2020届全国各地高考试题分类汇编15 排列组合 二项式定理
2020高考数学复习名题选萃 排列、组合、二项式定理

2020高考数学复习名题选萃 排列、组合、二项式定理一、选择题1.小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为[ ]A .26B .24C .20D .192.计划在某画廊展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有[ ]AB CD .·种.··种.··种.··种P P P P P P P P P P P 44553344553144552244553.用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有[ ]A .24个B .30个C .40个D .60个4.四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有[ ]A .150种B .147种C .144种D .141种 5.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有[ ]A .90种B .180种C .270种D .540种6(2x )a a x a x a x a x (a a a )4012233440242.若+=++++,则++3-(a 1+a 3)2的值为[ ]A .1B .-1C .0D .2二、填空题7.乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有________种(用数字作答).8.在(3-x)7的展开式中,x 5的系数是________.(用数字作答)9.圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为________.10.若(x +1)n =x n +…+ax 3+bx 2+1(n ∈N),且a ∶b =3∶1,那么n =________. 11.从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各2台,则不同的选法有________种(结果用数值表示).12.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有________个(用数字作答).13.在(1+x)6(1-x)4的展开式中,x 3的系数是________(结果用数值表示). 14.有8本互不相同的书,其中数学书3本,外文书2本,其它书3本.若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有________种(结果用数值表示).15x a 3.已知的展开式中的系数为,常数的值为.()a x x 249916.从集合{0,1,2,3,4,5,7,11}中任取3个元素分别作直线方程Ax +By +C =0中的A 、B 、C ,所得经过坐标原点的直线有________条(结果用数值表示).17.(x +2)10(x 2-1)的展开式中x 10的系数为________(用数字作答).18n (1)x n n 3.设是一个自然数,+的展开式中的系数为,则x n 116=________.19.在一块并排10垄的田地中,选择2垄分别种植A 、B 两种作物,每种作物种植一垄.为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有________种(用数字作答).20(x )x 355.在+的展开式中,含项的系数为.22x三、解答题21.已知i ,m ,n 是正整数,且1<i ≤m <n .(1)n P m P i m ii n i 证明<;(2)证明(1+m)n >(1+n)m .参考答案提示一、选择题1.D 2.D 3.A 4.D 5.D 6.A提示:6.本小题考查二项式定理的有关知识.解法1:由二项式定理,+=++++.则++=++=,+=.++-+=-=-=.解法:令=,得+=++++.(2x x)9243x 72x 323x 16x a a a 9721697a a 563(a a a (a a )97(563)9409940812x 1(23)a a a a a 424024130241322240123432)令=-,得-=-+-+.所以++-+=++++++--=+·-=+-=x 1(23)aa a a a a (a a a )(a a )(a a a a a )(a a a a a )(23)(23)[(23)(23)]140123402421320241302413444 二、填空题7.252 8.-189 9.2n(n -1) 10.11 11.350 12.32 13.-8 14.1440 15.4 16.30 17.179 18.419.12.提示:解法1:若A 、B 之间间隔6垄,如果A 在左,B 在右,A 的左边可以有2垄、1垄、0垄,相应B 的右边有0垄、1垄、垄.、还可以交换位置,所以这样的选垄方法有种.若2A B 3P 22A种.若 A 、B 之间间隔7垄,若A 在左,B 在右,A 的左边可以有1垄、垄,、可以交换位置,这样共有种选垄方法.若、0A B 2P A 22 B 8P 3P 2P P 22222222之间间隔垄,有种选垄方法.共有不同的选垄方法++=12(种).解法2:用插空的方法.中间的6垄与两旁的A 、B 两垄先排好,A 的两边有2个空,B 的两边有2个空,这4个空选2个空种植其他2垄,、有顺序,所以共有种不同的选垄方法A B C P 42222040T C (x )(2x )C 2x 155r 5r 2T C 240r 15r3542r 5rr 155r 3522..提示:本小题考查二项式定理的知识.解:==··,由题意-=,得=,的系数为·=+--三、解答题 21.(略)。
专题14 排列组合、二项式定理--2020届全国卷高考数学真题分类汇编含答案

专题14排列组合、二项式定理研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和延续性,每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定,掌握了全国卷的各种题型,就把握了全国卷命题的灵魂,基于此,潜心研究全国Ⅰ、Ⅱ、Ⅲ卷及高考数学考试说明,精心分类汇总至少最近三年全国卷的所有题型(按年份先理后文的排列),对把握全国卷命题的方向,指导我们的高考有效复习,走出题海,快速提升成绩,会起到事半功倍的效果。
