浙江省磐安县第二中学高考数学试题分类专题汇编--排列组合二项式定理
浙江省磐安县第二中学高考数学试题分类专题汇编

高考数学试题分类汇编三角函数一. 选择题:1.(全国一8)为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.(全国二8)若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N,两点,则M N 的最大值为( B )A .1B .CD .23.(四川卷3)()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x4.(四川卷5)若02,sin απαα≤≤>,则α的取值范围是:( C ) (A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫⎪⎝⎭(C)4,33ππ⎛⎫⎪⎝⎭(D)3,32ππ⎛⎫⎪⎝⎭5.(天津卷6)把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是C(A )sin(2)3y x π=-,x R ∈ (B )sin()26xy π=+,x R ∈(C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R ∈6.(天津卷9)设5sin 7a π=,2cos7b π=,2tan7c π=,则D(A )c b a << (B )a c b << (C )a c b << (D )b a c << 7.(安徽卷5)将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π8.(山东卷5)已知cos (α-6π)+sin α=的值是则)67sin(,354πα-(A )-532 (B )532 (C)-54 (D) 549.(湖北卷5)将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是AA.π125 B. π125- C.π1211 D. 1112π-10.(湖南卷6)函数2()s i n s i n c o s f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( C )A.12 C.3211.(重庆卷10)函数f(x)02x π≤≤) 的值域是B(A )[-02] (B)[-1,0] (C )0] (D )0]12.(福建卷9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为AA.2πB.πC.-πD.-2π13.(浙江卷5)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是C(A )0 (B )1 (C )2 (D )4 14.(浙江卷8)若,5sin 2cos -=+a a 则a tan =B (A )21 (B )2 (C )21-(D )2-15.(海南卷1)已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( B ) A. 1B. 2C. 1/2D. 1/316.(海南卷7)023sin 702cos 10--=( C )A. 12B. 2C. 2D. 2二. 填空题:1.(上海卷6)函数f (x )=3sin x +sin(π2+x )的最大值是 22.(山东卷15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B = 6π.3.(江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= .104.(广东卷12)已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 .π5.(辽宁卷16)已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.143三. 解答题:1.(全国一17).(本小题满分10分) (注意:在试题卷上作答无效.........) 设A B C △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.解析:(Ⅰ)在A B C △中,由正弦定理及3cos cos 5a Bb Ac -=可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =;(Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B BA B A BB B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.2.(全国二17).(本小题满分10分) 在A B C △中,5cos 13B =-,4cos 5C =.(Ⅰ)求sin A 的值;(Ⅱ)设A B C △的面积332A B C S =△,求B C 的长.解:(Ⅰ)由5cos 13B =-,得12sin 13B =,由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ·········································· 5分(Ⅱ)由332A B C S =△得133sin 22A B A C A ⨯⨯⨯=,由(Ⅰ)知33sin 65A =,故65A B A C ⨯=, ······································································································ 8分 又sin 20sin 13A B B A C A B C⨯==,故2206513A B =,132A B =.所以sin 11sin 2A B A B C C⨯==. ·····················································································10分3.(北京卷15).(本小题共13分)已知函数2π()sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()222xf x x ωω-=+11sin 2cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=.(Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤,所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫--⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 4.(四川卷17).(本小题满分12分)求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。
