − ∑aij x j − ∑aij x j ), aii j =1 j =i +1

线性方程组的迭代式求解方法

线性方程组的迭代式求解方法

线性方程组的迭代式求解方法迭代法解方程的基本原理1.概述把 Ax=b 改写成 x=Bx+f ,如果这一迭代格式收敛,对这个式子不断迭代计算就可以得到方程组的解。

道理很简单:对 x^{(k+1)}=bx^{(k)}+f 两边取极限,显然如果收敛,则最终得到的解满足 \lim_{k\rightarrow\infty } x^{(k)}=x^*=Bx^*+f ,从而必然满足原方程 Ax^*=b 。

迭代方法的本质在于这一次的输出可以当作下一次的输入,从而能够实现循环往复的求解,方法收敛时,计算次数越多越接近真实值。

2.收敛条件充要条件:迭代格式 x=Bx+f 收敛的充要条件是 \rho (B)<1充分条件: \Vert B\Vert <1即 \Vert B\Vert <1 \Rightarrow \rho(B)<1\Leftrightarrow 迭代收敛一、Jacobi迭代法怎样改写Ax=b ,从而进行迭代求解呢?一种最简单的迭代方法就是把第i行的 x_i 分离出来(假定 a_{ii} \ne 0 ):\sum_{j=1}^{n}a_{ij}x_j=b_i\Rightarrow x_i=\frac{b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j}{a_{ii}}\quad \\这就是Jacobi(雅可比)迭代法。

迭代格式给定x^{(0)}=\left[x_1^{(0)},x_2^{(0)},\cdots,x_n^{(0)}\rig ht]^T ,则Jacobi法的迭代格式(也称分量形式)为x_i^{(k+1)}=\frac{1}{a_{ii}}\left ( {b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j^{(k)}}\right),\quadi=1,2,\cdots,n\\矩阵形式设 A=D-L-U。

Jacobi法的矩阵形式(也称向量形式)为x^{(k+1)}=B_Jx^{(k)}+D^{-1}b\\其中迭代矩阵 B_J=D^{-1}(L+U)收敛条件\begin{eqnarray} \left. \begin{array}{lll} \VertB_J\Vert <1 \\ A 严格对角占优\\ A, 2D-A对称正定\end{array} \right \} \end{eqnarray} \Rightarrow \rho (B_J)<1\Leftrightarrow 迭代收敛特别地,若 A 对称正定且为三对角,则 \rho^2(B_J)=\rho (B_G)<1 。

数值分析--第三章--迭代法

数值分析--第三章--迭代法

数值分析--第三章--迭代法迭代⼀般⽅程:本⽂实例⽅程组:⼀.jacobi迭代法从第i个⽅程组解出xi。

线性⽅程组Ax=b,先给定⼀组x的初始值,如[0,0,0],第⼀次迭代,⽤x2=0,x3=0带⼊第⼀个式⼦得到x1的第⼀次迭代结果,⽤x1=0,x3=0,带⼊第⼆个式⼦得到x2的第⼀次迭代结果,⽤x1=0,x2=0带⼊第三个式⼦得到x3的第⼀次迭代结果。

得到第⼀次的x后,重复第⼀次的运算。

转化成⼀般的形式:(其中L是A的下三⾓部分,D是A的对⾓元素部分,U 是上三⾓部分)得到迭代公式:其中的矩阵B和向量f如何求得呢?其实,矩阵B的计算也很简单,就是每⾏的元素/该⾏上的对⾓元素⼆.Gauss-Seidel迭代法【收敛速度更快】这个可以和jacobi法对⽐进⾏理解,我们以第⼆次迭代为例(这⾥的第⼀次迭代结果都⽤⼀样的,懒得去换)从上表对⽐结果可以看出,Jacobi⽅法的第⼆次迭代的时候,都是从第⼀次迭代结果中,获取输⼊值。

上⼀次迭代结果[2.5,3.0,3.0],将这个结果带⼊上⾯式⼦1,得到x1=2.88,;将[2.5,3.0,3.0]替换成[2.88,3.0,3.0]带⼊第⼆个式⼦的运算,这⾥得到x2=1.95,所以把[2.88,3.0,3.0]替换成[2.88,1.95,3.0]输⼊第三个式⼦计算X3=1.0.这就完成了这⼀次的迭代,得到迭代结果[2.88,1.95,1.0],基于这个结果,开始下⼀次迭代。