排列组合二项式定理——近3年排列组合二项式定理考了7道小题,(3道排列组合,4道二项式定理)二项式定理出现较多,这一点很合理,因为排列组合可以在概率统计和分布列中考查,排列组合出现的考题难度不大,无需投入过多时间(无底洞),而且排列组合难题无数,只要处理好两个理(分类加法原理、分步乘法原理)及分配问题,掌握好分类讨论思想即可!二项式定理“通向问题”出现较多。
该项内容对文科考生不作要求。
1.(2018年普通高等学校招生统一考试新课标Ⅰ卷数学(理15))从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)【答案】见解析。
【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;38:对应思想;4O:定义法;5O:排列组合.【分析】方法一:直接法,分类即可求出,方法二:间接法,先求出没有限制的种数,再排除全是男生的种数.【解答】解:方法一:直接法,1女2男,有C21C42=12,2女1男,有C22C41=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C63﹣C43=20﹣4=16种,故答案为:16【点评】本题考查了分类计数原理,属于基础题2.(2017年普通高等学校招生统一考试新课标Ⅰ卷数学(理6))(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.3.(2016年普通高等学校招生统一考试新课标Ⅰ卷数学(理14))(2x+)5的展开式中,x3的系数是.(用数字填写答案)【答案】见解析。
高考试题分类解析(排列组合、二项式定理与概率)

排列组合、二项式定理与概率选择题1.(全国卷Ⅱ)10()x -的展开式中64x y 项的系数是(A )(A) 840 (B) 840- (C) 210 (D) 210- 2.(全国卷Ⅲ)在(x−1)(x+1)8的展开式中x 5的系数是(B)(A )−14 (B )14 (C )−28 (D )283.(北京卷)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(A )(A )124414128C C C (B )124414128C A A(C )12441412833C C C A (D )12443141283C C C A 4.(北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(B)(A )1444C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种5.(天津卷)某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为( B) A .12581 B .12554 C .12536 D .125276.(天津卷)某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为( AA .12581 B .12554 C .12536 D .12527 7.(福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( B ) A .300种 B .240种 C .144种 D .96种8.(广东卷)先后抛掷两枚均匀的正方体股子(它们的六个面分别标有点数1、2、3、4、5、6),股子朝上的面的点数分别为,则的概率为(C) (A)16(B)536(C)112(D)129.(湖北卷)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( D ) A .168 B .96 C .72 D .144 10.(湖北卷)以平行六面体ABCD —A ′B ′C ′D ′的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p 为 (A )A .385367B .385376 C .385192 D .3851811.(湖南卷)4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是(B )A .48B .36C .24D .1812.(江苏卷)设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( C) ( A ) 10 ( B ) 40 ( C ) 50 ( D )8013.(江苏卷)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为 ( B)(A )96 (B )48 (C )24 (D )014.(江西卷)123)(x x +的展开式中,含x 的正整数次幂的项共有( B )A .4项B .3项C .2项D .1项15.(江西卷)将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为( A ) A .70 B .140 C .280 D .84016.(江西卷)将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为( A )A .561 B .701 C .3361 D .4201 17.(辽宁卷)设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( D )A .10100610480C C C ⋅ B .10100410680C C C ⋅ C .10100620480C C C ⋅ D .10100420680C C C ⋅ 18.(浙江卷)在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是( C )(A) -5 (B) 5 (C) -10 (D) 1019.(山东)如果3nx ⎛⎫ ⎝的展开式中各项系数之和为128,则展开式中31x 的系数是(C ) (A )7 (B )7- (C )21 (D )21-20. (山东)10张奖券中只有3张有奖,5个人购买,至少有1人中奖的概率是(D )(A )310 (B )112 (C )12 (D )111221.(重庆卷)8. 若nx x ⎪⎭⎫ ⎝⎛-12展开式中含21x 项的系数与含41x 项的系数之比为-5,则n 等于( B )(A) 4; (B) 5; (C) 6; (D) 10。