2024全国高考真题数学汇编:排列、组合与二项式定理章节综合

2024全国高考真题数学汇编排列、组合与二项式定理章节综合一、单选题1.(2024全国高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.232.(2024北京高考真题)在 4x的展开式中,3x的系数为()A.6B.6 C.12D.12二、填空题3.(2024天津高考真题)在63333xx的展开式中,常数项为.4.(2024上海高考真题)在(1)nx 的二项展开式中,若各项系数和为32,则2x项的系数为.5.(2024全国高考真题)1013x的展开式中,各项系数中的最大值为.6.(2024全国高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n之差的绝对值不大于12的概率为.7.(2024全国高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.参考答案1.B【分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法,其中丙不在排头,且甲或乙在排尾的排法共有8种,故所求概率81=243P.解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24 ,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243.故选:B 2.A【分析】写出二项展开式,令432r,解出r 然后回代入二项展开式系数即可得解.【详解】 4x 的二项展开式为 442144C C1,0,1,2,3,4r rrr rr r T x xr,令432r,解得2r ,故所求即为 224C 16 .故选:A.3.20【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x的展开式的通项为63636216633C 3C ,0,1,,63rrr r r r r x T xr x,令 630r ,可得3r ,所以常数项为0363C 20 .故答案为:20.4.10【分析】令1x ,解出5n ,再利用二项式的展开式的通项合理赋值即可.【详解】令1x ,(11)32n ,即232n ,解得5n ,所以5(1)x 的展开式通项公式为515C rr r T x ,令52r -=,则3r ,32245C 10T x x .故答案为:10.5.5【分析】先设展开式中第1r 项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33rrr r r rr r,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x,010r 且r Z ,设展开式中第1r 项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r,294334r r,即293344r ,又r Z ,故8r ,所以展开式中系数最大的项是第9项,且该项系数为28101C 53.故答案为:5.6.715【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b ,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120 种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b ,故2()3c a b ,故32()3c a b ,故323a b c a b ,若1c ,则5a b ,则 ,a b 为: 2,3,3,2,故有2种,若2c ,则17a b ,则 ,a b 为: 1,3,1,4,1,5,1,6,3,4,3,1,4,1,5,1,6,1,4,3,故有10种,当3c ,则39a b ,则 ,a b 为:1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, 2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c ,则511a b ,同理有16种,当5c ,则713a b ,同理有10种,当6c ,则915a b ,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为 22101656 ,故所求概率为56712015.故答案为:7157.24112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124 种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152******** .故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.。
专题14 排列组合、二项式定理--2020届全国卷高考数学真题分类汇编含答案

专题14排列组合、二项式定理研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和延续性,每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定,掌握了全国卷的各种题型,就把握了全国卷命题的灵魂,基于此,潜心研究全国Ⅰ、Ⅱ、Ⅲ卷及高考数学考试说明,精心分类汇总至少最近三年全国卷的所有题型(按年份先理后文的排列),对把握全国卷命题的方向,指导我们的高考有效复习,走出题海,快速提升成绩,会起到事半功倍的效果。
排列组合二项式定理——近3年排列组合二项式定理考了7道小题,(3道排列组合,4道二项式定理)二项式定理出现较多,这一点很合理,因为排列组合可以在概率统计和分布列中考查,排列组合出现的考题难度不大,无需投入过多时间(无底洞),而且排列组合难题无数,只要处理好两个理(分类加法原理、分步乘法原理)及分配问题,掌握好分类讨论思想即可!二项式定理“通向问题”出现较多。
该项内容对文科考生不作要求。
1.(2018年普通高等学校招生统一考试新课标Ⅰ卷数学(理15))从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)【答案】见解析。
