人教A版高中数学必修五数列综合训练题
高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
新人教A版必修5数列测试题及答案.docx

数列一、选择题1、( 2010 全国卷 2 理数)如果等差数列n中, a3a4a512,那么a1a2...a7a(A) 14( B)21(C) 28( D) 35【答案】 C【解析】 a3a4a5 3a412, a44,a1 a2a77( a1a7 )7a428 22、( 2010 辽宁文数)设S n为等比数列a n的前 n 项和,已知3S3a4 2 , 3S2a3 2 ,则公比 q( A) 3(B) 4( C) 5(D) 6解析:选 B. 两式相减得,3a3a4a3, a4 4a3 ,a44 . qa33、(2010安徽文数)设数列{ a n}的前 n 项和S n n2,则 a8的值为(A ) 15(B)16(C)49( D) 64答案: A【解析】 a8S8S76449 15.4、( 2010 浙江文数)设s n为等比数列{ a n}的前n项和,8a2a5S5 0 则S2(A)-11(B)-8(C)5(D)115、 (2009年广东卷文 ) 已知等比数列{ a n}的公比为正数,且a3· a9=2 a52, a2=1,则 a1=1B.2C.2D.2A.22【答案】 B【解析】设公比为 q ,由已知得 a1q2 a1q8 2 a1q42,即q2 2 ,又因为等比数列 { a n} 的公比为正数,所以 q2a212,故a122q,选 B6(、 2009广东卷理)已知等比数列 { a n}满足 a n0,n1,2,,且 a5 a2 5n22nn( 3) ,则当 n1时,log2a1log 2 a3log 2 a2 n 1A. n(2 n 1)B. ( n 1)2C.n2D. ( n1)2【解析】由 a5a2n 522 n (n3)得 a n2 2 2n,a n0 , a n2n, log 2 a1 log 2 a3log 2 a2n113(2n1)n2, C.7、( 2009江西卷文)公差不零的等差数列{ a n } 的前 n 和 S n.若 a4是 a3与a7的等比中,S832 , S10等于A.18B.24C.60D.90答案: C【解析】由 a42a3 a7得 (a13d )2(a12d )( a16d ) 得 2a13d 0 ,再由S88a156d 32 得2a1 7d 8d2, a1 3 ,所以2S1 010a190d60 ,.故C 28、( 2009 宁卷理)等比数列{ a n } 的前 n 和S n,若S6 =3,S9= S3S6( A ) 2( B)78( D )3 3( C)3【解析】公比q , S6(1q3) S3 =1+q3=3q3= 2 S3S3于是S9 1 q3q6 1 2 4 7 S 1 q3123 6【答案】 B9、( 2009 安徽卷理)已知a n等差数列, a1+ a3+ a5=105, a2a4a6=99,以 S n表示a n的前 n 和,使得S n达到最大的 n 是( A ) 21( B) 20( C)19(D ) 18[ 解析 ] :由a1 + a3+ a5 =105 得3a3105, 即 a335 ,由 a2a4a6=99得 3a499 即a433,∴ d 2 ,a n a4(n4) (2)412n,由a n0得 n20 ,B a n110、 2009 上海十四校考)无等比数列 1,2,1,2, ⋯各的和等于()224A .22B .22C. 2 1D. 2 1答案 B11、( 2009 江西卷理)数列{ a n}的通a n n2 (cos2nsin 2n) ,其前n和S n,33S 30 为A . 470B . 490C . 495D . 510答案: A【解析】由于 {cos 2nsin 2n} 以 3 为周期 ,故33S30( 122232 ) ( 4252 62 )( 282292 302 )2221022105]1125 470 故选 A[ (3k 2)(3k1) (3k )2 ][9k9 10k 12k 12212、 2009 湖北卷文)设x R, 记不超过 x 的最大整数为 [ x ], 令 { x }= x -[ x ] ,则 {5 1} ,25 1 5 1 [],22A. 是等差数列但不是等比数列B. 是等比数列但不是等差数列C.既是等差数列又是等比数列D. 既不是等差数列也不是等比数列【答案】 B【解析】 可分别求得数列 .二、填空题5 1 5 1 ,[5 1222 ] 1.则等比数列性质易得三者构成等比13、 (2010 辽宁文数) ( 14)设 S n 为等差数列 { a n } 的前 n 项和,若 S 3 3,S 6 24 ,则a 9。
人教版高中数学必修5《数列》练习题(有答案)

②指出 S1, S2, , S12 中哪一个值最大,并说明理由. 解:① S12 6(a1 a12 ) 6(a3 a10 ) 6(2 a3 7 d ) 0
24 7d 0 24 8d 0
d
24
又 S13 13( a1 a13 )
13
Hale Waihona Puke 13(a3 a11)(2 a3 8d ) 0
7
2
2
2
d3
从而 24 d 3 7
三、等比数列
知识要点
1. 定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做
等比数列,这个常数叫做等比数列的公比,记为
q,q 0 .
