函数信号发生器的设计
函数信号发生器的设计

6
R3
2k
Rp
10k
-12v
12v
7
U2
2
R2 20k
3
D1
1N5235B
迟滞比较 器 R1
10k
D2
1N5235B
12v
积分电路
7
4 1 5
UA741
单元电路
用差分放大器做三角波/正弦波变换电路
三角波/正弦波变换原理: 用差分对管的饱和与截止特性进行变换:差分放大器电流恒 定并要求:传输特性对称线性区尽可能窄;三角波的幅值Vm 应使输出接近晶体管的截止电压;
v O VO 3 VO 2 T / 14 v I
VIm 0.78 T /4
在T/7~3T/14区段内
VIm 0.42 T /4
在3T/14~T/4区段内
v O VOm VO 3 T / 28 v I VIm 0.13 T /4
正弦函数 转换方案1
基本结构是比例放 大器。只是使运放在不 同的时间区段(或输出 电平区段)内,具有不 同的比例系数。对不同 区段内比例系数的切换, 是通过二极管网络来实 现的。 vi vo
模拟电路的实现方案,是指全部采用模拟电 路的方式,以实现信号产生电路的所有功能。由 于教学安排及课程进度的限制,本实验的信号产 生电路,推荐采用全模拟电路的实现方案。 模拟电路实现信号产生电路的多种方式
方案一
RC文氏电桥振荡器产生正弦波,方波-三角波产生电路可正 弦波振荡器采用波形变换电路, 通过迟滞比较器变换为方波, 经积分器获得三角波输出。此电路的输出频率就是就是RC文 氏电桥振荡器的振荡频率.
有源正弦函数转换电路的转换原理如图 所示。
若设正弦 波在过零点处 的斜率与三角 波斜率相同, 即
《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电路知识,运用AD画图软件,设计并制作完成一简易函数信号发生器,要求能产生方波和三角波,且频率可调,自行设计电路所需电源电路。
1.2 整机实现的基本原理及框图1.函数信号发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。
其电路中使用的器件可以是分立器件,也可以是集成电路。
本课题需要完成一个能产生方波、三角波的简易函数信号发生器。
产生方波、三角波的方案有很多种,本课题采用运放构成电压比较器出方波信号,采用积分器将方波变为三角波输出,其原理框图如图1所示。
2 硬件电路设计直流电源电路一般由“降压——整流——滤波——稳压”这四个环节构成。
基本组成框图如图2所示。
(1)电源变压器的作用是将电网220V的交流电压变成整流电路所需要的电压u。
因此,uj=nu;(n 为变压器的变比)。
整流电路的作用是将交流电压u.变换成单方向脉动的直流Uz。
整流电路主要有半波整流、全波整流方式。
以单相桥式整流电路为例,U=0.9u。
每只二极管所承受的最大反向1 0.45u电压uey=、2u,,平均电流/ouv)=之 R R对于RC滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC=(3~5)T/2,T为50Hz交流电压的周期,即20ms。
(2)器件选择①变压器将220V交流电压变成整流电路所需要的电压u。
②整流电路将交流电压u:转换成单方向脉动的直流U2,有半波整流、全波整流,可以利用整流二极管构成整流桥堆来实现。
此题建议用二极管搭建全波整流电路实现。
③滤波电路将脉动直流电压Uz滤除纹波,变成纹波较小的U,有RC滤波电路、LC滤波电路等。
此题建议采用大电容滤波。
④稳压器常用集成稳压器有固定式三端稳压器和可调式三端稳压器。
下面分别介绍其典型应用及选择原则。
固定式三端稳压器的常见产品有:78XX系列稳压器输出固定的正电压,如7805输出为+5V;79XX系列稳压器输出固定的负电压,如7905输出为-5V。
函数信号发生器的设计

函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。
它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。
本文将介绍函数信号发生器的设计原理和实现方法。
一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。
振荡电路是由放大器、反馈电路和滤波电路组成的。
