空间点,直线,平面之间的位置关系教案.
教学设计2:8.4.2 空间点、直线、平面之间的位置关系

8.4.2空间点、直线、平面之间的位置关系1.空间中点与直线有两种关系:点在线上,点在线外如图中A在线AB上在线A’B’外.点与平面位置关系有两种:点在面上,点在面外如图A在平面ABCD上A不在BB’C’C’上.2.空间中直线与直线的位置关系不同在任何一个平面内的两条直线叫异面直线平行直线(无交点).共面直线:相交直线(一个交点);异面直线(无交点).3.异面直线的画法:4.异面直线所成的角如图,已知两条异面直线a,b,经过空间任一点O 作直线a'∥a,b'∥b,我们把a'与b'所成的锐角(或直角)叫做异面直线a,b所成的角(或夹角).为了简便,点O通常取在两条异面直线中的一条上,例如,取在直线b上,然后经过点O作直线a'∥a,a'和b所成的锐角(或直角)就是异面直线a与b所成的角.5.练习一、已知M、N分别是长方体的棱C1D1与CC1上的点,那么MN与AB所在的直线是异面直线吗?解:是,因为两条直线既不相交也不平行.练习二、如图,已知正方体ABCD-A'B'C'D'中.(1)哪些棱所在直线与直线BA'是异面直线?(2)直线BA'和CC'的夹角是多少?6.空间中直线与平面的位置关系:直线在平面内(无数个公共点);直线与平面相交(一个公共点);直线与平面平行(没有公共点).7.空间中平面与平面的位置关系:两个平面平行(没有公共点);两个平面相交(有一条公共直线).8.探究:如图,在长方体ABCD-A'B'C'D'中,连接A'B,D'C,请你举出一些图中直线与平面的位置关系.平面ABCD//平面A'B'C'D',平面AA'DD'//平面BB'CC',AA '//平面BB'CC',A'B//平面CC'DD'等.9.例一:如图用符号表示下列图形中的直线、平面之间的位置关系.解:在(1)中α∩β=l,a∩α=A,a∩β=B在(2)α∩β=l,.a⊂α,b⊂β,a∩l=P,b∩l=P,a∩b=P10.例二:如图,AB∩α=B,A∉α,a⊂α,B∉a.直线AB 与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线.理由如下:若直线AB 与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β,αβ⊂由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而ABα⊂, 进而A∈α,这与A∉α矛盾.所以直线AB与a是异面直线.补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线.11.例3:已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样学生思考例三学生独立思考例5并回答段炼学生立体感段炼学生独立解决问题能力的位置关系?并画图说明.解:直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.(2)重要结论:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.用符号语言可表示为A∉α,B∈α,l⊂α,B∉l⇒AB 与l是异面直线(如图).12.例4:如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是A1B1,BB1的中点,则下列直线与平面、平面与平面的位置关系是什么?(1)AM所在的直线与平面ABCD的位置关系;(2)CN所在的直线与平面ABCD的位置关系;(3)AM所在的直线与平面CDD1C1的位置关系;(4)平面AMD1与平面BNC的位置关系.解:(1)AM所在的直线与平面ABCD相交.(2)CN所在的直线与平面ABCD相交.(3)AM所在的直线与平面CDD1C1平行.(4)平面AMD1与平面BNC相交.12.例5:在直三棱柱(侧棱垂直于底面)ABC-A1B1C1中,E,F分别为A1B1,B1C1的中点.求证:平面ACC1A1与平面BEF相交.证明:∵在矩形AA1B1B中,E为A1B1的中点,∴AA1与BE不平行,则AA1,BE的延长线相交于一点,设此点为G,∴G∈AA1,G∈BE.又AA1⊂平面ACC1A1,BE⊂平面BEF,∴G∈平面ACC1A1,G∈平面BEF,∴平面ACC1A1与平面BEF相交.总结:判断或证明平面与平面的位置关系时主要考虑平面与平面有无公共点,如果没有公共点,则两平面平行;如果可以找到一个公共点,则两平面相交.1.空间中直线与直线位置关系.。
