11 2007年高考数学试题知识分类汇编排列、组合、二项式
高考数学试题分类汇编排列组合二项式定理

排列组合二项式定理1.(重庆文)()523x -的展开式中2x 的系数为( B ) (A )-2160 (B )-1080 (C )1080 (D )21602.(重庆文)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是( B )(A )1800 (B )3600 (C )4320 (D )50403.(重庆理)若n x x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为( A ) (A )-540 (B )-162 (C )162 (D )5404.(浙江文)在二项式()61x +的展开式中,含3x 的项的系数是 (B ) (A)15 (B)20 (C)30 (D)405.(浙江理)若多项式=+-+++++=+n x n x n x a a x x 则,)1()1()1(11102110112 D(A)9 (B)10 (C)-9 (D)-106.(天津文)7(2x+的二项式展开式中x 项的系数是____(用数字作答)。
35 7.(天津文)用数字0、1、2、3、4组成没有重复数字的五位数,则其中数字1、2相邻的偶数有____个(用数字作答)。
248.(四川文)从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除的概率为 C(A )4160 (B )3854 (C )3554 (D )19549.(四川文)10(12)x -展开式中3x 的系数为___________(用数字作答)。
960-10.(上海理)两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示).12448135C P P P = 11.(上海理)如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 .共有36个“正交线面对”12.(陕西文)(2x -1x)6展开式中常数项为 (用数字作答) 60 13.(陕西文)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有 种 .132014.(陕西理)(3x -1x)12展开式x -3的系数为 (用数字作答) 594 15.(陕西理)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种 60016. (山东文)已知(x x 12-)n 的展开式中第三项与第五项的系数之比为143,则展开式中常数项是 D(A )-1 (B)1 (C)-45 (D)4517.(山东文理)已知集集合A={5},B={1,2},C ={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为 A(A)33 (B)34 (C)35 (D)3618.(山东理)已知n i x x ⎪⎪⎭⎫ ⎝⎛-12的展开式中第三项与第五项的系数之比为-143,其中i 4=-1,则展开式中常数项是 D(A)-45i (B) 45i (C) -45 (D)4519.(全国II 文)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( A )(A )150种 (B)180种 (C)200种 (D)280种20.(全国II 文理)在4101()x x +的展开式中常数项是_____。
高考数学分项版解析 专题11 排列组合、二项式定理 理1

【十年高考】(新课标2专版)高考数学分项版解析 专题11 排列组合、二项式定理 理一.基础题组1. 【2014新课标,理13】 ()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 【答案】12 【解析】因为10110r r r r T C x a -+=,所以令107r -=,解得3r =,所以373410T C x a ==157x ,解得12a =. 2. 【2010全国2,理14】若(x -a x )9的展开式中x 3的系数是-84,则a =________. 【答案】:1【解析】:T r +1=9C r x 9-r (-a x )r =(-1)r 9C r a r x 9-2r , 令9-2r =3,∴r =3.∴x 3的系数为(-1)339C a 3=-84.∴a 3=1.∴a =1.3. 【2006全国2,理13】在(x 4+x 1)10的展开式中常数项是 .(用数字作答) 【答案】:45【解析】设T r+1项为常数项,∴T r+1=C r 10(x 4)10-r ·(x 1)r =C r 10x 40-4r ·x -r .∴40-4r -r =0.∴r =8.∴T 9=45.二.能力题组 1. 【2013课标全国Ⅱ,理5】已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-1【答案】:D2. 【2011新课标,理8】51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40【答案】D【解析】3. 【2010全国2,理6】将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( ) A.12种 B.18种 C.36种D.54种【答案】:B4. 【2005全国3,理3】在8)1x的展开式中5x的系数是()-x)(1(+A.-14 B.14 C.-28 D.28【答案】B【解析】三.拔高题组1. 【2012全国,理11】将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )A.12种 B.18种 C.24种 D.36种【答案】A【解析】如图由于每行、每列的字母都互不相同,故只须排好1,2,3号格即可,显然1号格有3种选择,2,3号格均有两种选择,所以不同的排法共有3×2×2=12种.2. 【2005全国3,理11】不共面的四个定点到平面α的距离都相等,这样的平面α共有 ( )A .3个B .4个C .6个D .7个【答案】D【解析】3. 