其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。
函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。
例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。
二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。
下面分别介绍这两种方法的实现步骤和注意事项。
1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。
具体步骤如下:(1)选择合适的集成电路。
NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。
(2)按照电路图连接。
根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。
同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。
(3)调节参数。
根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。
同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。
(4)测试验证。
连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。
简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。
它可以产生不同的信号波形,用于测试和调试电子设备。
本设计报告将介绍一个简易的函数信号发生器的设计方案。
二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。
同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。
三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。
在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。
2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。
通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。
3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。
通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。
四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。
2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。
3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。
五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。
在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。
七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。
《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电子技在此处键入公式。
术知识,运用AD软件设计并制作一简易函数信号发生器,要求能产生方波和三角波信号,且频率可调,并自行设计电路所需电源1.2 整机实现的基本原理及框图1.电源电路组成由变压器—整流电路—滤波电路—滤波电路—稳压电路组成。
变压器将220V 电源降压至双15V,经整流电路变换成单方向脉冲直流电压,此电源使用四个整流二极管组成全波整流桥电源变压器的作用是将电网220V 的交流电压变成整流电路所需要的电压u1。
因此,u1=nu i(n 为变压器的变比)。
整流电路的作用是将交流电压山变换成单方向脉动的直流U2。
整流电路主要有半波整流、全波整流方式。
以单相桥式整流电路为例,U2=0.9u1。
每只二极管所承受的最大反向电压u RN= √2u1,平均电流I D(A V),=12I R=0.45U1R对于RC 滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC= (3~5)T/2,T 为50Hz 交流电压的周期,即20ms。
此电源使用大电容滤波,稳压电路,正电压部分由三端稳压器7812输出固定的正12V电压,负电压部分由三端稳压器7912输出固定-12V电压。
并联两颗LED灯分别指示正负电压。
2.该函数发生器由运放构成电压比较器出方波信号,方波信号经过积分器变为三角波输出。
2 硬件电路设计硬件电路设计使用Altium Designer 8.3设计PCB,画好NE5532P,7812及7912的原理图和封装后,按照电路图画好原理图后生成PCB图。
合理摆放好各器件后设置规则:各焊盘大小按实际情况设置为了更容易的进行打孔操作,设置偏大一些,正负12V电源线路宽度首选尺寸1.2mm,最小宽度1mm,最大宽度1.2mm,GND线路宽度首选尺寸1mm,最小宽度1mm,最大宽度1.5mm,其他线路首选尺寸0.6mm,最小宽度1mm,最大宽度1.2mm。
函数信号发生器设计方案

函数信号发生器设计方案函数信号发生器是一种能够产生各种类型的电信号的测试设备。
它广泛应用于电子和通信领域的研发和生产过程中,用于测试电路的各种性能参数。
为了设计一个高性能、高精度的函数信号发生器,我们可以采取以下方案。
首先,选择合适的信号发生器芯片。
常用的信号发生器芯片有DDS(直接数字合成)芯片和信号调制芯片。
DDS芯片具有数字处理能力强、干扰小的优点,可以产生高精度、宽频带的各种信号波形。
信号调制芯片则可以实现各种调制方式,如AM、FM、PM等。
根据需要,我们可以选择适合的芯片。
其次,设计合理的电路结构。
函数信号发生器的电路结构一般包括时钟发生电路、数字信号处理电路和模拟输出电路。
时钟发生电路用于产生高精度的时钟信号,为后续的数字信号处理提供基准。
数字信号处理电路利用DDS芯片或信号调制芯片产生各种类型的信号波形,并对波形进行加工、调制等。
模拟输出电路将数字信号转换为模拟信号,用于输出到被测设备。
接下来,需要设计合适的控制界面。
函数信号发生器通常配备有操作面板和显示屏,用于用户对信号发生器进行设置和监控。
操作面板需要设计合理的按键和旋钮,方便用户操作。
显示屏可以显示当前的设置参数和输出波形,保证用户对信号的监测。
此外,为了提高信号发生器的性能,我们可以考虑增加一些附加功能。
例如,可以增加RS232、USB等接口,实现信号发生器与计算机之间的数据交互,方便用户对信号发生器进行远程控制和数据采集。
还可以增加自动测试功能,根据用户设定的测试要求,自动产生相应的信号波形并进行测试。
最后,需要进行严格的测试和调试。
在设计完成后,需要对整个信号发生器进行严格的测试和调试,确保各个模块之间正常工作,信号的输出符合要求。
可以利用示波器、频谱仪等测试仪器对信号进行检测和分析,校准信号发生器的性能参数。
综上所述,设计一个高性能、高精度的函数信号发生器,需要选择合适的芯片、设计合理的电路结构和控制界面、增加附加功能,并进行严格的测试和调试。
函数信号发生器设计方案
函数信号发生器设计方案设计一个函数信号发生器需要考虑的主要方面包括信号的类型、频率范围、精度、输出接口等等。
下面是一个关于函数信号发生器的设计方案,包括硬件和软件两个方面的考虑。
硬件设计方案:1.信号类型:确定需要的信号类型,如正弦波、方波、三角波、锯齿波等等。
可以根据需求选择合适的集成电路或FPGA来实现不同类型的信号生成。
2.频率范围:确定信号的频率范围,例如从几Hz到几十MHz不等。
根据频率范围选择合适的振荡器、计数器等电路元件。
3.精度:考虑信号的精度要求,如频率精度、相位精度等。
可以通过使用高精度的时钟源和自动频率校准电路来提高精度。
4.波形质量:确定信号的波形质量要求,如波形畸变、谐波失真等。
可以使用滤波电路、反馈电路等技术来改善波形质量。
5.输出接口:确定信号的输出接口,如BNC接口、USB接口等,并考虑电平范围和阻抗匹配等因素。