特点:jacobi迭代法,需要存储,上⼀次的迭代结果,也要存储这⼀次的迭代结果,所以需要两组存储单元。

⽽Gauss-Seidel迭代法,每⼀次迭代得到的每⼀个式⼦得到的值,替换上⼀次迭代结果中的值即可。

所以只需要⼀组存储单元。

转化成⼀般式:注意:第⼆个式⼦中的是k+1次迭代的第⼀个式⼦的值,不是第k次迭代得值。

计算过程同jacobi迭代法的类似三.逐次超松弛法SOR法上⾯仅仅通过实例说明,Jacobi和Seidel迭代的运算过程。

解线性方程组的迭代法

解线性方程组的迭代法

解线性方程组的迭代法Haha送给需要的学弟学妹摘要:因为理论的分析表明,求解病态的线性方程组是困难的,但是实际情况是否如此,需要我们来具体检验。

系数矩阵H 为Hilbert 矩阵,是著名的病态问题。

因而决定求解Hx b =此线性方程组来验证上述问题。

详细过程是通过用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法求解Hx b =线性方程组。

关键词:病态方程组、Gauss 消去法、J 迭代法、GS 迭代法、SOR 迭代法目录:一、问题背景介绍二、建立正确额数学模型 三、求解模型的数学原理1、Gauss 消去法求解原理2、Jacobi 迭代法求解原理3、G-S 迭代法求解原理4、SOR 迭代法求解原理5、Jacobi 和G-S 两种迭代法收敛的充要条件 四、计算过程(一)Hilbert 矩阵维数n=6时1、Gauss 消去法求解2、Jacobi 迭代法求解3、G-S 迭代法求解4、SOR 迭代法求解(二)Hilbert 矩阵维数n=20、50和100时1、G-S 迭代法求解图形2、SOR 迭代法求解图形 五、编写计算程序 六、解释计算结果1、Gauss 消去法误差分析2、G-S 迭代法误差分析3、SOR 迭代法误差分析G-S 迭代法与SOR 迭代法的误差比较 七、心得体会正文:一、问题背景介绍。

理论的分析表明,求解病态的线性方程组是困难的。

实际情况是否如此,会出现怎样的现象呢?二、建立正确的数学模型。

考虑方程组Hx b =的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(), , ,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。

通过首先给定解(为方便计算,笔者取x 的各个分量等于1),再计算出右端,b Hx =这样Hx b =的解就明确了,再用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法分别求解,Hx b =将求解结果与给定解比较,而后求出上述四种方法的误差,得出哪种方法比较好。

高斯-赛得尔迭代法


0

L~ D 1L, U~ D1U
于是 I L~ D1D D1L D1(D L) (3 16)
7
解线性方程组的迭代法
x(k1) (I L~)1U~x(k ) (I L~)1 g I L~ D1D D1L D1(D L) L~ D 1L, U~ D1U
将式(3-16)代入式(3-15)得
b1n xn(k)
g1
x2(k
1)
b x (k1) 21 1
b23x3(k) L
b x (k 2n1 n1
)
b2nxn(k)
g2
M
x (k1) n
b x (k1) n1 1
bn2x2(k1)
bn3x3(k1)
L
b x (k1) nn1 n1
gn
(3 13)
p4
2
解线性方程组的迭代法
b2n xn(k )
g2
M
x (k 1) n
bn1x1(k )
bn2 x2(k )
bn3 x3(k )
L
bnn
1xn
( 1
k
)
gn
其中
bij
aij aii
,
gi
bi aii
(i j,i, j 1, 2,L , n),
(i 1, 2,L , n).
(3 12)
1
解线性方程组的迭代法
因此,在Jacobi迭代法的计算过程中,要同时保留
即每算出新近似解的一个分量
x , ( k 1) i
再算下一个
x 分量
x(k 1) i 1
时,用新分量
x(k 1) i
代替老分量
(k ) i
进行计算。这样,在整个计算过程中,只需用n个