2020年全国各地高考真题分类汇编—排列组合、概率统计(含答案)

2020年全国各地⾼考真题分类汇编—排列组合、概率统计1.(2020•海南)要安排3名学⽣到2个乡村做志愿者,每名学⽣只能选择去⼀个村,每个村⾥⾄少有⼀名志愿者,则不同的安排⽅法共有()A.2种B.3种C.6种D.8种2.(2020•天津)从⼀批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直⽅图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C.20D.36 3.(2020•北京)在(﹣2)5的展开式中,x2的系数为()A.﹣5B.5C.﹣10D.10 4.(2020•新课标Ⅲ)设⼀组样本数据x1,x2,…,x n的⽅差为0.01,则数据10x1,10x2,…,10x n 的⽅差为()A.0.01B.0.1C.1D.10 5.(2020•新课标Ⅰ)某校⼀个课外学习⼩组为研究某作物种⼦的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进⾏种⼦发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下⾯的散点图:由此散点图,在10℃⾄40℃之间,下⾯四个回归⽅程类型中最适宜作为发芽率y和温度x的回归⽅程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx6.(2020•新课标Ⅰ)设O为正⽅形ABCD的中⼼,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A.B.C.D.7.(2020•新课标Ⅲ)在⼀组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i=1,则下⾯四种情形中,对应样本的标准差最⼤的⼀组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.2 8.(2020•新课标Ⅱ)在新冠肺炎疫情防控期间,某超市开通⽹上销售业务,每天能完成1200份订单的配货,由于订单量⼤幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货⼯作.已知该超市某⽇积压500份订单未配货,预计第⼆天的新订单超过1600份的概率为0.05.志愿者每⼈每天能完成50份订单的配货,为使第⼆天完成积压订单及当⽇订单的配货的概率不⼩于0.95,则⾄少需要志愿者()A.10名B.18名C.24名D.32名9.(2020•⼭东)6名同学到甲、⼄、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,⼄场馆安排2名,丙场馆安排3名,则不同的安排⽅法共有()A.120种B.90种C.60种D.30种10.(2020•新课标Ⅰ)(x+)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.20 11.(2020•天津)已知甲、⼄两球落⼊盒⼦的概率分别为和.假定两球是否落⼊盒⼦互不影响,则甲、⼄两球都落⼊盒⼦的概率为;甲、⼄两球⾄少有⼀个落⼊盒⼦的概率为.12.(2020•上海)已知有四个数1,2,a,b,这四个数的中位数是3,平均数是4,则ab=.13.(2020•浙江)盒中有4个球,其中1个红球,1个绿球,2个⻩球.从盒中随机取球,每次取1个,不放回,直到取出红球为⽌.设此过程中取到⻩球的个数为ξ,则P(ξ=0)=,E(ξ)=.14.(2020•上海)从6个⼈挑选4个⼈去值班,每⼈值班⼀天,第⼀天安排1个⼈,第⼆天安排1个⼈,第三天安排2个⼈,则共有种安排情况.15.(2020•浙江)⼆项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a3+a5=.16.(2020•江苏)已知⼀组数据4,2a,3﹣a,5,6的平均数为4,则a的值是.17.(2020•新课标Ⅱ)4名同学到3个⼩区参加垃圾分类宣传活动,每名同学只去1个⼩区,每个⼩区⾄少安排1名同学,则不同的安排⽅法共有种.18.(2020•江苏)将⼀颗质地均匀的正⽅体骰⼦先后抛掷2次,观察向上的点数,则点数和为5的概率是.19.(2020•上海)已知A={﹣3,﹣2,﹣1,0,1,2,3},a、b∈A,则|a|<|b|的情况有种.20.(2020•上海)已知⼆项式(2x+)5,则展开式中x3的系数为.21.(2020•新课标Ⅲ)(x2+)6的展开式中常数项是(⽤数字作答).22.(2020•天津)在(x+)5的展开式中,x2的系数是.23.(2020•北京)某校为举办甲、⼄两项不同活动,分别设计了相应的活动⽅案;⽅案⼀、⽅案⼆.为了解该校学⽣对活动⽅案是否⽀持,对学⽣进⾏简单随机抽样,获得数据如表:男⽣⼥⽣⽀持不⽀持⽀持不⽀持⽅案⼀200⼈400⼈300100⼈⼈⽅案⼆350⼈250⼈150250⼈⼈假设所有学⽣对活动⽅案是否⽀持相互独⽴.(Ⅰ)分别估计该校男⽣⽀持⽅案⼀的概率、该校⼥⽣⽀持⽅案⼀的概率;(Ⅱ)从该校全体男⽣中随机抽取2⼈,全体⼥⽣中随机抽取1⼈,估计这3⼈中恰有2⼈⽀持⽅案⼀的概率;(Ⅲ)将该校学⽣⽀持⽅案⼆的概率估计值记为p0.假设该校⼀年级有500名男⽣和300名⼥⽣,除⼀年级外其他年级学⽣⽀持⽅案⼆的概率估计值记为p1.试⽐较p0与p1的⼤⼩.(结论不要求证明)24.(2020•海南)为加强环境保护,治理空⽓污染,环境监测部⻔对某市空⽓质量进⾏调研,随机抽查了100天空⽓中的PM2.5和SO2浓度(单位:µg/m3),得下表:[0,50](50,150](150,475] SO2PM2.5[0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市⼀天空⽓中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下⾯的2×2列联表:[0,150](150,475]SO2PM2.5[0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市⼀天空⽓中PM2.5浓度与SO2浓度有关?附:K2=P(K2≥k)0.0500.0100.001k 3.841 6.63510.828。