软件设计方案:1.控制界面:设计一个易于操作的控制界面,可以使用按钮、旋钮、触摸屏等各种方式来实现用户与信号发生器的交互。
2.参数设置:提供参数设置功能,用户可以设置信号的频率、幅度、相位等参数。
可以通过编程方式实现参数设置,并通过显示屏或LED等方式来显示当前参数值。
3.波形生成算法:根据用户设置的参数,设计相应的波形生成算法。
对于简单的波形如正弦波可以使用数学函数来计算,对于复杂的波形如任意波形可以使用插值算法生成。
4.存储功能:可以提供存储和读取波形的功能,这样用户可以保存和加载自定义的波形。
存储可以通过内置存储器或外部存储设备实现,如SD卡、U盘等。
5.触发功能:提供触发功能,可以触发信号的起始和停止,以实现更精确的信号控制。
总结:函数信号发生器是现代电子测量和实验中常用的仪器,可以产生各种不同的信号类型,提供灵活的信号控制和生成能力。
在设计过程中,需要综合考虑信号类型、频率范围、精度、波形质量、输出接口等硬件方面的因素,以及控制界面、参数设置、波形生成、存储和触发等软件方面的功能。
函数信号发生器实验教学设计与实践
函数信号发生器实验教学设计与实践一、实验目的:1.了解函数信号发生器的基本原理和工作过程;2.掌握函数信号发生器的使用方法;3.熟练掌握函数信号发生器的参数设置及调节技巧;4.学会利用函数信号发生器产生不同类型的信号,如正弦波、方波、三角波等;5.了解函数信号的性质及其在电路实验中的应用。
二、实验原理:函数信号发生器是一种能够产生各种不同波形的信号源设备,常用于电子实验中的信号源和频率标准。
它可以产生正弦波、方波、三角波等不同类型的波形,并且可以通过调节幅度、频率、相位等参数来得到需要的信号输出。
函数信号发生器一般由振荡器、波形调制电路、幅度调节电路和频率调节电路等部分组成。
三、实验内容及步骤:1.实验仪器与材料:函数信号发生器、示波器、万用表、串联电阻、电容等元器件。
2.实验步骤:(1)连接实验电路:将函数信号发生器的输出端与示波器的输入端相连,然后通过示波器显示出信号波形。
(2)调节幅度参数:设置函数信号发生器的幅度参数,观察示波器上波形的变化。
(3)调节频率参数:设置函数信号发生器的频率参数,观察波形在示波器上的变化。
(4)产生不同波形:尝试产生不同类型的波形,如正弦波、方波、三角波等,并观察其在示波器上的输出情况。
(5)测量输出信号的频率、幅度等参数,掌握功能信号发生器的参数调节技巧。
四、实验结果与分析:1.实验通过连线和参数设置,成功连接函数信号发生器和示波器,并在示波器上显示出所需的信号波形。
2.通过调节幅度和频率参数,能够观察到输出信号的变化,并且通过示波器可以准确测量信号的频率、幅度等参数。
3.产生正弦波、方波、三角波等不同类型的波形,并观察其在示波器上的输出情况,验证函数信号发生器的功能。
五、实验总结:通过本次实验,我们深入了解了函数信号发生器的原理和工作过程,掌握了函数信号发生器的使用方法及参数调节技巧。
实验中,我们通过实际操作产生了不同类型的信号波形,并成功利用示波器观察和测量了输出信号的频率、幅度等参数。
函数信号发生器的设计
函数信号发生器的设计
函数信号发生器是一种用于产生各种常用电信号和波形的多功能信号产生器。
它也可
以产生各种频率、幅度范围可调的宽带或窄带信号。
在科学研究,工程设计和信号测量领
域中,函数信号发生器发挥着重要作用。
函数信号发生器的设计一般包括信号控制模块、信号发生模块和信号监控模块三部分。
信号控制模块用于控制信号的产生以及信号的参数,如波形、频率、幅度等。
它根据
外部控制信号的指令,通过把信号控制参数转换成相应的电气量并输出至发生模块。
常用
的参数控制方法有时序逻辑控制、数字逻辑控制和模拟控制,各司其职。
信号发生模块经过控制模块传来控制信号后,将其转换成相应的电信号或波形及参数,完成发生功能,输出至信号检测模块。
信号发生模块的选择取决于所要求的发生的信号的
频率、波幅和类型等参数,如果只是产生低频、幅度小的信号,可以使用简单的开关电路;对于需要产生宽带信号和高频信号,则可采用电声变换器、振荡器、综合器或调制器等元
件辅以专用外围电路实现。
信号监控模块起到信号检测、监测和放大作用,其主要功能是通过增益放大信号,而
其增益可以由控制模块实现调节,具体实现方案取决于信号的类型,对于数字信号可以采