【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;38:对应思想;4O:定义法;5O:排列组合.【分析】方法一:直接法,分类即可求出,方法二:间接法,先求出没有限制的种数,再排除全是男生的种数.【解答】解:方法一:直接法,1女2男,有C21C42=12,2女1男,有C22C41=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C63﹣C43=20﹣4=16种,故答案为:16【点评】本题考查了分类计数原理,属于基础题2.(2017年普通高等学校招生统一考试新课标Ⅰ卷数学(理6))(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.3.(2016年普通高等学校招生统一考试新课标Ⅰ卷数学(理14))(2x+)5的展开式中,x3的系数是.(用数字填写答案)【答案】见解析。
磐安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

磐安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=Asin (ωx﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A.向左平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向右平移个长度单位2. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种3. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6B .9C .36D .724. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.5. 设a=lge ,b=(lge )2,c=lg,则( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a6. 如图,四面体D ﹣ABC的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为( )A. B .2 C. D .3班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 双曲线:的渐近线方程和离心率分别是( )A .B .C .D .8. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的169. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .10.执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.11.在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a12.设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.二、填空题13.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)14.如图,长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角的余弦值是 .15.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 .16.81()x x的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.17.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .18.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)三、解答题19.(本小题满分10分)选修4-1:几何证明选讲.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于E ,过E 的切线与AC 交于D .(1)求证:CD =DA ;(2)若CE =1,AB =2,求DE 的长.20.已知函数y=f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过(4,2)点.(Ⅰ)求函数f (x )的解析式;(Ⅱ)若f (x ﹣1)>f (5﹣x ),求x 的取值范围.21.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .22.已知等差数列{a n }中,其前n 项和S n =n 2+c (其中c 为常数), (1)求{a n }的通项公式;(2)设b 1=1,{a n +b n }是公比为a 2等比数列,求数列{b n }的前n 项和T n .23.已知a >0,a ≠1,设p :函数y=log a (x+3)在(0,+∞)上单调递减,q :函数y=x 2+(2a ﹣3)x+1的图象与x 轴交于不同的两点.如果p ∨q 真,p ∧q 假,求实数a 的取值范围.24.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知b 2+c 2=a 2+bc . (Ⅰ)求A 的大小;(Ⅱ)如果cosB=,b=2,求a的值.磐安县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:∵△EFG是边长为2的正三角形,∴三角形的高为,即A=,函数的周期T=2FG=4,即T==4,解得ω==,即f(x)=Asinωx=sin(x﹣),g(x)=sin x,由于f(x)=sin(x﹣)=sin[(x﹣)],故为了得到g(x)=Asinωx的图象,只需将f(x)的图象向左平移个长度单位.故选:A.【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.2.【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种.故选:A.【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题3.【答案】D【解析】解:设等比数列{a n}的公比为q,∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.则a2a6=9×q6=72.故选:D.4.【答案】B5.【答案】C【解析】解:∵1<e<3<,∴0<lge<1,∴lge>lge>(lge)2.∴a>c>b.故选:C .【点评】本题主要考查对数的单调性.即底数大于1时单调递增,底数大于0小于1时单调递减.6. 【答案】 B【解析】解:因为AD •(BC •AC •sin60°)≥V D ﹣ABC =,BC=1, 即AD •≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD ⊥面ABC ,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B .【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.7. 