2. 递推关系与通项公式
递推关系: an 1 qan 通项公式: an a1 q n 1 推广: an am q n m
3. 等比中项: 若三个数 a, b,c 成等比数列, 则称 b 为 a 与 c 的等比中项, 且 b
故第二次相遇是在开始运动后 15 分钟
28(舍去)
1 10.已知数列 an 中, a1 3,前 n 和 Sn (n 1)( an 1) 1.
2
①求证:数列 an 是等差数列;
②求数列 an 的通项公式;
③设数列
1 的前 n 项和为 Tn ,是否存在实数 M ,使得 Tn
an an 1
M 对一切正整数 n 都成立 ?
② Q S12 6( a6 a7) 0 S13 13a7 0 a7 0, a6 0
S6 最大。
1. 已知等差数列 an 中, a7 a9 16, a 4 1,则 a12 等于 ( )
A . 15
B. 30
C. 31
D . 64
人教A版高中数学必修五必修5数列测试题

高一数学《数列》单元检测题及参考答案一、选择题:1.已知数列a n的首项a i 1 ,且a n 2a01 1 n 2 ,则a§为(D)A. 7B. 15C.30D. 312.等比数列a n中,a1、a99为方程x2 10x 16 0的两根,则a20 a50 a80的值为(D)A. 32B. 64C. 256D. ±643.若{a n}是等差数列,且a[ + a4+ a7=45, a2+&+ a8=39,则a3 + a e+ a9 的值是(D)A. 39B. 20C. 19.5D. 334.非常数数列{a。
}是等差数列,且{a n}的第5、10、20项成等比数列,则此等比数列的公比为(C)A. % 5C. 2D.-5 25.在等比数歹U {a n}中,a n>0,且a2 a4+2a3 a5+ a4 a6=25,刃B么a3+a5= (A)A5B10C15D206. S为等差数列{a n}的前n项之和,若a3=10, a10=—4,则S10—S等于(A)A. 14 B, 6 C. 12 D. 217 .正项等比数列{ a n }满足:a 2 • 34 = 1, &=13, b n = log 3a n,则数列{ b n }的 前10项的和是(D )8 .在等差数列{a n }中,33、38是方程x 23x 50的两个根,则S [。
是(B )A.30B.15C.50D.259 .若某等差数列中,前7项和为48,前14项和为72,则前21项和为(B ) A.96B.72C.60D.48 10 .已知等差数列{a n }的通项公式为a n 2n 1,其前n 项和为S,则数列{殳}的11 .等比数列的公比为2,且前4项之和等于1,那么前8项之和等于17 . 12 .已知数列的通项公式3n 2n 37 ,则S n 取最小俏时n = 18 , 此时S n = 324 .15 .数列{3n }为等差数列,32与36的等差中项为5, 33与37的等差中项为7,则数列的通项3n 等于2n-3.116 .数列{3n }为等差数列, S°0=145, d=—,则 31 + 33 + 35 + • • • + 399 的值为60:、解答题15.(14分)在等比数列{3n }中,$为其前n 项的和。
人教A版高中数学必修五数列综合训练题

高中数学学习材料金戈铁骑整理制作数列综合训练题( )1.在等差数列}{n a 中,836a a a +=,则=9S (A )0 (B )1 (C )1- (D )以上都不对 A( )2.在等比数列}{n a 中,3a 和 5a 是二次方程 052=++kx x 的两个根,则642a a a 的值为(A )55± (B )55 (C ) 55- (D )25 【答案】A( )3.设n S 为等差数列}{n a 的前n 项和。
已知)6(144,324,3666>===-n S S S n n 。
则n 等于 (A )16 (B ) 17 (C ) 18 (D )19【答案】B 解析:216)144324(36)(6)(166=-+=+=-+-n n n a a S S S , 361=+n a a ,3242)(1=+=n n a a n S ( )4.在数列}{n a 中,已知)(,5,1*1221N n a a a a a n n n ∈-===++,则2013a 等于(A )4- (B )5- (C ) 4 (D )1-【答案】C 解析:n n n n a a a a -=-=+++123 ,n n n a a a =-=∴++36,200845a a ==。