用数字信号处理技术,而对于模拟信号可以采用模拟信号放大器。
函数信号发生器的设计实际上是信号生成、控制、测量和监测的一整套系统,是通过
控制仪表发送信号,然后把发出的信号放大,然后利用函数信号发生器产生恒定频率和恒
定幅度的信号,以及根据外部控制指令动态调整频率、幅度等信号参数,从而实现测量结
果的视觉化和长期信号测量自动化等功能。
简易函数信号发生器的设计报告
简易函数信号发生器的设计报告设计报告:简易函数信号发生器一、引言函数信号发生器是一种可以产生各种类型函数信号的设备。
在实际的电子实验中,函数信号发生器广泛应用于工程实践和科研领域,可以用于信号测试、测量、调试以及模拟等方面。
本文将着重介绍一种设计简易函数信号发生器的原理和方法。
二、设计目标本设计的目标是实现一个简易的函数信号发生器,能够产生包括正弦波、方波和三角波在内的基本函数信号,并能够调节频率和幅度。
同时,为了提高使用方便性,我们还计划增加一个显示屏,实时显示当前产生的信号波形。
三、设计原理1.信号源函数信号发生器的核心是信号发生电路,由振荡器和输出放大器组成。
振荡器产生所需的函数信号波形,输出放大器负责放大振荡器产生的信号。
2.振荡器为了实现多种函数波形的产生,可以采用集成电路作为振荡器。
例如,使用集成运算放大器构成的和差振荡器可以产生正弦波,使用施密特触发器可以产生方波,使用三角波发生器可以产生三角波。
根据实际需要,设计采用一种或多种振荡器来实现不同类型的函数信号。
3.输出放大器输出放大器负责将振荡器产生的信号放大到适当的电平以输出。
放大器的设计需要考虑到信号的频率范围和幅度调节的灵活性。
4.频率控制为了能够调节信号的频率,可以采用可变电容二极管或可变电阻等元件来实现。
通过调节这些元件的参数,可以改变振荡器中的RC时间常数或LC谐振电路的频率,从而实现频率的调节。
5.幅度控制为了能够调节信号的幅度,可以采用可变电阻作为放大电路的输入阻抗,通过调节电阻阻值来改变信号的幅度。
同时,也可以通过增加放大倍数或使用可变增益放大器来实现幅度的控制。
四、设计步骤1.确定电路结构和信号发生器的类型。
根据功能和性能需求,选择合适的振荡器和放大器电路,并将其组合在一起。
2.根据所选振荡器电路进行参数计算和元件的选择。
例如,根据需要的频率范围选择适合的振荡器电路和元件,并计算所需元件的数值。
3.设计输出放大器电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳航空航天大学课程设计任务书课程名称电子线路课程设计课程设计题目函数信号发生器的设计课程设计的内容及要求:一、设计说明与技术指标1.设计能产生正弦波等波形的函数信号发生器,2.信号频率范围:1Hz∽100kHz;3.输出波形要求①正弦波谐波失真度≤2%;②方波上升沿和下降沿时间不得超过200nS,占空比在48%∽50%之间;4.输出信号幅度范围:0∽20V;二、设计要求1.在选择器件时,应考虑成本。
2.根据技术指标,通过分析计算确定电路和元器件参数。
3.画出电路原理图(元器件标准化,电路图规范化)。
三、实验要求1.根据技术指标制定实验方案;验证所设计的电路,用multisim软件仿真。
2.进行实验数据处理和分析。
四、推荐参考资料1. 童诗白,华成英主编.模拟电子技术基础.[M]北京:高等教育出版社,2006年2. 阎石,数字电子技术(第五版).[M]北京:高等教育出版社,2005.3. 陈孝彬《555集成电路实用电路集》高等教育出版社2002-84. 王刚《TTL集成电路应用》机械工业出版社2000-10五、按照要求撰写课程设计报告成绩评定表:序号评定项目评分成绩1 设计方案正确,具有可行性,创新性(15分)2 设计结果可信(例如:系统分析、仿真结果)(15分)3 态度认真,遵守纪律(15分)4 设计报告的规范化、参考文献充分(不少于5篇)(25分)5 答辩(30分)总分最终评定成绩(以优、良、中、及格、不及格评定)指导教师签字:年月日一、概述函数信号发生器在生活中很常见,在许多领域都要用到。
按照频率范围分类可以分为:超低频信号发生器、低频信号发生器、中频信号发生器、高频波形发生器和超高频信号发生器。
按照输出波形分类可以分为:正弦信号发生器和非正弦信号发生器,非正弦信号发生器又包括:脉冲信号发生器,函数信号发生器、扫频信号发生器、数字序列波形发生器、图形信号发生器、噪声信号发生器等。