第三章 解线性方程组的迭代法


(3 .4 )
, k 1, 2 , 3 ,
式(3.4)称为Gauss-Seidel迭代法,简称为G-S迭代法.
G-S迭代法也可记为
xi
( k 1)

1 a ii
( b i a ij x
j 1
i 1
( k 1)
j
a ij x
j i 1
n
(k )
j
)
, i 1, 2 , n , k 0 ,1, 2 ,
则有
A=D-L-U
于是线性方程组 Ax=b 可写成 (D-L-U)x=b 等价于 Dx=(L+U)x+b 或 x=D-1(L+U)x+D-1b
由此建立J迭代法迭代公式
x(k+1)=D-1(L+U)x(k)+D-1b 或写成
x(k+1)=Bx(k)+g 其中
1 B D (L U ) 0 a 21 a 22 a n1 a nn a 12 a 11 0 an2 a nn a1n a 11 a2n a 22 0
可见 ,J迭代法的迭代矩阵为
B 0 a 21 a 22 a n1 a nn
bn a nn )
T

a 12 a 11 0 a n2 a nn



a 1n a 11 a 2n a 22 0
若记
从而得迭代公式
a 13 ( k ) a 1n ( k ) a 12 ( k ) b1 ( k 1) x x2 x3 xn 1 a 11 a 11 a 11 a 11 a 23 ( k ) a 2n (k ) a 21 ( k ) b2 ( k 1) x1 x3 xn x 2 a 22 a 22 a 22 a 22 a n1 ( k ) a n2 (k ) a nn 1 ( k ) bn ( k 1) x1 x2 x n 1 x n a nn a nn a nn a nn

解线性方程组的迭代法


0.9906
0.0355
5 1.01159 0.9953
1.01159 0.01159
6 1.000251 1.005795 1.000251 0.005795
7 0.9982364 1.0001255 0.9982364 0.0017636
可见,迭代序列逐次收敛于方程组的解, 而且迭代7次得到精确到小数点后两位的近似解.
a11x1 a12x2 a13x3 b1 a21x1 a22x2 a23x3 b2 a31x1 a32x2 a33x3 b3
从而得迭代公式
x1
a12 a11
x2
a13 a11
x3
b1 a11
x2
a21 a22
x1
a23 a22
x3
b2 a22
x3
a31 a33
M 00.8 00..75
但(M)=0.8<1,所以迭代法 x(k+1)=Mx(k)+g 是收敛的.
由(3.5)式可见,‖M‖越小收敛越快,且当‖x (k) -x(k-1) ‖很小时,‖x(k) –x*‖就很小,实际中用‖x (k) x(k-1) ‖<作为
迭代终止的条件。 例如,对例1中的Jacobi迭代计算结果
+‖x(k+1) –x*‖‖M‖‖x(k) –x(k-1)‖+‖M‖‖x(k) –x*‖ 从而得‖x(k) –x*‖‖M‖‖x (k) -x(k-1) ‖/(1- ‖M‖)
(3.5) (3.6)
估计式(3.5)得证。利用(3.5)式和
‖x(k+1) 得到
-x(k)
‖‖M‖‖x
(k)
-x(k-1)

解线性方程组 的迭代法

高斯-赛得尔迭代法


b12x2(k) b13x3(k)
x2(k
1)
b x (k1) 21 1
b23x3(k)
b x (k) 1n1 n1
b1n xn(k)
g1
b x( 2n1 n1
k
)
b2nxn(k)
g2
x (k1) n
b x (k1) n1 1
bn2
x (k1) 2
bn3x3(k1)
b x (k1) nn1 n1
9
解线性方程组的迭代法
例 用Gauss-Seidel迭代法求线性方程组
10x1 x2 2x3 72,
x1 10x2 2x3 83,
x1 x2 5x3 42,
x1 0.1x2 0.2x3 7.2 x2 0.1x1 0.2x3 8.3 x3 0.2x1 0.2x2 8.4
x )
x (k 1) 2
0.4x2(k )
0.7( x1(k 1)
x (k) 3
)
x (k 1) 3
0.4x3(k ) 0.7(1.8 x2(k1) )
20
解线性方程组的迭代法
x (k 1) 1
0.4x1(k )
0.7(1 x2(k) )
参数 , 误差限 , 最大容许迭代次数N.
2. 置 k 1.
3.计算
18
解线性方程组的迭代法
n
x1 (1 ) x1(0) (b1
a1
j
x(0) j
)
/
a11
j2
i 1
n
xi (1 )xi(0) (bi aij x j
aij
x
(0) j
)
/
aii
j 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P61
1 , 2, 3, 4, 5, 6
26
必收敛,且有
x
误差估计式
(k )
k q x* 1 q
x(1) x(0) , x(k ) x(k 1) .
12
x(k ) x*