高三数学教案:空间点、直线、平面之间的位置关系(3课时)

第一课时 2.1.1 平面教学要求:能够从日常生活实例中抽象出数学中所说的“平面”;理解平面的无限延展性;准确地用图形和符号表示点、直线、平面以及它们之间的关系;初步掌握文字语言、图形语言与符号语言三种语言之间的转化;理解能够作为推理依据的三条公理.教学重点:理解三条公理,能用三种语言分别表示.教学难点:理解三条公理.教学过程:一、复习准备:2. 举例:生活中哪些物体给我们以平面的形象?二、讲授新课:1. 教学平面的概念及表示:① 平面的概念: A.描绘性说明; B.平面是无限伸展的;理解两点:无限好比在平面上画直线;一个平面把空间分成两局部。
② 平面的画法:A.任意角度观察桌面、黑板面,感到象什么?美术中如何画一张纸?B.画法:通常画平行四边形来表示平面。
(注意通常两字)水平平面:通常画成锐角成45°,横边等于邻边的两倍。
非水平平面:只要画成平行四边形。
直立的平面:一组对边为铅垂线。
相交的平面:一定要画出交线;遮住局部的线段画虚线或不画。
C.练习: 画一个平面、相交平面③ 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也能够用两个相对顶点的字母来表示,如平面BC 。
④ 点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉.2. 教学公理1:①揭示公理1:假如一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线)②应用:检验桌面是否平; 判断直线是否在平面内③符号:点A 的直线l 上,记作:A ∈l ; 点A 在直线l 外,记作A ∉l ;直线l 的平面α内,记作l ⊂α。
④用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂3.教学公理2:①揭示公理2:经过不在同一条直线上的三点,有且只有一个平面。
②理解:不在同一条直线上;一点、两点、三点、四点的情况;有且只有一个,等价于确定 ③实例:一扇门。
人教版数学必修二2.1.3 空间中直线与平面之间的位置关系 教案

2.1.3空间中直线与平面之间的位置关系教案教学目标:1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系。
2. 学会用图形语言、符号语言表示三种位置关系.教学重点:直线与平面的三种位置关系及其作用.教学难点:直线与平面的三种位置关系及其作用问题提出1. 空间点与直线,点与平面分别有哪几种位置关系?2. 空间两直线有哪几种位置关系?探究:直线与平面之间的位置关系思考1:一支笔所在的直线与一个作业本所在的平面,可能有哪几种位置关系?思考2:如图,线段A ′B 所在直线与长方体ABCD-A ′B ′C ′D ′的六个面所在的平面各是什么位置关系?思考3:通过上面的观察和分析,直线与平面有三种位置关系有哪些?靠什么来划分呢?思考4:用图如何表示直线与平面的三种位置?如何用符号语言描述这三种位置关系?思考5:过平面外一点可作多少条直线与这个平面平行?若直线l 平行于平面α,则直线l 与平面α内的直线的位置关系如何?B A DCA' B'D' C'理论迁移例1 给出下列四个命题:(1)若直线l 上有无数个点不在平面α内,则l ∥α.(2)若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.(3)若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.(4)若直线l 在平面α内,且l 与平面β平行,则平面α与平面β平行.其中正确命题的个数共有 __个.随堂练习:判断正误1、若直线l 上有无数个点不在平面α内,则l ∥α( )2、若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行( )3、如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行( )4、如果平面外的两条平行直线中的一条直线与平面平行,那么另一条直线也与这个平面平行( )5、若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点( )巩固练习1.