【2012全国,理15】若(x +1x )n 的展开式中第3项与第7项的二项式系数相等,则该展开式中21x 的系数为__________. 【答案】:56 【解析】:∵26C C n n =,∴n =8.T r +1=8C r x8-r (1x )r =8C r x 8-2r , 令8-2r =-2,解得r =5.∴系数为58C 56=.4. 【2005全国2,理15】在由数字0, 1, 2, 3, 4, 5所组成的没有重复数字的四位数中,不能被5整除的数共有_____________个.【答案】1925. 【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3【考点定位】二项式定理.6.【2016高考新课标2理数】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9【答案】B【解析】试题分析:由题意,小明从街道的E 处出发到F 处最短路径的条数为6,再从F 处到G 处最短路径的条数为3,则小明到老年公寓可以选择的最短路径条数为6318⨯=,故选B.【考点】计数原理、组合【名师点睛】分类加法计数原理在使用时易忽视每类中每一种方法都能完成这件事情,类与类之间是相互独立的;分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相互关联的.。
2007年高考数学分类汇编详解_____数列

2007年高考数学分类汇编详解_____数列重庆文(1)在等比数列{a n }中,a 2=8,a 1=64,,则公比q 为 (A )2 (B )3 (C )4 (D )8重庆理(21)(本小题满分12分)已知各项均为正数的数列{n a }的前n 项和满足1>n S ,且*),2)(1(6N n a a S n n n ∈++=(1)求{n a }的通项公式;(2)设数列{n b }满足1)12(=-n b n a ,并记n T 为{n b }的前n 项和,求证:*2),3(log 13N n a T n n ∈+>+(21)(本小题12分)(Ⅰ)解:由)2)(1(611111++==a a S a ,解得a 1=1或a 1=2,由假设a 1=S 1>1,因此a 1=2。
又由a n +1=S n +1- S n =)2)(1(61)2)(1(6111++=++++n n n n a a a a , 得a n +1- a n -3=0或a n +1=-a n因a n >0,故a n +1=-a n 不成立,舍去。
因此a n +1- a n -3=0。
从而{a n }是公差为3,首项为2的等差数列,故{a n }的通项为a n =3n -2。
(Ⅱ)证法一:由1)12(=-b n a 可解得133log 11log -=⎪⎪⎭⎫ ⎝⎛+=n na b z n z z ; 从而⎪⎭⎫⎝⎛-=+++=133··56·23log 21n n b b b T z n n 。
因此23n 2·133··56·23log )3(log 133+⎪⎭⎫ ⎝⎛-=+-+n n a T z n z n 。
令23n 2·133··56·23)(3+⎪⎭⎫ ⎝⎛-=n n x f ,则 233)23)(53()33(23n 33n ·5323)()1(+++=⎪⎭⎫ ⎝⎛++++=+n n n n n n f n f 。
高中数学第十章知识点总结(精华版)——排列组合二项定理

高中数学第十章-排列组合二项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式.组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.§10. 排列组合二项定理 知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种)二、排列.1. ⑴对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑷排列数公式: ),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C mn mmm n mn-=+--== ⑶两个公式:①;m n n mn CC -= ②m n m n m n C C C11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有mn m n m n C C C11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑸①几个常用组合数公式n n nn n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C②常用的证明组合等式方法例.i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-. ②有n 件不同商品,若其中A 、B 排在一起有2211A A n n ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k kn nn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mm mm n mn m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义.⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n mn A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有mn A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。
高考数学理真题分类汇编专题11排列组合二项式定理