按照信号发生器性能指标可以分为一般信号发生器和标准信号发生器。
前者指对输出信号的频率、幅度的准确度和稳定度以及波形失真等要求不高的一类信号发生器。
后者是指其输出信号的频率、幅度、调制系数等在一定范围内连续可调,并且读数准确、稳定、屏蔽良好的中、高档信号发生器。
在本设计中采用分立元件达成非稳态的多谐振荡器、然后根据具体需要加入积分电路等构成正弦、矩形、三角等波形发生器。
在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都需要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。
信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。
二、方案论证本设计的任务指标:1.设计能产生正弦波等波形的函数信号发生器;2.信号频率范围:1Hz~100kHz;3.输出波形要求(1)正弦波谐波失真度<=2%;(2)方波上升沿和下降沿时间不得超过200nS,占空比在48%~50%之间;4.输出信号幅度范围:0~20V;方案一:采用分立元件构成。
先用RC桥式振荡电路产生正弦波,通过RC分别接不通的值产生不同频率的正弦波,由于产生的正弦波幅值较小,所以接一个电压放大器对幅度进行放大,实现幅度范围的可调,再接入一个电压比较器,把正弦波变为占空比可调的方波,最后对方波进行整形,使波形更加理想。
方案一原理框图如图1所示。
产生正弦波对波形放大转换成方波对方波整形RC振荡电路电压放大器电压比较器施密特触发器图1 函数信号发生器电路的原理框图方案二:用单片函数发生器ICL8038 组成多功能信号发生器方案二是由波形发生集成器件和少部分元器件组成的信号产生电路,随着集成制造技术的不断发展,信号发生器已被制造成专用集成电路。
采用集成电路实现,主要部件有高速运算放大器741、单片函数发生器模块ICL8038、选择开关、电位器和一些电容、电阻组成。
采用波形发生专用芯片采用ICL8038,该芯片主要有以下一些优良特性:它是采用肖特基势垒二极管等先进工艺制成的单片集成电路芯片,外部只需接入很少的元件即可工作,可同时产生方波、高线性度三角波和低失真度正弦波;在温度发生变化时产生低的频率漂移;工作变化周期宽,占空比可调,高的电平输出范围,易于使用等特点。
且具有电源电压范围宽、稳定度高、精度高等优点本设计采用波形发生专用芯片相结合实现函数信号发生器,具有较强的实用性。
该方案通过调节不同电位器可调节函数发生器输出振荡频率大小、占空比、正弦波信号的失真,可产生精度较高的方波、三角波、正弦波,且具有较高的温度稳定性和频率稳定性。
其输出频率能在1Hz-100kHz 范围内连续调整,达到调试简单、性能稳定、使用方便等优点,使信号发生器电路大大简化分析以上两种方案,比较他们的利弊,方案二集成电路比分立元件要简单很多,精度也较高,温度稳定性和频率稳定性比较好,但由于频率与占空比不能单独调节,并且实验条件不允许,元件相对较贵,必须考虑成本。
而方案一集成运放等分立元件性价比较高,且由分立元件构成的信号发生电路直观易懂。
并且比较贴合我们目前所学的知识,所以选择方案一。
三、电路设计1.RC桥式振荡电路由于RC桥式电桥振荡器具有电路简单、易起振、频率可调等特点被大量应用与低频振荡电路,所以我们采用RC桥式电桥振荡器产生正弦波。
RC正弦波振荡电路要提高其振荡频率,必须减小R和C的值,放大器的输出电阻和晶体管的极间电容将影响其选频特性,输出频率不稳定。
所以一般产生1MHZ以下的正弦波,满足条件。
原理图如图2所示。
RC串并联选频网络接在运算放大器的输出端和同相输入端之间,构成正反馈,R3、R8接在运算放大器的输出端和反相输入端之间,构成负反馈。
正反馈电路和负反馈电路构成一桥式电桥电路,运算放大器的输入端和输出端分别跨接在电桥的对角线上,所以,把这种振荡电路称为RC桥式振荡电路。
振荡信号由同相端输入,故构成同相放大器,输出电压Uo与输入电压Ui同相,其闭环电压放大倍数等于Au=Uo/Ui=1+(R8/R3)。
RC串并联选频网络在ω=ωo=1/RC时,Fu=1/3,εf=0°,所以,只要|Au|=1+(R8/R3)>3,即R8>2R3,振荡电路就能满足自激振荡的振幅和相位起振条件,产生自激振荡,振荡频率f等于f=1/2πRC。