高考数学试题分类汇编---- 排列组合二项式定理

高考数学试题分类汇编---- 排列组合二项式定理一. 选择题:1.(全国一3)512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( C ) A .10 B .5 C .52 D .12.(全国一12)将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( B ) A .6种 B .12种 C .24种 D .48种3.(全国二9)44)1()1(x x +-的展开式中x 的系数是( A )A .4-B .3-C .3D .44.(安徽卷7)设88018(1),x a a x a x +=+++则0,18,,a a a 中奇数的个数为( A ) A .2 B .3 C .4 D .55.(安徽卷12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是 ( C )A . 2686C AB . 2283C A C .2286C AD .2285C A6.(福建卷9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为AA.14B.24C.28D.487.(湖北卷9)从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为BA.100B.110C.120D.1808.(湖南卷8)某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( C )A .15B .45C .60D .759.(江西卷8)10101(1)(1)x x++展开式中的常数项为 D A .1 B .1210()C C .120C D .1020C10.(辽宁卷7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C )A .13B .12C .23D .3411.(辽宁卷10)一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( B )A .24种B .36种C .48种D .72种12.(浙江卷6)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是(A )-15 (B )85 (C )-120 (D )27413.(重庆卷10)若(x +12x)n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为B(A)6 (B)7 (C)8 (D)9 二. 填空题:1.(全国二14)从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)4202.(北京卷12)5231x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为 ;各项系数之和为 .(用数字作答)10, 323.(福建卷13)(x +1x)9展开式中x 2的系数是 .(用数字作答)84 4.(湖南卷13)记n x x )12(+的展开式中第m 项的系数为m b ,若432b b =,则n =__________.55.(辽宁卷15)6321(1)x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为 .356.(陕西卷14)72(1)x -的展开式中21x的系数为 84 .(用数字作答) 7.(陕西卷16)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 96 种.(用数字作答).8.(四川卷13)()()34121x x +-展开式中x 的系数为______2_________。
2020年高考分类整理汇编之概率统计与排列组合二项式定理1

211年高考分类汇编之概率统计与排列组合二项式定理(一)安徽理(12)设(xT)”二%+¥+Q折+L 则.(12) C*【命题意图】本题考查二项展开式 .难度中等.】〃二席(项七-璐,心或(-1)。
二C;;,所」二"U(2)(本小题满分13分)工作人员需进入核电站完成某项具有.高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过1分钟,如果有一个人1分钟内不能完成任务则撤出,再派下一个人。
现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别hhh— ,假设互不相等,且假定各人能否完成任务的事件相互独立^(I)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。
若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(口)若按某指定顺序派人,这三个人各自能完成任务的概率依次为印的S ,其中的一个排列,求所需派出人员数.目X的分布列和均值(数字期望)EX;(川)假定1 >夕3 ,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。
(2)(本小题满分13分)本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类读者论论思想,应用意识与创新意识^解(I )无论以怎样的顺序派出人员,任务不能被完成的概率都是所以任务能被完成的概率与三个被派出的先后顺序无关,并等于1-(1-孙)(1-凡)二a +孙+凡一 Pi力一力巧一凡四+p仍缶(ii)当依次派出的三个人各自完成任务的概率分别为时,随机变量 X的分布列为X123P(Ei)务所需派出的人员数目的均值(数学期望)EX是盛Mi + 2(1 -右)的+3(1 -疝1 -的)二3 -勾-处+ q电(iii)(方法一)由(ii)的结论知,当以甲最先、乙次之、丙最后的顺序派人时,朋二3-2力-力+a四根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值^ 下面证明对于 hhh 的任意排列皿用,都有3-2i-的+绍拦3-2-为+为四(*)事实上,' -"一■< ; :" *一'=2。