专题十一 排列组合、二项式定理1.【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( ) A .4 B .5 C .6 D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r r r n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C . 【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k kk n ab -+T =. 2.【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( )(A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.3.【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B.【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类. 4.【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( )A.122 B .112 C .102 D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:n n n n n n C C C C 2210=+⋅⋅⋅+++,奇数项的二项式系数和与偶数项的二项式系数和相等=⋅⋅⋅++++420n n n C C C 15312-=⋅⋅⋅++++n n n n C C C .5、【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【考点定位】排列问题.【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题.6.【2015高考重庆,理12】532x x ⎛ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()22k k kkk k k T C x C x x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理【名师点晴】()na b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指knC ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.7.【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第1r +项为:()*12,r n r r r n T C a b n N n r N -+=∈≥∈且.8.【2015高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.9.【2015高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当2r =时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.10.【2015高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案) 【答案】35【解析】由题意,二项式371()x x +展开的通项372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.11.【2015高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80.【考点定位】二项式定理.【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度.12.【2015高考北京,理9】在()52x +的展开式中,3x 的系数为 .(用数字作答)【答案】40【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式1r n r r r n T C a b -+=,准确计算指定项的系数.13.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =. 【考点定位】二项式定理.【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.【2015高考湖南,理6】已知5的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D. 【解析】试题分析:r rr r r x a C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a ,故选D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r nr b a C T -+=1,即可建立关于a 的方程,从而求解. 【2015高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++ ⎪ ⎪⎝⎭⎝⎭L ,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式【名师点睛】(1)求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.(2)对于三项式问题一般先变形化为二项式再解决.【2015高考上海,理8】在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】120【解析】由题意得,去掉选5名女教师情况即可:55961266120.C C-=-=【考点定位】排列组合【名师点睛】涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.。
高考数学专题:排列、组合与二项式定理问题练习试题、答案