选择题(1)以下命题(其中a ,b 表示直线,α表示平面)①若a ∥b ,b ⊂α,则a ∥α ②若a ∥α,b ∥α,则a ∥b③若a ∥b ,b ∥α,则a ∥α ④若a ∥α,b ⊂α,则a ∥b其中正确命题的个数是 ( )(A )0个 (B )1个 (C )2个 (D )3个(2)已知a ∥α,b ∥α,则直线a ,b 的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有 ( )(A )2个 (B )3个 (C )4个 (D )5个(3)如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系一定是( )(A )平行 (B )相交 (C )平行或相交 (D )AB ⊂α(4)已知m ,n 为异面直线,m ∥平面α,n ∥平面β,α∩β=l ,则l ( )(A )与m ,n 都相交 (B )与m ,n 中至少一条相交(C )与m ,n 都不相交 (D )与m ,n 中一条相交(5)已知直线a 在平面α外,则 ( )(A )a ∥α (B )直线a 与平面α至少有一个公共点(C )a A α⋂= (D )直线a 与平面α至多有一个公共点课本49页练习课堂小结课外作业一、选择题: 1.下列命题中正确的是( )A .平行于同一个平面的两条直线平行B.垂直于同一条直线的两条直线平行C.若直线a与平面α内的无数条直线平行,则a∥αD.若一条直线平行于两个平面的交线,则这条直线至少平行于两个平面中的一个2.下列四个命题(1)存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与该平面平行;(4)过直线外一点可作无数个平面与该直线平行.其中正确的命题是()A.(1),(3)B.(2),(4)C.(1),(3),(4)D.(2),(3),(4)3.已知平面α∥平面β,直线a∥α,直线b∥β那么,a与b的关系必定是()A.平行或相交B.相交或异面C.平行或异面D.平行、相交或异面二、填空题:4.已知直线a∥b,a、b 平面α,直线c与a异面,且b与c不相交,则c与α的位置关系是_______.5.给你四个命题:①过直线外一点,有且只有一条直线与该直线平行②过直线外一点,有且只有一个平面与该直线平行③过平面外一点,有且只有一条直线与该平面平行④过平面外一点,有无数多条直线与该平面平行其中真命题为_____________(写出序号即可)6.三个平面两两相交,有三条交线,则这三条交线的位置关系为_____________.自我评价:_______________________________________________________________________ _________________________________________________________________________________。
教案(空间中点、线、面的位置关系)

空间中点、线、面的位置关系教案3.点与平面空间中的平面也可看成这个平面上的所有点组成的集合.位置关系符号表示图形表示点A在平面α内α∈A点A不是平面α内的点α∉A4.直线与平面(1)直线l在平面α内(或平面α过直线l):直线l上的所有点都在平面α内,记作α⊂l.(2)直线l在平面α外:直线l上至少有一个点不在平面α内,记作α⊄l . ①直线l 与平面α相交:直线l 与平面α有且只有一个公共点A ,记作A l =α .①直线l 与平面α平行:直线l 与平面α没有公共点,记作α//l .5. 平面与平面位置关系符号表示图形表示 平面βα与相交 l =βα平面βα与平行 βα//三、直线与平面垂直1. 直线与平面垂直的定义:如果直线l 与平面α相交于点A ,且对平面α内任意一条过点A的直线m,都有ml⊥,则称直线l与平面α垂直(或l是平面α的一条垂线,α是直线l的一个垂面),记作α⊥l.其中点A称为垂足.2.点与面的距离:给定空间中的一个平面α及一个点A,过点A作只可以作平面α的一条垂线,如果记垂足为B,则称B为A在平面α内的射影(也称投影),线段AB为平面α的垂线段,AB的长为点A到平面α的距离.3.直线与平面的距离:当直线与平面平行时,直线上任意一点到平面的距离称为这条直线到这个平面的距离;4.两个平行平面的距离:当平面与平面平行时,一个平面上的任意一点到另一个平面的距离称为这两平行平面之间的距离.例 2 在正方体1111D C B A ABCD -中,(1)与直线1AA 异面的棱有 条; (2)与直线B A 1相交的棱有 条;(3)直线B A 1与直线C B 1的位置关系是 ; (4)直线B A 1与直线C D 1的位置关系是 .