q 1 q
3.1 简单迭代法

由定理4及误差估计式,针对三种常用的矩 阵范数,有3个推论来判别简单迭代法收敛 的3个充分条件和相应的误差估计式。
P48 推论1-3
注意:此处的0是向量!
9
3.1 简单迭代法

定理2 设
B R nn
k
,则下面三个命题等价:
lim B ( 1) k
0.
(2) ( B) 1.(即: 矩阵B的谱半径 1) (3)至少存在一种从属的矩阵范数
,使
B 1.

简单迭代法的收敛定理
Bx
( k 1)
对角占优阵的定义

若 a ii
j 1, j i
a
n
ij
(i 1,2,...,n) ,则称A为严格/强对角占优阵

即:每行对角线元素的绝对值 > 该行其他元素绝对值之和 如果A为严格对角占优阵,则A可逆。
16

对角占优定理(定理5):

3.2 雅可比(Jacobi)迭代法

定理6 (雅可比格式收敛定理)

3 x1 x2 2, x1 2 x2 1.
3
3.1 简单迭代法
设线性方程组 Ax b (3.1) 2 x2 n n 1 n 2 其中, A R 且非奇异, x , b R 且 b 0 。 x 0 1 x x 3 3 1 3 1 * x 。 假定其唯一解为 x x 1 x 1 1 2 2 1 x 0 2 3.1 式( )的等价方程组为: 2 2 2 x Bx f

定理3 (迭代法收敛的充要条件) 设有线性 方程组 x Bx f ,则对于任意的初始向量 x(0) 及任意的右端向量 f ,解此线性方程组的 迭代法 x( k 1) Bx( k ) f (k 0,1,2,...) 收敛的充要条件是 ( B) 1. 并且若用以上 格式求得的向量序列 x ( k ) 的极限存在,其 极限就是线性方程组 x Bx f 的唯一解。
P51

即:满足系数矩阵是严格对角占优阵的线性方程组, 用雅可比迭代法来求解时,迭代法是收敛的。
P52

例3
先利用分量形式,写出雅可比迭代格式 再用严格对角占优阵的定义,判断系数矩阵是不是严 格对角占优阵
17

计科11周周5进度到此
3.3 高斯-塞德尔迭代法

在雅可比迭代法的基础上的改进
19
3.3 高斯-塞德尔迭代法

高斯-塞德尔迭代法
分量形式:P53
(3.16)
xi
( k 1)
i 1 n 1 ( k 1) (k ) (bi aij x j aij x j ), i 1,2,...,n; k 0,1,... aii j 1 j i 1
矩阵形式

(k ) k
lim x
k *

*
(k )
*
*
*
也是Ax b的解。

注意:x, f 均为向量
6
3.1 简单迭代法
利用x
( k 1)
Bx
(k )
f
(k 0,1,2,...)
进行迭代求解的方法, 称为简单迭代法。 B:迭代矩阵 x :初始近似解 x :k次近似解 k:迭代次数



向量序列的极限
向量序列: x
简记为: x(k ) n 假设在 R 中定义了范数 ,若存在 x R n ,
(k )

(k ) k 0



x(k ) x 0 使 lim ,则称序列 x k (k ) x ( k ) x lim xi xi , i 1,2,...,n 。 收敛于 x ,记为 lim k k
,记为 lim A( k ) A lim aij ( k ) aij (i, j 1,2,...,n) 。
k k


矩阵收敛,矩阵中各元素也收敛。

定理1
lim A( k ) 0 lim A( k ) x 0,
k k
x R n
矩阵收敛,矩阵*向量也收敛。

(k ) (0)
注意:x为向量
7
3.1 简单迭代法

根据精度要求,决定迭代次数

精确解无法求出! 判断相邻两次计算的结果是否充分接近预先给定的精度,来决定方程组的 近似解
ቤተ መጻሕፍቲ ባይዱ
一般地,对预先给定的精度


见 P46 --- 表3.1
x ( k 1)