( )5. 由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为3d 的等差数列D .非等差数列考查等差数列的性质.【答案】B (a 2+a 5)-(a 1+a 4)=(a 2-a 1)+(a 5-a 4)=2d .(a 3+a 6)-(a 2+a 5)=(a 3-a 2)+(a 6-a 5)=2d .依次类推.( )6. 已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是 A .15(0,)2+ B .15(,1]2- C .15[1,)2+ D .)251,251(++-【答案】D 设三边为2,,,a aq aq 则222a aq aq a aq aq aq aq a⎧+>⎪+>⎨⎪+>⎩,即222101010q q q q q q ⎧--<⎪-+>⎨⎪+->⎩得1515221515,22q q R q q ⎧-+<<⎪⎪⎪∈⎨⎪-+--⎪><⎪⎩或,即151522q -++<<( )7. 在ABC ∆中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以13为第三项, 9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对 【答案】B 374,4,2,tan 2,a a d A =-===361,9,3,tan 33b b q B ==== tan tan()1C A B =-+=,,,A B C 都是锐角( )8.三个数c b a ,,成等比数列,且)0(>=++m m c b a ,则b 的取值范围是 (A )]3,0[m (B )]3,[m m -- (C ))3,0(m (D )]3,0()0,[m m ⋃- 【答案】D 解析:设bq c q b a ==,,则有bmq q b m bq b q b =++∴≠=++11,0, 。
人教A版高中数学必修五数列综合训练题.docx

数列综合训练题( )1.在等差数列}{n a 中,836a a a +=,则=9S (A )0 (B )1 (C )1- (D )以上都不对 A( )2.在等比数列}{n a 中,3a 和 5a 是二次方程 052=++kx x 的两个根,则642a a a 的值为(A )55± (B )55 (C ) 55- (D )25 【答案】A( )3.设n S 为等差数列}{n a 的前n 项和。
已知)6(144,324,3666>===-n S S S n n 。
则n 等于 (A )16 (B ) 17 (C ) 18 (D )19【答案】B 解析:216)144324(36)(6)(166=-+=+=-+-n n n a a S S S , 361=+n a a ,3242)(1=+=n n a a n S ( )4.在数列}{n a 中,已知)(,5,1*1221N n a a a a a n n n ∈-===++,则2013a 等于(A )4- (B )5- (C ) 4 (D )1-【答案】C 解析:n n n n a a a a -=-=+++123 ,n n n a a a =-=∴++36,200845a a ==。
( )5. 由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为3d 的等差数列D .非等差数列考查等差数列的性质.【答案】B (a 2+a 5)-(a 1+a 4)=(a 2-a 1)+(a 5-a 4)=2d .(a 3+a 6)-(a 2+a 5)=(a 3-a 2)+(a 6-a 5)=2d .依次类推.( )6. 已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是A .15(0,)2+ B .15(,1]2- C .15[1,)2+ D .)251,251(++- 【答案】D 设三边为2,,,a aq aq 则222a aq aq a aq aq aq aq a ⎧+>⎪+>⎨⎪+>⎩,即222101010q q q q q q ⎧--<⎪-+>⎨⎪+->⎩得1515221515,22q q R q q ⎧-+<<⎪⎪⎪∈⎨⎪-+--⎪><⎪⎩或,即151522q -++<<( )7. 在ABC ∆中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以13为第三项, 9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对 【答案】B 374,4,2,tan 2,a a d A =-===361,9,3,tan 33b b q B ==== tan tan()1C A B =-+=,,,A B C 都是锐角( )8.三个数c b a ,,成等比数列,且)0(>=++m m c b a ,则b 的取值范围是 (A )]3,0[m (B )]3,[m m -- (C ))3,0(m (D )]3,0()0,[m m ⋃- 【答案】D 解析:设bq c q b a ==,,则有bmq q b m bq b q b =++∴≠=++11,0, 。
人教A版高中数学必修五数列单元练习.docx

高中数学学习材料马鸣风萧萧*整理制作2009届建平中学高三数学数列单元检测2008-10-23一、填空题1. 已知{}n a 为等差数列,1322a a +=,67a =,则5a = .2. 在数列{}n a 在中,542n a n =-,212n a a a an bn ++=+,*n N ∈,其中,a b 为常数,则ab =3. 在等比数列{n a }中,若7944,1a a a ⋅==,则12a 的值是 .4. 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于5. 设n S 表示等比数列}{n a (*N n ∈)的前n 项和,已知3510=S S ,则=515S S。