高考数学专题:排列、组合与二项式定理问题练习试题一.排列与组合问题1.某科技小组有四名男生两名女生,现从中选出三名同学参加比赛,其中至少一名女生入选的不同选法种数为( )A .36CB .1225C C C .12212424C C C CD .36A2.某校需要在5名男生和5名女生中选出4人参加一项文化交流活动,由于工作需要,男生甲与男生乙至少有一人参加活动,女生丙必须参加活动,则不同的选人方式有( )A .56种B .49种C .42种D .14种 3.五人排成一排,甲与乙不相邻,且甲与丙也不相邻的不同排法有( )A .60种B .48种C .36种D .24种4.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有( )A .16种B .18种C .24种D .32种5.为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,若12名参赛同学中有4人获奖,且这4人来自3个不同的代表队,则不同获奖情况种数共有( )A .412CB .3111162223C C C C C C .31116322C C C C D .311112622232C C C C C A 6.A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使这三条网线通过最大信息量的和大于等于6的方法共有( )A .13种B .14种C .15种D .16种7.有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有( )A .10B .48C .60D .808.数列{}n a 共七项,其中五项为1,两项为2,则满足上述条件的数列{}n a 共有( )A .21个B .25个C .32个D .42个 9.三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又踢回给甲,则不同的传递方式共有( )A .6种B .8种C .10种D .16种 10.5个大小都不同的数按如图形式排列,设第一行中的最大数为a ,第二行中的最大数为b ,则满足a b <的所有排列的个数是( )A .144B .72C .36D .2411.有A ,B ,C ,D ,E ,F 共6个不同的油气罐准备用甲,乙,丙3台卡车运走,每台卡车运两个,但卡车甲不能运A 罐,卡车乙不能运B 罐,此外无其它限制. 要把这6个油气罐分配给这3台卡车,则不同的分配方案种数为( )A .168B .84C .56D .4212.若m 、2210{|1010}n x x a a a ∈=⨯+⨯+,其中(0,1,2){1,2,3,4,5,6}i a i =∈,并且606m n +=,则实数对(,)m n 表示平面上不同点的个数为( )A .32个B .30个C .62个D .60个 13.由0、1、2、3这四个数字,可组成无重复数字的三位偶数有_______个.14.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为奇数的概率是____________(用数字作答).15.如图所示,画中的一朵花,有五片花瓣.现有四种不同颜色的画笔可供选择,规定每片花瓣都要涂色,且只涂一种颜色.若涂完的花中颜色相同的花瓣恰有三片,则不同涂法种数为_______(用数字作答).二.二项式定理1.已知23132nx x ⎛⎫- ⎪⎝⎭的展开式中含有常数项(非零),则正整数n 的可能值是( )A .6B .5C .4D .32.已知622x x p ⎛⎫- ⎪⎝⎭的展开式中,不含x 的项是2720,那么正数p 的值是( ) A .1 B .2 C .3 D .43.已知31nx ⎛⎫ ⎪⎝⎭的展开式中第二项与第三项的系数之和等于27,则n 等于______,系数最大的项是第___________项.4.621x x ⎛⎫- ⎪⎝⎭的展开式中第四项的系数为___________.(用数字作答) 5.6)21(x -展开式中所有项的系数之和为________;63)21)(1(x x -+展开式中5x 的系数为__________.6.62)21(x x -展开式中5x 的系数为______________.7.已知n x )21(+的展开式中含3x 项的系数等于含x 项的系数的8倍,则n 等于__________.8.已知n+的二项展开式的第6项是常数项,那么n =_______. 9.62)2(x x+的展开式中的常数项是______________(用数字作答). 10. 在6(12)x -的展开式,含2x 项的系数为_________________;所有项的系数的和为_______________. 11.在n的展开式中,前三项的系数的绝对值依次组成一个等差数列,则n =______,展开式中第五项的二项式系数为_____(用数字作答). 12.82)2(x +的展开式中12x 的系数等于______________(用数字作答). 13.210(1)x -的展开式中2x 的系数是______________,如果展开式中第4r 项和第2r +项的二项式系数相等,则r 等于____________. 14. 若62a x x ⎛⎫- ⎪⎝⎭的展开式中常数项为160-,则常数a 的值为_________,展开式中各项系数之和为_________.答案一.1.C2.B3.C4.C5.C6.C7.D8.A9.C10.B11.D12.D13.1014.10 2115.240二1.B2.C 3.9,5 4.-20 5.1,-132 6.-160 7.58.10 9.60 10.60,111.8,70 12.112 13.-10,2 14.1,1。
高考数学(理科)排列、组合与二项式定理
华 列出示意图或表格,使问题形象化、直观化.
变式训练1
(1)(2014·大纲全国)有6名男医生、5名女医生,从 中选出2名男医生、1名女医生组成一个医疗小组, 则不同的选法共有( ) A.60种 B.70种 CC.75种 D.150种
解析 由题意知,选 2 名男医生、1 名女医生的方法 有 C26C15=75(种).
则同类节目不相邻的排法种数是( )
A.72
B.120
C.144
D.168
思维启迪 将不能相邻的节
目插空安排;
解析 先安排小品节目和相声节目,然后让歌舞节 目去插空.
安排小品节目和相声节目的顺序有三种:“小品1, 小品2,相声”“小品1,相声,小品2”和“相声, 小品1,小品2”.
对于第一种情况,形式为“□小品 1 歌舞 1 小品 2□ 相声□”,有 A22C13A23=36(种)安排方法;
答案 C
(2)从0,1,2,3,4中任取四个数字组成无重复数字的四位数, 其中偶数的个数是____6_0___(用数字作答).