2020年高考数学试题分类汇编 专题排列组合、二项式定

2020年高考试题数学(理科)排列组合、二项式定理一、选择题:1.(2020年高考全国卷理科7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有 (A)4种 (B)10种 (C)18种 (D)20种(A )-40 (B )-20 (C )20 (D )40解析 1.令x=1得a=1.故原式=511()(2)x x x x +-。
511()(2)x x x x+-的通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x ,选3个提出1x ;若第1个括号提出1x ,从余下的括号中选2个提出1x,选3个提出x.故常数项=223322335353111(2)()()(2)X C X C C C X X X X⋅⋅-+⋅-⋅=-40+80=40 3.(2020年高考天津卷理科5)在6x x ⎫⎝的二项展开式中,2x 的系数为( ) A .154-B .154C .38-D .38【答案】C【解析】因为1r T +=666((rr x C x-⋅⋅,所以容易得C 正确. 4.(2020年高考陕西卷理科4)6(42)()xx x R --∈的展开式中的常数项是(A )20- (B )15- (C )15 (D )20【分析】根据二项展开式的通项公式写出通项,再进行整理化简,由x 的指数为0,确定常数项是第几项,最后计算出常数项. 【答案】C【解】62(6)1231666(4)(2)222r x r x r r x r xr rx xr r T C C C -----+==⋅⋅=⋅, 令1230x xr -=,则4r =,所以45615T C ==,故选C .5.(2020年高考重庆卷理科4) ()13nx +(其中n N ∈且6a ≥)的展开式中5x 与6x 的系数相等,则n =(A )6 (B)7 (C) 8 (D)9 答案:B解析: ()13n x +的通项为()13rrr n T C x +=,故5x 与6x 的系数分别为553n C 和663n C ,令他们相等,得:()()56!!335!5!6!6!n n n n =--,解得n =712.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则mn= (A )415 (B )13 (C )25 (D )23答案:D解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 7.(2020年高考福建卷理科6)(1+2x )3的展开式中,x 2的系数等于A .80B .40C .20D .10【答案】B 二、填空题:1. (2020年高考山东卷理科14)若6(x 展开式的常数项为60,则常数a 的值为 . 【答案】4【解析】因为6162(rrr r a T C xx-+=⋅⋅-,所以r=2, 常数项为26a C ⨯=60,解得4a =.2. (2020年高考浙江卷理科13)(13)设二项式)0()(6>-a xa x 的展开式中3x 的系数为A,常数项为B ,若B=4A ,则a 的值是 。
2020年高考数学 排列组合

高考排列组合考点解析<<大纲>>要求:① 掌握分类计数原理和分步计数原理及其简单应用;② 理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质及其简单应用;③ 掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题。
下面介绍其考点及其求解思路和方法。
考点1 考查两个原理直接应用例1 (03年天津)某城市的中心广场建造一个花圃,分为6个部分(如图)。
现要种植4种不同色的花,每部分种一种且相邻部分不能种同样色的花,不同的种植方法有 解析:求解排列组合问题材时,一是观察取出的元素是否有顺序,从面确定是排列问题还是组合问题材;二是仔细审题,弄清怎样去完成这一件事,从而确定是分类计数还是分步计数原理。
解:按区域种植,选择相邻区域较多的先种,可分六步完成:第一步从4种花中任先1种给1号区域种花,有4种方法;第二步从余下的3种花中任先一种给2号区域种,有3种方法;第三步从余下的2种花中任先1种种给3号区域种有2种方法;第四步给4号区域种花,由于4号区域与2号区域不相邻,故这两个区域可分为同色与不同色两类:若4号区域2号区域种同色花,则4号区域有1种种法,第五步给5号区域有2种种法;第六步给6号区域有1种种法;若4号区域与2号区域种不同色花,则4号区域有1种种法,面5号区域的种法又可分为两类:若5号区域与2号区域种同色花,则5号区域有1种种法,6号区域有2种种法;若5号区域与2号区域种不同色花,则5号区域有1种种法,6号区域有1种种法。
由分步计数原理得不同的种植方法共有()[]11211121234⨯+⨯⨯+⨯⨯⨯⨯⨯=120(种) 考点2 考查特殊元素优先考虑问题例2 (04天津)从1,2,3,5,7,中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重担数字的四位数,其中通报被5整除的四位数共有 个。
用数字作答)解析:对于含有特殊元素的排列组合问题,一般应优先安排特殊位置上的特殊元素,再安排其他位置上的其他元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届全国各地高考试题分类汇编
15 排列组合 二项式定理
1.(2020•北京卷)在52)-的展开式中,2x 的系数为( ). A. 5- B. 5
C. 10-
D. 10
【答案】C
【解析】)
5
2展开式的通项公式为:()
()552
15
5
22r r
r
r
r
r r T C
C x
--+=-=-,
令522
r -=可得:1r =,则2x 的系数为:()()11
522510C -=-⨯=-.故选:C.