6. 为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像向 。
7. 设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++= 8. 设数列{}n a 中,112,1n n a a a n +==++,则通项n a = _______。
9. 等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 10. 已知等差数列{}n a 满足:6,821-=-=a a .若将541,,a a a 都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为 .11. 已知数列{}n a 的前n 项和为2,n S n =某三角形三边之比为234::a a a ,则该三角形最大角为 .12. 设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .13. 某人为了购买商品房,从2001年起,每年1月1日到银行存入a 元一年定期储蓄,若年利率为p 且保持不变,并约定每年到期存款及利息均自动转存为新的一年定期存款,到2008年1月1日(当日不存只取)将所有的存款及利息全部取回(不计利息税),则可取回的钱的总数为 (元) 14.给定(1)log (2)n n a n +=+(n ∈N *),定义乘积12k a a a ⋅⋅⋅为整数的k (k ∈N *)叫做“理想数”,则区间[1,2008]内的所有理想数的和为 .二、解答题15. 等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列, 11b =,且2264,b S = 33960b S =.(1)求n a 与n b ; (2)求和:12111nS S S +++.16.设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的通项公式.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T17.设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设32n n n b a a =-,证明1n n b b +<,其中n 为正整数.18.如图所示的等腰梯形是一个简易水槽的横断面,已知水槽的最大流量与横断面的面积成正比,比例系数为k (0k >).(Ⅰ)试将水槽的最大流量表示成关于θ函数()f θ; (Ⅱ)求当θ多大时,水槽的最大流量最大. θaaa19.等差数列{}n a 的前n 项和为1312932n S a S =+=+,,. (Ⅰ)求数列{}n a 的通项n a 与前n 项和n S ; (Ⅱ)设()nn S b n n*=∈N ,求证:数列{}n b 中任意不同的三项都不可能成为等比数列.20.已知{}n a 是公差为d 的等差数列,它的前n 项和为n S ,4224S S =+,1nn na b a +=. (1)求公差d 的值;(2)若152a =-,求数列{}nb 中的最大项和最小项的值; (3)若对任意的*n N ∈,都有8n b b ≤成立,求1a 的取值范围.参考答案 一、填空题8 -1 4 90 7 左移65π45 222++n n31-1 1200 3 ()()pp a p a +-+1182046二、解答题15、解:(1)设{}n a 的公差为d ,{}n b 的公比为q ,则d 为正整数,3(1)n a n d =+-,1n n b q -=依题意有23322(93)960(6)64S b d q S b d q ⎧=+=⎨=+=⎩①解得2,8d q =⎧⎨=⎩或65403d q ⎧=-⎪⎪⎨⎪=⎪⎩(舍去) 故132(1)21,8n n n a n n b -=+-=+= (2)35(21)(2)n S n n n =++++=+∴121111111132435(2)n S S S n n +++=++++⨯⨯⨯+11111111(1)2324352n n =-+-+-++-+ 1111(1)2212n n =+--++32342(1)(2)n n n +=-++ 16、解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=⎧⎪⎨+++=⎪⎩,2a =设数列{}n a 的公比为q ,由22a =,可得1322a a q q==,.又37S =,可知2227q q++=,即22520q q -+=, 解得12122q q ==,. 由题意得12q q >∴=,.11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +==,,,,由(1)得3312n n a +=3ln 23ln 2n n b n ∴==又13ln 2n n n b b +-={}n b ∴是等差数列.12n n T b b b ∴=+++1()2(3ln 23ln 2)23(1)ln 2.2n n b b n n n +=+=+=故3(1)ln 22n n n T +=. 