解析 0,1,2,3,4中任取四个数字组成无重复数字的四位 数,且为偶数,有两种情况:
一是当 0 在个位的四位偶数有 A34=24(个); 二是当 0 不在个位时,先从 2,4 中选一个放在个位,再 从余下的三个数选一个放在首位,应有 A21A13A23=36(个),
问题与选取元素的顺序有关,组合问题与选取元素的顺序 无关. (3)排列、组合综合应用问题的常见解法:①特殊元素(特殊 位置)优先安排法;②合理分类与准确分步;③排列、组合 混合问题先选后排法;④相邻问题捆绑法;⑤不相邻问题 插空法;⑥定序问题倍缩法;⑦多排问题一排法;⑧“小 集团”问题先整体后局部法;⑨构造模型法;⑩正难则反、 等价转化法.
完整版)高考排列组合知识点归纳
完整版)高考排列组合知识点归纳第四讲:排列组合一、分类计数原理与分步计数原理1.分类加法计数原理:对于一件事情,有两种不同的方案,第一类方案有m种不同的方法,第二类方案有n种不同的方法,那么完成这件事情共有m+n种不同的方法。
2.分步乘法计数原理:完成一件事情需要两个步骤,第一步有m种不同的方法,第二步有n种不同的方法,那么完成这件事情共有m×n种不同的方法。
二、排列数1.组合:从n个元素中取出m个元素,记作Cnmn!/m!(n-m)!2.排列:1)全排列:将n个元素全排列,记作Ann!2)从n个元素中取出m个元素,并将这m个元素全排列,记作Anmn!/ (n-m)!三、二项式定理a+b)nC n 0 a n b 0C n 1 a n-1 b 1 C n n abn1.二次项系数之和:Cnr2.展开式的第r项:Tr+1Cnr例题1:(x-1)4的展开式中的常数项是()A、6.B、4.C、-4.D、-6例题2:在二项式(x-2y) 5的展开式中,含x2y3的项的系数是()A、-20.B、-3.C、6.D、20 随堂训练:1、在二项式(x21)5的展开式中,含x4的项的系数是()A、-10.B、10.C、-5.D、52、(1/x-2x25的展开式中的常数项是()A、5.B、-5.C、10.D、-103、在二项式(x+3y)6的展开式中,含x2y4的项的系数是()A、45.B、90.C、135.D、2704、已知关于x的二项式(x+3an的展开式的二项式系数之和为32,常数项为80,则a的值为()A、1.B、±1.C、2.D、±25、(1-2x)(1-3x)4的展开式中,x2的系数等于?6、(ax21/2x-2)7的展开式中各项系数的和为243,则该展开式中常数项为?7、(x22)2x的展开式中常数项是70,则n=?若展开式(ax+)(2x+)5中常数项为-40,则a=?四、排列组合题型总结解决排列组合综合性问题的一般过程如下:1.认真审题,弄清要做什么事;2.确定采取分步还是分类,或分步与分类同时进行,确定分多少步及多少类;3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素;4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
高考数学分项汇编 专题11 排列组合、二项式定理(原卷版)
【备战2016】(北京版)高考数学分项汇编 专题11 排列组合、二项式定理(原卷版)1. 【2005高考北京理第7题】北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每4人,每人每天最多值一班,则开幕式当天不同的排班种数为( ) A .484121214C C C B .484121214A A C C.33484121214A C C C D .33484121214A C C C【答案】A考点:排列组合。
2. 【2006高考北京理第3题】在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( )(A )36个(B )24个 (C )18个(D )6个【答案】B 3.【2007高考北京理第5题】记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种4. 【2009高考北京理第6题】若5(12)2(,a b a b +=+为有理数),则a b +=( )A .45B .55C .70D .80【答案】C考点:二项式定理及其展开式.5. 【2009高考北京理第7题】用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为 ( )A .324B .328C .360D .648【答案】B考点:排列组合知识以及分类计数原理和分步计数原理知识.6. 【2010高考北京理第4题】8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( )A .8289A AB .8289AC C .8287A AD .8287A C【答案】A考点:排列组合.7. 【2012高考北京理第6题】从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( ) A. 24 B. 18 C. 12 D. 6 【答案】B考点:排列组合.8. 【2005高考北京理第11题】6)1(x x 的展开式中的常数项是 . (用数字作答)【答案】15考点:二项式定理。