【答案】D【解析】解:双曲线:的a=1,b=2,c==∴双曲线的渐近线方程为y=±x=±2x ;离心率e==故选 D8. 【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2113V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为222111(2)326V r h r h ππ=⨯=,所以122V V =,故选A.考点:圆锥的体积公式.1 9. 【答案】D 【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直. 10.【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)n x n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .11.【答案】C 【解析】考点:等差数列的通项公式. 12.【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a ba b ab++≤≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.二、填空题13.【答案】 10 cm【解析】解:作出圆柱的侧面展开图如图所示,设A 关于茶杯口的对称点为A ′,则A ′A=4cm ,BC=6cm ,∴A ′C=8cm ,∴A ′B==10cm .故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.14.【答案】0【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线A 1E 与GF 所成的角的余弦值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, ∵AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点, ∴A 1(1,0,2),E (0,0,1),G (0,2,1),F (1,1,0),=(﹣1,0,﹣1),=(1,﹣1,﹣1),=﹣1+0+1=0,∴A 1E ⊥GF ,∴异面直线A 1E 与GF 所成的角的余弦值为0. 故答案为:0.15.【答案】 3 .【解析】解:∵f (x )=(2x+1)e x,∴f ′(x )=2e x +(2x+1)e x, ∴f ′(0)=2e 0+(2×0+1)e 0=2+1=3.故答案为:3.16.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r r r r r rr T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.17.【答案】 .【解析】解:∵数列{a n }为等差数列,且a 3=,∴a 1+a 2+a 6=3a 1+6d=3(a 1+2d )=3a 3=3×=,∴cos (a 1+a 2+a 6)=cos=.故答案是:.18.【答案】24【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,故答案为:24.【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.三、解答题19.【答案】【解析】解:(1)证明:如图,连接AE,∵AB是⊙O的直径,AC,DE均为⊙O的切线,∴∠AEC=∠AEB=90°,∠DAE=∠DEA=∠B,∴DA=DE.∠C=90°-∠B=90°-∠DEA=∠DEC,∴DC=DE,∴CD=DA.(2)∵CA是⊙O的切线,AB是直径,∴∠CAB=90°,由勾股定理得CA2=CB2-AB2,又CA2=CE×CB,CE=1,AB=2,∴1·CB=CB2-2,即CB2-CB-2=0,解得CB=2,∴CA2=1×2=2,∴CA= 2.由(1)知DE=12CA=2 2,所以DE的长为22.20.【答案】【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),∴log a 4=2,a=2,则g (x )=log 2x .… ∵函数y=f (x )的图象与g (X )的图象关于x 轴对称,∴.…(Ⅱ)∵f (x ﹣1)>f (5﹣x ),∴,即,解得1<x <3,所以x 的取值范围为(1,3)…【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.21.【答案】(1)122n n b +=-;(2)222(4)n n S n n +=-++. 【解析】试题分析:(1)已知递推公式122n n b b +=+,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得n b ,变形形式为12()n n b x b x ++=+;(2)由(1)可知122(2)n n n n a a b n --==-≥,这是数列{}n a 的后项与前项的差,要求通项公式可用累加法,即由112()()n n n n n a a a a a ---=-+-+211()a a a +-+求得.试题解析:(1)112222(2)n n n n b b b b ++=+⇒+=+,∵1222n n b b ++=+,又121224b a a +=-+=,∴2312(21)(2222)22222221nn n n a n n n +-=++++-+=-+=--.∴224(12)(22)2(4)122n n n n n S n n +-+=-=-++-.考点:数列的递推公式,等比数列的通项公式,等比数列的前项和.累加法求通项公式.22.【答案】【解析】解:(1)a1=S1=1+c,a2=S2﹣S1=3,a3=S3﹣S2=5﹣﹣﹣﹣﹣(2分)因为等差数列{a n},所以2a2=a1+a3得c=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∴a1=1,d=2,a n=2n﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)a2=3,a1+b1=2∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查等差数列的定义及数列求和的方法,考查学生的运算求解能力,属中档题.23.【答案】【解析】解:由题意得命题P真时0<a<1,命题q真时由(2a﹣3)2﹣4>0解得a>或a<,由p∨q真,p∧q 假,得,p,q一真一假即:或,解得≤a<1或a>.【点评】本题考查了复合命题的判断,考查对数函数,二次函数的性质,是一道基础题.24.【答案】【解析】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cosA==,又∵A∈(0,π),∴A=;(Ⅱ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理=,得a===3.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.。