【答案】(1)排除相交和平行的情况,4条; (2)从一个顶点出发的棱有3条,所以共有6条;(3)异面,通过找到衬托平面来判断; (4)平行.例 3 已知1111D C B A ABCD -是长方体,且2,3,41===AA AD AB .(1)求点A 到平面11B BCC 的距离; (2)求直线AB 到平面1111D C B A 的距不在平面内,这与直线上无数个点都不在平面上不同.两条直线的平行依赖于在同一平面内没有公共点,所以仅由直线与平面平行不可得到.在正方体内,判断两条直线的位置关系,通过对图形的观察,熟练掌握位置关系描述和判断的方法.。
《直线、平面之间的位置关系》示范课教学设计【高中数学教案】

《直线、平面之间的位置关系》教学设计用符号语言、图形语言描述点、直线、平面之间的位置关系;理解直线与平面垂直的含义、了解点面距、线面距、面面距的定义教学重点:直线与平面垂直的含义、点面距、线面距、面面距的定义. 教学难点:从集合的角度理解点、线、面之间的相互关系.PPT 课件.【新知探究】问题1:空间中直线与平面的位置关系,以及平面与平面的位置关系有哪些位置关系?.师生活动:结合图11-1-17,总结空间中直线与平面的位置关系,以及平面与平面的位置关系.预设的答案:直线与平面的位置关系:一般地,如果l 是空间中的一条直线,α是空间中的一个平面,则:lα≠∅与l α=∅有且仅有一种情况成立.(1)当l α≠∅时,要么l α⊂,要么l 与α只有一个公共点; (2)当lα=∅时,称直线l 与平面α平行,记作://l α.平面与平面的位置关系:如果α与β是空间中的两个平面,则αβ≠∅ 与◆ 教学过程◆ 课前准备◆ 教学重难点 ◆◆ 教学目标αβ=∅有且仅有一种情况成立.(1)当αβ≠∅时,α与β的公共点组成一条直线;(2)当αβ=∅时,称平面α与平面β平行,记作://αβ.文字语言表达图形语言表达符号语言表达A是直线l上的点,A1不是直线l上的点A∈l,A1∉l A是平面α内的点,A1不是平面α内的点A∈α,A1∉α直线l在平面α内(或平面α过直线l)l⊂α直线l在平面α外直线l与平面α相交l∩α=Al⊄α直线l与平面α平行l∥α平面α与平面β相交于l α∩β=l 平面α与平面β平行α∥β设计意图:培养学生分析和归纳的能力.问题2:观察图中的长方体(1) A1A与AB是否垂直,A1A与AD是否垂直并说明理由;(2) 判断A1A与AC是否垂直;(3) 若直线在平面ABCD 内,且过点A ,判断A 1A 与l 是否垂直.师生活动:引导学生阅读教材,给出结论 预设的答案:直线与平面垂直:由观察可知,图中,不管直线的具体位置如何,只要,A l l ∈⊂平面ABCD ,则一定有1A A l ⊥.追问:如何定义直线与平面垂直?空间距离有哪些? 预设的答案:直线与平面垂直的定义:一般地,如果直线l 与平面α相交于一点A ,且对平面α内任意一条过点A 的直线m ,都有l m ⊥,则称直线l 与平面α垂直(或l 是平面α的一条垂线,α是直线l 的一个垂面),记作l α⊥),其中点A 称为垂足. 因此,图中长方体中,有1A A ⊥平面ABCD ,类似地,有1A A ⊥平面1111,A B C D 11A B ⊥平面11BCC B .点到平面的距离、直线到平面的距离:给定空间中一个平面α以及一个点A ,过A 可以作而且只可以作平面α的一条垂线.如果记垂足为B ,则称B 为A 在平面α内的射影(也称为投影),线段AB 为平面α的垂线段,AB 的长为点A 到平面α的距离.特别地,当直线与平面平行时,直线上任意一点到平面的距离称为这条直线到这个平面的距离;平行平面间的距离:当平面与平面平行时,一个平面上任意一点到另一个平面的距离称为两平行平面之间的距离.因此,点1A 到面ABCD 的距离等于线段1A A 的长,直线11A B 到面ABCD 的距离等于线段1A A 的长,面1111A B C D 与面ABCD 之间的距离等于1A A 的长.设计意图:培养学生分析和归纳的能力. 【巩固练习】 例1.思考辨析(1)直线l 在平面α内,记作l ∈α.( ) (2)若a ∩b =∅,则a 与b 平行.( )(3)若l ∩α≠∅,则直线l 与平面α有公共点.( ) (4)若直线l 在平面α外,则直线l 与平面α平行.( )(5)若α∩β≠∅,则平面α与平面β相交,且交于一个点.( ) 师生活动:学生分析解题思路,给出答案. 预设的答案: (1)× (2)× (3)√ (4)× (5)× 设计意图:了解点、线、面位置关系的表示. 