高考数学试题(理)分类解析汇编-排列组合二项式定理算法框图
浙江省高考数学试题(理)分类解析汇编 专题7:排列组合、二项式定理、算法框图一、选择题1. (全国 理5分)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有【 】 (A )8种 (B )12种 (C )16种 (D )20种 【答案】B 。
【考点】排列、组合的实际应用。
【分析】使用间接法,首先分析从6个面中选取3个面,共36C 20=种不同的取法,而其中有2个面相邻,即8个角上3个相邻平面,选法有8种,则选法共有20-8=12种。
故选B 。
2.(全国 理5分)已知方程()()22220x x m x x n -+-+=的四个根组成一个首项为14的的等差数列,则 =-||n m 【 】(A )1 (B )43 (C )21 (D )83【答案】C 。
【考点】等差数列的性质,一元二次方程根与系数的关系。
【分析】设4个根分别为x 1、x 2、x 3、x 4,则x 1+x 2=2,x 3+x 4=2由四个根组成一个首项为14的的等差数列,设x 1为第一项,x 2必为第4项,可得数列为1357, , , 4444。
又∵m =x 1·x 2=716,n =x 3·x 4=1516,∴7151||16162m n -=-=。
故选C 。
3.(全国 理5分)()22222341111234nn nC C C C limn C C C C→∞++++=++++【 】(A )3 (B )31 (C )61(D )6 【答案】B 。
【考点】组合及组合数公式,极限及其运算。
【分析】利用组合数的性质对原式进行等价转化,再求极限:∵111k k km m m C C C ---=+,∴()()2222322232343341116n n n n n n C C C C C C C C C ++-++++=++++===又∵()()()()()1111234212122n n n n n n n C C C C n +-+-++++=⋅=,∴()()()()()222223411112341111162123312n n n n nn n n C C C C n lim lim limn n n n C C C C n →∞→∞→∞+-+++++===+-⎛⎫+++++ ⎪⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7年高考数学试题分类汇编
排列、组合、二项式
1.(全国Ⅰ卷理科第10题)21()nxx的展开式中,常数项为15,则n= ( D )
A.3 B.4 C.5 D.6
2.(全国Ⅰ卷文科第5题)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、
丙各选修3门,则不同的选修方案共有( C )
A.36种 B.48种 C.96种 D.192种
3.(全国Ⅱ卷理科第10题)从5位同学中选派4位同学在星期五、星期六、星期日参加公
益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派
方法共有( B )
A.40种 B.60种 C.100种 D.120种
4.(全国Ⅱ卷文科第10题)5位同学报名参加两个课外活动小组,每位同学限报其中的一
个小组,则不同的报名方法共有( D )
A.10种 B.20种 C.25种 D.32种
5.(北京理科第5题)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2
位老人相邻但不排在两端,不同的排法共有( B )
A.1440种 B.960种 C.720种 D.480种
6.(北京文科第5题)某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4
个数字互不相同的牌照号码共有( A )
A.2142610CA个 B.242610AA个 C.2142610C个 D.242610A个
7.(重庆理科第4题)若nxx)1(展开式的二项式系数之和为64,则展开式的常数项为( B )
A10 B.20 C.30 D.120
8.(重庆文科第4题)221x展开式中2x的系数为( B )
(A)15 (B)60 (C)120 (D)240
9.(四川理科第10题)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000
大的五位偶数共有( B )
(A)288个 (B)240个 (C)144个 (D)126个
10.(四川文科第9题)用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的
五位偶数共有( B )
A.48个 B.36个 C.24个 D.18个
11.(湖北理科第1题)如果2323nxx的展开式中含有非零常数项,则正整数n的最小值