高中数学高考专题26 排列组合、二项式定理(解析版)

专题26 排列组合二项式定理命题规律内 容典 型1 求两个二项式相乘展开式中的指定项问题 2020年高考全国Ⅰ卷理数8 2 求二项式展开式的指定项或指定项系数 2020年高考全国Ⅲ卷理数14 3 求二项式展开式中奇数项系数 2020年高考浙江卷12 4 利用计数原理计算组合问题2020年高考山东卷3 5利用计数原理计算排列组合的综合问题2020年高考全国Ⅱ卷理数14命题规律一 求两个二项式相乘展开式中的指定项问题【解决之道】利用二项式定理展开式的通项,列出关于所求项的指定项指数的方程,通过解不定方程,即可确定指定项,利用通项公式即可求出指定项系数,注意分类讨论. 【三年高考】1.【2020年高考全国Ⅰ卷理数8】()25y x x x y ⎛⎫ ⎪⎭+⎝+的展开式中33x y 的系数为( )A .5B .10C .15D .20 【答案】C【解析】5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),∴2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积可表示为:56155rrrr rr r xT xC xy C xy --+==或22542155r r rr r r r T C x y xC y y y x x --++==,在615r r rr xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5,∴33x y 的系数为10515+=,故选C . 2.【2019年高考全国Ⅲ卷理数】(1+2x 2 )(1+x )4的展开式中x 3的系数为( )A .12B .16C .20D .24【答案】A【解析】由题意得x 3的系数为3144C 2C 4812+=+=,故选A .命题规律二 求二项式展开式的指定项或指定项系数【解决之道】解决此类问题,设指定项为二项式展开式的第r 项,利用通项公式,列出关于r 的方程,解出r ,即可求出指定的系数.【三年高考】1.【2020年高考北京卷3】在)52的展开式中,2x 的系数为( )A .5-B .5C .10-D .10 【答案】C【解析】由题意展开式的通项为T r+1=C 5r(x 12)5−r(−2)r ==C 5r (−2)r x5−r2,令r=1得x 2的系数为-10,故选C .2.【2020年高考全国Ⅲ卷理数14】622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是 (用数字作答). 【答案】240【解析】622x x ⎛⎫+ ⎪⎝⎭,其二项式展开通项:()62612rr rr C x x T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r r r r xC x --⋅=⋅1236(2)r r r C x -=⋅,当1230r -=,解得4r =,∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.3.【2020年高考天津卷11】在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.【答案】10【解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rr r r r r r T C x C x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =.所以2x 的系数为15210C ⨯=.4.【2018年高考全国Ⅲ卷理数】522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80【答案】C【解析】由题可得522x x ⎛⎫+ ⎪⎝⎭的展开式的通式为()521031552C C 2rr r r r rr T x x x --+⎛⎫⋅⋅== ⎪⎝⎭,令1034r -=,得2r =,所以展开式中4x 的系数为225C 240⨯=.故选C .5.【2019年高考浙江卷理数】在二项式9)x 的展开式中,常数项是__________;系数为有理数的项的个数是__________.【答案】 5【解析】由题意,9)x的通项为919C (0,1,29)r r r r T x r -+==,当0r =时,可得常数项为919C T ==;若展开式的系数为有理数,则1,3,5,7,9r =,有246810T , T , T , T , T 共5个项.6.【2018年高考浙江卷】二项式81)2x的展开式的常数项是__________. 【答案】7【解析】二项式812x ⎫⎪⎭的展开式的通项公式为848318811C C 22rr rrrr r T xx --+⎛⎫==⋅⋅ ⎪⎝⎭, 令8403r -=得2r =,故所求的常数项为2821C =72⋅.故答案为:7. 7.【2018年高考天津卷理数】在5(x 的展开式中,2x 的系数为__________.【答案】52【解析】二项式5(x -的展开式的通项公式为35521551C C 2r rr r r r r T x x --+⎛⎛⎫==- ⎪ ⎝⎭⎝,令3522r -=可得:2r =,则2x 的系数为:225115C 10242⎛⎫-=⨯= ⎪⎝⎭.故答案为:52.命题规律三 求二项式展开式中奇数项系数【解决之道】解决此类问题,要熟记二项式展开式的系数性质,利用赋值法,即可列出二项式系数的方程(组),系数和即赋值1x =,偶数项系数和减去奇数项系数和即赋值1x =-,通过解方程即可求出偶数项(奇数项)系数和.【三年高考】1.【2020年高考浙江卷12】设()2345123455612x a a x a x a x a x a x +=+++++,则5a = ;123a a a ++= .【答案】80;51【解析】由题意可知5a 表示4x 的系数,即4455280a C =⋅=,11a =,125210a C =⋅=,2235240a C =⋅=,∴12351a a a ++=.命题规律四 利用计数原理计算组合问题【解决之道】排列组合问题常见解法:(1)元素分析法:在解有限定元素的排列问题时,首先考虑特殊元素的安排方法,再考虑其他元素的排法。
高考数学试题分类汇编---- 排列组合二项式定理