,若
x ( k 1) x ( k )
是满足精度要求的近似解。

方程组系数矩阵A如果是严格对角占优阵,那么用GS迭代法求解方程组,迭代收敛。
课堂练习:P62
7-8题
23
3.3 高斯-塞德尔迭代法

分别用雅可比、G-S迭代法,求解方程组

雅可比迭代法(误差小于10-3) G-S迭代法

24
本章小结

解线性方程组的迭代法
适用于高阶稀疏型方程组 简单迭代法、雅可比迭代法、G-S迭代法 各种迭代法的原理、特点、算法、Matlab实现

注意:x, f 均为向量
4
3.1 简单迭代法
任取初始向量
x
(0)


x x x
(1) ( 2)
Bx
(0) (1)
f Bx f
...... Bx
(k )
注意:x, f 均 为向量
( k 1)

f
(k 0,1,2, ... ):
2 x2 x1 3 x 1 x1 2 2
注意:
( B ) 难求。但 ( B) B

,故有定理4。
11
3.1 简单迭代法

定理4 (迭代法收敛的充分条件) 设有线性 方程组 x Bx f ,如果 B q 1 ,则对 于任意的初始向量 x(0) 及任意的右端向量 f , 解此线性方程组的迭代法
x( k 1) Bx( k ) f (k 0,1,2,...)
逐步逼近 占用存储空间小、程序设计简单

求解大型稀疏矩阵方程组的重要方法

本章内容

简单迭代法


雅可比迭代法
高斯---塞德尔迭代法
2
3.1 简单迭代法
原理:将原线性方程组Ax=b中系数矩阵的主 对角线移到一边,并将其系数化为1,然后 任意给定迭代初值,通过迭代,逐步逼近方 程的解。 例1 用简单迭代法解线性方程组
雅可比迭代:后一次计算利用前一次的解向量
高斯-塞德尔迭代法
在进行后一次计算时,后面的分量计算,可以充
分利用本次计算时已经计算出来的量。 例如:

参看P52 例3 在迭代计算到第k+1次时,如何改进?
x2 x3
( k 1)
( k 1)
1 (k ) (k ) ( 2 5 x1 2 x3 ) 8 1 (k ) (k ) (3 2 x1 4 x2 ) 9
14
3.2 雅可比(Jacobi)迭代法

特点:
比较简单
每迭代一次,只需要计算一次矩阵、向量乘法 仅需要2组存储单元,用来存储
( k 1) (k )
x
和x
15
3.2 雅可比(Jacobi)迭代法

算法: P50
按分量形式迭代求每次的矩阵

Jacobi迭代法的收敛性
预备知识

f * * x Bx f x
(k ) (k 1) B
(k )
x ( k ) x* B( x ( k 1) x* )

B2

( k 2)
... B k

(0)
可见x ( k ) x* B k ( 0 k )
10
3.1 简单迭代法

各迭代法的分量形式(P45-3.3-3.5、P50-3.15、P53-3.16)
各种迭代法的收敛性判定

各迭代矩阵的谱半径<1(此方法难!) 简单迭代法:P48 三推论之一满足即可 雅可比迭代法:系数矩阵为严格对角占优阵 G-S迭代法:系数矩阵为严格对角占优阵
P60
小结
25
第3章作业
:P53 (3.17)
20
3.3 高斯-塞德尔迭代法

特点
只需一组存储单元
在一定条件下,比雅可比迭代法收敛更快; 在某种条件下,解同一方程组,雅可比迭代法收
敛,但G-S迭代法却发散。
21
3.3 高斯-塞德尔迭代法

算法
P53
22
3.3 高斯-塞德尔迭代法

收敛性
定理7(G-S格式收敛定理)


应用注意:

推论1-3,只要满足其中一个条件,就能确定迭代法一定收敛! 如果计算某个范数>=1,不能确定迭代法一定发散!还需要再次计算另外的范数。 一旦有一个<1,即可知,迭代一定收敛。
相关文档
最新文档