17.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,,因为132nn a a +-=,所以111(3)322n nn n n a a b a a +++-=-=. 由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n nn n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得 3322nn n n a a a a --<.即 1n n b b n +<,为正整数.18.解:(1)设水槽的截面面积为S ,则S =()[]=⋅++θθsin cos 221a a a a ()θθcos 1sin 2+a 则()==kS f θ()θθcos 1sin 2+k a ,⎪⎭⎫⎝⎛∈2,0πθ。
人教版高中数学必修五数列题库

数学5(必修)第二章:数列[基础训练A 组]一、选择题1.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( )A .11B .12C .13D .142.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( )A .66B .99C .144D .297 3.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )A .81B .120C .168D .1924.12+与12-,两数的等比中项是( )A .1B .1-C .1±D .21 5.已知一等比数列的前三项依次为33,22,++x x x , 那么2113-是此数列的第( )项 A .2 B .4 C .6 D .8 6.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列 的前8项之和为( )A .513B .512C .510D .8225 二、填空题1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。
2.数列{n a }是等差数列,47a =,则7s =_________3.两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =___________. 4.在等比数列{}n a 中, 若,75,393==a a 则10a =___________.5.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅=___________. 6.计算3log 33...3n=___________.三、解答题1. 成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。
2. 在等差数列{}n a 中, ,1.3,3.0125==a a 求2221201918a a a a a ++++的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列综合训练题
()1.在等差数列}{n a 中,836a a a +=,则=9S (A )0(B )1(C )1-(D )以上都不对 A
()2.在等比数列}{n a 中,3a 和5a 是二次方程052
=++kx x 的两个根,则642a a a 的值为(A )5
5±(B )55(C )55-(D )25 【答案】A
()3.设n S 为等差数列}{n a 的前n 项和。
已知)6(144,324,3666>===-n S S S n n 。
则n 等于(A )16(B )17(C )18(D )19
【答案】B 解析:216)144324(36)(6)(166=-+=+=-+-n n n a a S S S ,361=+n a a ,
3242
)
(1=+=
n n a a n S ()4.在数列}{n a 中,已知)(,5,1*
1221N n a a a a a n n n ∈-===++,则2013a 等于
(A )4-(B )5-(C )4(D )1-
【答案】C 解析:n n n n a a a a -=-=+++123Θ,n n n a a a =-=∴++36,200845a a ==。
()5.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4,a 2+a 5,a 3+a 6…是
A .公差为d 的等差数列
B .公差为2d 的等差数列
C .公差为3d 的等差数列
D .非等差数列
考查等差数列的性质.
【答案】B (a 2+a 5)-(a 1+a 4)=(a 2-a 1)+(a 5-a 4)=2d .(a 3+a 6)-(a 2+a 5)=(a 3-a 2)+(a 6-a 5)=2d .依次类推.