高考数学试题分类汇编---- 排列组合二项式定理一. 选择题:1.(全国一3)512x ⎛⎫+ ⎪⎝⎭的展开式中2x 的系数为( C ) A .10 B .5 C .52 D .12.(全国一12)将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( B ) A .6种 B .12种 C .24种 D .48种3.(全国二9)44)1()1(x x +-的展开式中x 的系数是( A )A .4-B .3-C .3D .44.(安徽卷7)设88018(1),x a a x a x +=+++则0,18,,a a a 中奇数的个数为( A ) A .2 B .3 C .4 D .55.(安徽卷12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是 ( C )A . 2686C AB . 2283C A C .2286C AD .2285C A6.(福建卷9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为AA.14B.24C.28D.487.(湖北卷9)从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为BA.100B.110C.120D.1808.(湖南卷8)某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( C )A .15B .45C .60D .759.(江西卷8)10101(1)(1)x x++展开式中的常数项为 D A .1 B .1210()C C .120C D .1020C10.(辽宁卷7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C )A .13B .12C .23D .3411.(辽宁卷10)一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( B )A .24种B .36种C .48种D .72种12.(浙江卷6)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是(A )-15 (B )85 (C )-120 (D )27413.(重庆卷10)若(x +12x)n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为B(A)6 (B)7 (C)8 (D)9 二. 填空题:1.(全国二14)从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)4202.(北京卷12)5231x x ⎛⎫+ ⎪⎝⎭的展开式中常数项为 ;各项系数之和为 .(用数字作答)10, 323.(福建卷13)(x +1x)9展开式中x 2的系数是 .(用数字作答)84 4.(湖南卷13)记n x x )12(+的展开式中第m 项的系数为m b ,若432b b =,则n =__________.55.(辽宁卷15)6321(1)x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为 .356.(陕西卷14)72(1)x -的展开式中21x的系数为 84 .(用数字作答) 7.(陕西卷16)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有 96 种.(用数字作答).8.(四川卷13)()()34121x x +-展开式中x 的系数为______2_________。
浙江省磐安县第二中学高考数学试题分类专题汇编

高考数学试题分类汇编立体几何一.选择题:1.(上海卷13) 给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的( C )条件A .充要B .充分非必要C .必要非充分D .既非充分又非必要 2.(全国一11)已知三棱柱111ABC ABC -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A .13BCD .233.(全国二10)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( C ) A .13B.3C.3D .234.(全国二12)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( C ) A .1B .2C .3D .25.(北京卷8)如图,动点P 在正方体1111ABCD ABC D -的对角线1BD 上.过点P作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( B )7.(四川卷8)设,M N 是球心O 的半径OP 上的两点,且NP MN OM ==,分ABCD MN P A 1B 1C 1D 1别过,,N M O 作垂线于OP 的面截球得三个圆,则这三个圆的面积之比为:( D ) (A)3,5,6 (B)3,6,8 (C)5,7,9 (D)5,8,98.(四川卷9)设直线l ⊂平面α,过平面α外一点A 与,l α都成030角的直线有且只有:( B )(A)1条 (B)2条 (C)3条 (D)4条9.(天津卷5)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是C(A )βαβα⊥⊥,//,b a (B )βαβα//,,⊥⊥b a (C )βαβα//,,⊥⊂b a (D )βαβα⊥⊂,//,b a10.(安徽卷4).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是(D )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖11.(山东卷6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是D (A)9π (B )10π (C)11π (D)12π 12.(江西卷10)连结球面上两点的线段称为球的弦。
浙江省高考数学试题(理)分类解析汇编-排列组合二项式定理算法框图

浙江省高考数学试题(理)分类解析汇编 专题7:排列组合、二项式定理、算法框图一、选择题1. (全国 理5分)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有【 】 (A )8种 (B )12种 (C )16种 (D )20种 【答案】B 。
【考点】排列、组合的实际应用。
【分析】使用间接法,首先分析从6个面中选取3个面,共36C 20=种不同的取法,而其中有2个面相邻,即8个角上3个相邻平面,选法有8种,则选法共有20-8=12种。
故选B 。
2.(全国 理5分)已知方程()()22220x x m x x n -+-+=的四个根组成一个首项为14的的等差数列,则 =-||n m 【 】(A )1 (B )43 (C )21 (D )83【答案】C 。
【考点】等差数列的性质,一元二次方程根与系数的关系。