为( B )
A.3 B.5 C.6 D.10
12.(湖北文科第3题)如果2323nxx的展开式中含有非零常数项,则正整数n的最小值
为( C )
A.10 B.6 C.5 D.3
13.(浙江文科第6题)91()xx展开式中的常数项是( C )
(A) -36 (B)36 (C) -84 (D) 84
14.(江西理科第4题)已知33nxx展开式中,各项系数的和与其各项二项式系数的和
之比为64,则n等于( C )
A.4 B.5 C.6 D.7
15.(江西文科第5题)设2921101211(1)(21)(2)(2)(2)xxaaxaxax,
则01211aaaa的值为( A )
A.2 B.1 C.1 D.2
16.(福建文科第12题)某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从
“0000”到“9999”共10000个号码.公司规定:凡卡号的后四
位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( C )
A.2000 B.4096 C.5904 D.8320
17.(广东理科第7题、文科第10题)图3是某汽车维修公司的维修
点环形分布图.公司在年初分配给A、 B、C、D四个维修点某种
配件各50件.在使用前发现需将A、B、C、D 四个维修点的这批
配件分别调整为40、45、54、61件,但调整只能在相邻维修点之
间进行.那么要完成上述调整,最少的调动件次(n件配件从一个
维修点调整到相邻维修点的调动件次为n)为( C )
.18 B.17 C.16 D.15
18.(辽宁文科地第12题)将数字1,2,3,4,5,6拼成一列,记第i个数为i(i126)a,,,,
若11a,33a,55a,135aaa,则不同的排列方法种数为( B )
A.18 B.30 C.36 D.48
二、填空题
1.(全国Ⅰ卷理科第13题)从班委会5名成员中选出3名,分别担任班级学习委员、文娱
委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有___36__种。(用
数字作答)
2.(全国Ⅱ卷理科第13题)821(12)xxx的展开式中常数项为 42 .(用数
字作答)
3.(全国Ⅱ卷文科第16题)821(12)1xx的展开式中常数项为 57 .(用数字
作答)
4.(天津理科第11题)若621xax的二项展开式中2x的系数为52,则a 2 (用数
字作答).
5.(天津文科第12题)921xx的二项展开式中常数项是 84 (用数字作答).
6.(重庆理科第15题)某校要求每位学生从7门课程中选修4门,其中甲乙两门课程不能
都选,则不同的选课方案有_____25______种。(以数字作答)
7.(重庆文科第15题)要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各
一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为 288
。(以数字作答)
8.(陕西理科第16题)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配
方案共有 210 种.(用数字作答)
9.(陕西文科第13题)5)21(x的展开式中2x项的系数..是 40 .(用数字作
答)
.(陕西文科第15题)安排3名支教教师去4所学校任教,每校至多2人,则不同的分配
方案共有 60 种.(用数字作答)
11.(浙江文科第16题)某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10
元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是______266____(用
数字作答).
12.(安徽理科第12题)若313nxx的展开式中含有常数项,则最小的正整数n等于
7
13.(安徽文科第12题)已知55433221024)1(xaxaxaxaxaax,
则())(531420aaaaaa 的值等于 256 .
14.(福建文科第13题)621xx的展开式中常数项是___15__.(用数字作答)
15.(江苏第12题)某校开设9门课程供学生选修,其中,,ABC三门由于上课时间相同,
至多选一门,学校规定每位同学选修4门,共有 75 种不同选修方案。(用数值作答)
16.(辽宁理科第16题)将数字1,2,3,4,5,6拼成一列,记第i个数为i(i126)a,,,,
若11a,33a,55a,135aaa,则不同的排列方法有 30 种(用数字作
答).
17.(辽宁文科第14题)41()xxx展开式中含x的整数次幂的项的系数之和为 72
(用数字作答).
18.(宁夏理科第16题)某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每
个工厂至少安排一个班,不同的安排方法共有 240 种.(用数字作答)