在图2中,R8=10.2kΩ,R3=5kΩ,R8>2R3,满足自己振荡条件。
在满足自激条件的前提下,R8越小,正弦波失真越小,所以可以尽量减小R8来满足正弦波谐波失真度小于2%的条件。
为了使输出幅度比较稳定,在R3回路串联两个并联的稳压管D1、D2,以及在输出加入了R4、R5、R6、R7组成非线性环节,使输出电压更加稳定。
电压放大器图2 RC桥式振荡电路在本设计中,要求频率在1HZ~100kHZ 可调,由RC 振荡电路f=1/2πRC 可得,令R=158k Ω,即R1=R2=158k Ω,则由公式,当电容C 选择不同的数值时,频率可变为不同的数值,如图2,当连接不同的可变电容时,可以对正弦波频率进行粗调,对可变电容的值进行变化,可以实现正弦波频率的细调,由此实现了频率在范围内的分段可调。
由于RC 串并联电路中的RC 应该保持一致,根据计算得,当开关组接C1=C4=100pF 时频率可调范围是10k~100kHZ,当接C3=C5=100nF 时频率可调范围是10~1kHZ ,当连接C2=C7=1nF 时,频率可调范围是1k~10kHZ,当连接C6=C8=1uF 时,频率可调范围是1~10HZ ,由此实现了频率在范围内可调。
2.电压放大器电路电路如图3所示。
放大电路可对输入信号的幅值进行放大,放大倍数为N=(R9+R10)/R10。
由于R9为滑动变阻器,可以调节阻值,所以放大倍数可以随阻值的变化而变化,间接实现了输出信号的幅度范围可调。
图3 电压放大器RC 振荡电路电压比较器3.电压比较器电路 电路如图4所示图4 电压比较器电压比较器简称比较器,其基本功能是对两个输入电压进行比较,并根据比较结果输出高电平或低电平电压,据此来判断输入信号的大小和极性。
电压比较器常用于自动控制、波形产生与变换,模数转换以及越限报警等许多场合。
在本设计中,电压比较器可以将输入信号转变为方波,并且输出频率与输入频率一致,是理想的方波产生电路,可以很好的满足本设计的要求。
比较器采用了滑动变阻器,方便调节方波的占空比,占空比=R11/(R11+R12),R11为滑动变阻器,改变R11的阻值,可调节占空比,满足本设计要求占空比48%~50%的指标。
在电压比较器后接入施密特触发器,使产生的方波更加理想。
四、性能测试1.RC 振荡电路的测试当开关接通C3、C5,调节可变电容令C3=C5=4nF 时,因为选择了R1=R2=158k Ω,由f=1/2πRC 得,此时频率应为250HZ 。
产生的波形结果如图5所示。
仿真结果为频率为251HZ ,如图6所示,与预期基本一致,且产生的正弦波波形较为理想。
所以此RC 振荡电路性能合格。
示波器电压放大器图5 电容选择4nF时产生的正弦波图6 电容选择4nF时正弦波的频率此时正弦波的谐波失真度如图7所示。
图7 频率251HZ时的谐波失真度为了测试RC振荡电路的频率可调性,令开关接通可变电容C1、C4,调节可变电容令C1=C4=100pF,因为选择了R1=R2=158kΩ,由f=1/2πRC得,此时频率应为10kHZ。
波形仿真结果如图8所示。
仿真结果频率为9.9kHZ,如图9所示。
与预期基本一致。
图8 电容选择100pF时产生的正弦波图9 电容选择100pF时正弦波的频率此时谐波失真度如图10图10 频率为9.9kHZ时的谐波失真度由仿真结果可得,正弦波可正常产生并且范围可调,电路符合要求。
并且正弦波的谐波失真度满足谐波失真度<=2%的条件,符合指标。
2.放大电路测试采用RC振荡电路测试中图5所示的251HZ频率进行测试,未放大前幅值为2.8V,放大5倍后应为14V,在仿真中选择滑动变阻器为40kΩ,则放大倍数为N=(40+10)/10=5,仿真结果如图11所示。
仿真中放大后幅值为13.8V,与预期基本一致,符合要求。
图11 放大电路仿真结果3.电压比较电路测试依旧选择图5所示251HZ频率进行测试,令R11=10kΩ,因为R12=10kΩ,则占空比=R11/(R11+R12)=10/(10+10)=50%,仿真结果如图12所示,产生了频率与输入一致的理想方波,电路符合预期结果。
图12 电压比较器仿真结果方波的上升沿下降沿时间如图13所示。
图13 方波的上升沿下降沿时间方波上升沿下降沿时间为800ps,满足指标要求小于200ns的条件。