【分析】设4个根分别为x 1、x 2、x 3、x 4,则x 1+x 2=2,x 3+x 4=2由四个根组成一个首项为14的的等差数列,设x 1为第一项,x 2必为第4项,可得数列为1357, , , 4444。
又∵m =x 1·x 2=716,n =x 3·x 4=1516,∴7151||16162m n -=-=。
故选C 。
3.(全国 理5分)()22222341111234nn nC C C C limn C C C C→∞++++=++++【 】(A )3 (B )31 (C )61(D )6 【答案】B 。
【考点】组合及组合数公式,极限及其运算。
【分析】利用组合数的性质对原式进行等价转化,再求极限:∵111k k km m m C C C ---=+,∴()()2222322232343341116n n n n n n C C C C C C C C C ++-++++=++++===又∵()()()()()1111234212122n n n n n n n C C C C n +-+-++++=⋅=,∴()()()()()222223411112341111162123312n n n n nn n n C C C C nlim lim limn n nn C C C C n →∞→∞→∞+-+++++===+-⎛⎫+++++ ⎪⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学试题分类汇编 排列组合二项式定理
一. 选择题:
1.(上海卷12)组合数C r
n (n >r ≥1,n 、r ∈Z )恒等于( D )
A .r +1n +1C r -1n -1
B .(n +1)(r +1)
C r -1n -1 C .nr C r -1n -1
D .n r C r -1n -1
2.(全国一12)如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( B ) A .96
B .84
C .60
D .48
3.(全国二6)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( D ) A .
929
B .1029
C .1929
D .
2029
4.(全国二7
)64
(1(1-+的展开式中x 的系数是( B )
A .4-
B .3-
C .3
D .4
5.(安徽卷6)设88018(1),x a a x a x +=+++ 则0,18,,a a a 中奇数的个数为(A )
A .2
B .3
C .4
D .5
6.(安徽卷12)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( C ) A .2283C A
B .2686
C A
C .2286C A
D .2285C A
7.(山东卷9)(X -
3
1
x
)12展开式中的常数项为C
(A )-1320 (B )1320 (C )-220 (D)220 8.(江西卷8)
610
(1(1++
展开式中的常数项为 D
A .1
B .46
C .4245
D .4246
9.(湖北卷6)将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为D
A. 540
B. 300
C. 180
D. 150 10.(陕西卷12)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规
则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,
,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,
011⊕=,101⊕=,110
⊕=,例如原信息为111,则传输信息为01111.传输信
息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( C ) A .11010
B .01100
C .10111
D .00011
11.(福建卷7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A
A.14
B.24
C.28
D.48
12.(浙江卷4)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是A
(A )-15 (B )85 (C )-120 (D )274
13.(辽宁卷9)一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( B ) A .24种
B .36种
C .48种
D .72种
14.(海南卷9)甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。
不同的安排方法共有(A )
A. 20种
B. 30种
C. 40种
D. 60种
二. 填空题
1.(北京卷11)若231n
x x ⎛
⎫+ ⎪⎝
⎭展开式的各项系数之和为32,则n = 5 ,
其展开式中的常数项为 10 .(用数字作答)
2.(四川卷13)()()3
4
121x x +-展开式中2x 的系数为______6-_________。
3.(陕西卷16)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能
从甲、乙两人中产生,则不同的传递方案共有 种.(用数字作答).96
4.(重庆卷16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A 、B 、C 、A 1、B 1、C 1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).216
5.(天津卷12)52
()x x +的二项展开式中,3x 的系数是________________(用数
字作答).10
6.(天津卷16)有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________________种(用数字作答).432
7.
(
福
建
卷
13
)
若
(x -2)5=a 3x 5+a 5x 4+a 3x 3+a 2x 2+a 1x +a 0,
则
a 1+a 2+a 3+a 4+a 5=__________.(用数字作答)31
8.(广东卷10)已知26(1)kx +(k 是正整数)的展开式中,8x 的系数小于120, 则k = .1
9.(浙江卷16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相
邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答)。
40
10.(辽宁卷15)已知231(1)n
x x x x ⎛
⎫+++ ⎪⎝
⎭的展开式中没.有.常数项,n ∈*N ,且2≤n ≤8,则n =______.5。