()6.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是 A
.B
.C
.D .)2
5
1,251(++- 【答案】D 设三边为2
,,,a aq aq 则222a aq aq a aq aq aq aq a ⎧+>⎪+>⎨⎪+>⎩,即22210
1010q q q q q q ⎧--<⎪-+>⎨⎪+->⎩
得1122q q R q q ⎧+<<⎪⎪⎪
∈⎨⎪
⎪><⎪⎩
或
q <<
()7.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以1
3
为第三项,9为第六项的等比数列的公比,则这个三角形是()
A .钝角三角形
B .锐角三角形
C .等腰直角三角形
D .以上都不对 【答案】B 374,4,2,tan 2,a a d A =-===361
,9,3,tan 33
b b q B =
=== tan tan()1C A B =-+=,,,A B C 都是锐角
()8.三个数c b a ,,成等比数列,且)0(>=++m m c b a ,则b 的取值范围是 (A )]3,
0[m (B )]3,[m m --(C ))3,0(m (D )]3
,0()0,[m m ⋃- 【答案】D 解析:设bq c q b a ==
,,则有b
m
q q b m bq b q b =++∴≠=++11,0,Θ。
当0>q 时,311≥++=q q b m ,而0>b ,3
0m b ≤<∴;当0<q 时,111-≤++=q q b m ,即1-≤b m
,而0>m 0<∴b ,则0<≤-b m ,故]3
,
0()0,[m
m b ⋃-∈。
9.各项都为正数的等比数列{}n a 中,
11=a ,)11(273
232a a a a +=+,则通项公式=n a .13-n 10.数列{}n a 的前n 项和32
-+=n n S n ,则通项公式=n a .⎩⎨
⎧≥=-)
2(2)
1(1n n n
11.若数列}{n a 为等差数列,且12031581=++a a a ,则1092a a -的值等于 .【24】
12.已知数列{}n a 中,11a =-,11n n n n a a a a ++⋅=-,则数列通项n a =___________。
【答案】1n -
1111
111111,1,1,n n n n n a a a a a a ++⎧⎫-=-=-=⎨⎬⎩⎭
是以11a 为首项,以1-为
公差的等差数列,
11
1(1)(1),n n n n a a n
=-+-⨯-=-=- 13.已知数列{}n a 中,11a =,()
*1122(...)n n na a a a n N +=+++∈. (1)求234,,a a a ;
(2)求数列{}n a 的通项n a ; 解:(1)2342,3,4a a a ===
(2)1122(...)n n na a a a +=+++①
121(1)2(...)n n n a a a a --=+++②
①—②得1(1)2n n n na n a a +--=
即:1(1)n n na n a +=+,
11
n n a n a n
++= 所以321
12123...1...(2)121
n n n a a a n a a n n a a a n -===≥- 所以*
()n a n n N =∈
14.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ;
(Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S .
解:(1)由151241=+=-a a a n n 及知,1234+=a a
解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a
)1(211+=+-n n a a {}1+∴n a 构成以211=+a 为首项以2为公比的等比数列; 112)1(1-⋅++∴n n a a ;,21n n a =+∴ .12-=∴n n a 为所求通项公式
(3)12-=n
n a Θ
n n a LL a a a S ++++=∴321
)12()12()12()12(321-++-+-+-=n LL n LL n -++++=)2222(321
n n ---=2
1)21(2.221n n --=+
15.已知函数42
()(1)1
x f x x x R x -=
≠-∈+,,数列{}n a 满足1(1)a a a a R =≠-∈,,*1()()n n a f a n N +=∈.
(1)若数列{}n a 是常数列,求a 的值; (2)当14a =时,记*2
()1
n n n a b n N a -=∈-,证明数列{}n b 是等比数列,并求出通项公式n a . 解(1)∵*1142
()()1
n n x f x a a a f a n N x +-=
==∈+,,()
,数列{}n a 是常数列, ∴1n n a a a +==,即42
1
a a a -=+,解得2a =,或1a =.………6分
∴所求实数a 的值是1或2.
(2)∵*12
4()1
n n n a a b n N a -==
∈-,, ∴111142
2
21222423131
11
n n n n n n n n n a a a a b b a a a a +++---+-====
----+,,即*
12()3n n b b n N +=∈.…10分 ∴数列{}n b 是以123b =
为首项,公比为23q =的等比数列,于是1*
222()()()333
n n n b n N -==∈.12分
由21n n n a b a -=-,即22
()13
n n n a a -=-,解得*2
()2
3()2()13
n n n a n N -=∈-.16分
∴所求的通项公式*2
()2
3()2
()13
n n n a n N -=∈-.。