2.(2020•全国1卷)2
5()()x x y x
y ++的展开式中x 3y 3的系数为( )
A. 5
B. 10
C. 15
D. 20
【答案】C
【解析】5()x y +展开式的通项公式为515r r r
r T C x y -+=(r N ∈且5r ≤)
所以2y x x ⎛⎫+ ⎪⎝
⎭的各项与5
()x y +展开式的通项的乘积可表示为:
5615
5
r r
r
r r
r
r xT xC x
y C x
y --+==和22542155r r r
r r r r T C x y x
C y y y x x --++==
在615r
r
r r xT C x
y -+=中,令3r =,可得:333
45xT C x y =,该项中33x y 的系数为10,
在42152r r r r T C x x y y -++=中,令1r =,可得:52133
2T C y x x
y =,该项中33x y 的系数为5
所以33
x y 的系数为10515+=.故选:C
3.(2020•全国2卷)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单
的配货的概率不小于0.95,则至少需要志愿者( ) A. 10名 B. 18名
C. 24名
D. 32名
【答案】B
【解析】由题意,第二天新增订单数为50016001200900+-=,设需要志愿者x 名,
500.95900
x
≥,17.1x ≥,故需要志愿者18名.故选:B
4.(2020•全国2卷)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【答案】36 【解析】
4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区
至少安排1名同学∴先取2名同学看作一组,选法有:246C =
现在可看成是3组同学分配到3个小区,分法有:3
36A =
根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36.
5.(2020•全国3卷)262
()x x
+的展开式中常数项是__________(用数字作答).
【答案】240 【解析】
6
22x x ⎛⎫+ ⎪
⎝
⎭ 其二项式展开通项:()
626
12r
r
r
r C x x T -+⎛⎫⋅⋅ ⎪⎝⎭
=1226(2)r r
r r x
C x --⋅=⋅1236(2)r r r C x -=⋅ 当1230r -=,解得4r =
∴6
2
2x x ⎛⎫+ ⎪
⎝
⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.
6.(2020•新全国1山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A. 120种
B. 90种
C. 60种
D. 30种
【答案】C
【解析】首先从6名同学中选1名去甲场馆,方法数有1
6C ;
然后从其余5名同学中选2名去乙场馆,方法数有2
5C ;最后剩下的3名同学去丙场馆.
故不同的安排方法共有12
6561060C C ⋅=⨯=种.故选:C
7.(2020•天津卷)在5
22x x ⎛⎫+ ⎪⎝
⎭的展开式中,2x 的系数是_________. 【答案】10
【解析】因为5
22x x ⎛⎫+ ⎪⎝
⎭的展开式的通项公式为
()5531552220,1,2,3,4,5r
r r r r r r T C x C x r x --+⎛⎫
==⋅⋅= ⎪⎝⎭
,
令532r -=,解得1r =.所以2x 的系数为1
5210C ⨯=.故答案为:10.
8.(2020•浙江卷)设()2345125
345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 + a 3=________. 【答案】 (1). 80 (2). 122
【解析】5
(12)x +的通项为155(2)2r r r r r
r T C x C x +==,令4r =,则444455280T C x x ==,
故580a =;113355
135555222122a a a C C C ++=++=.故答案为:80;122
9.(2020•上海卷)从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有种排法。
【答案】180。