例2. 下列命题中正确的个数是( )①如果直线l 与平面α内的无数条直线垂直,则l ⊥α; ②如果直线l 与平面α内的一条直线垂直,则l ⊥α; ③如果直线l 不垂直于α,则α内没有与l 垂直的直线; ④如果直线l 不垂直于α,则α内也可以有无数条直线与l 垂直. A .0 B .1 C .2 D .3 师生活动:学生分析解题思路,给出答案.预设的答案: B 当α内的无数条直线平行时,l 与α不一定垂直,故①不对; 当l 与α内的一条直线垂直时,不能保证l 与α垂直,故②不对; 当l 与α不垂直时,l 可能与α内的无数条直线垂直,故③不对;④正确. 设计意图:直线与平面垂直的概念辨析例3. 如图,长方体ABCD -A 1B 1C 1D 1中,AB =6 cm ,BC =4 cm ,AA 1=3 cm ,则 (1)点A 到平面DCC 1D 1的距离为________; (2)直线AA 1到平面BCC 1B 1的距离为________; (3)平面ABCD 与平面A 1B 1C 1D 1之间的距离为________. 师生活动:学生分析解题思路,给出答案. 预设的答案:(1)4 cm (2)6 cm (3)3 cm 设计意图:进一步认识空间距离及求法 【课堂小结】问题:(1)直线与平面、平面与平面位置关系有哪些? (2)直线与平面垂直是定义是什么?空间距离有哪些? 师生活动:学生尝试总结,老师适当补充.预设的答案:1.直线a 与平面α的位置关系:⎩⎨⎧a ∩α=∅⇒a ∥αa ∩α≠∅⇒⎩⎪⎨⎪⎧a 与α相交a 在α内;平面α与平面β的位置关系⎩⎪⎨⎪⎧α∩β=∅⇒α与β平行α∩β≠∅⇒α与β相交2.直线与平面垂直:(1)定义:一般地,如果直线l 与平面α相交于一点A ,且对平面α内任意一条过点A 的直线m ,都有l m ⊥,则称直线l 与平面α垂直.(2)点面距:若点A 是平面α外一点,AB ⊥α,B 为垂足,则线段AB 的长 为点A 到平面α的距离.(3)线面距、面面距转化为点面距.设计意图:通过梳理本节课的内容,能让学生想出几何体的基本元素、及点、线、面的位置关系,从而发展学生的逻辑推理、数学建模和直观想象的核心素养.布置作业: 【目标检测】1. 给出下列四个命题:①若直线l ∩m =∅,则l 与m 平行;②若直线a 在平面α外,则a ∥α; ③若直线a ∥b ,直线b ⊂α,则a ∥α;④若m ⊂α,m ∩β=M . 那么平面α与平面β相交,其中真命题的个数为( ) A .1 B .2 C .3 D .4 设计意图:考查空间两个平面的位置关系 2. 下面叙述中:①若直线垂直于平面内的两条直线,则这条直线与平面垂直;②若直线与平面内的任意一条直线都垂直,则这条直线与平面垂直;③若直线l 是平面α的一条垂线,则直线l 垂直于 平面α内的所有直线;④若直线l 垂直于平面α,则称平面α是直线l 的一个垂面. 其中正确的有( )A .1个B .2个C .3个D .4个3.在正方体ABCD -A 1B 1C 1D 1中,判断下列直线、平面间的位置关系: ①A 1B 与D 1C ________;②A1B与B1C________;③D1D与平面BCC1B1________;④AB1与平面BCC1________;⑤平面ABB1与平面DCC1_________;⑥平面ABB1与平面DD1A1________.设计意图:考查空间两条直线、空间两个平面的位置关系4.线段AB长为5 cm,在水平面上向右移动4 cm后记为CD,将CD沿铅垂线方向向下移动3 cm后记为C′D′,再将C′D′沿水平方向向左移动4 cm后记为A′B′,依次连接构成长方体ABCD-A′B′C′D′.(1)该长方体的高为________cm;(2)平面A′B′BA与平面CDD′C′间的距离为________cm;(3)点A到平面BCC′B′的距离为________cm.设计意图:考查空间距离的求法参考答案:1.A对于①,直线l∩m=∅,即直线l与直线m没有公共点,l与m可能平行,也可能异面,∴l不一定与m平行.故①错.对于②,直线a在平面α外包括两种情形:a∥α,a与α相交,故②错.对于③,由直线a∥b,b⊂α,只能说明a和b无公共点,但a可能在平面α内,故③错.对于④,∵m⊂α,m∩β=M,∴点M∈α,M∈β,故平面α与平面β相交,故④正确.2.C①中若两条直线为平行直线,则这条直线不一定与平面垂直,所以不正确;由定义知②③④正确.3.①平行②异面③平行④相交⑤平行⑥相交4.(1)3(2)4(3)5如图,在长方体ABCD-A′B′C′D′中,AB=5cm,BC=4 cm,CC′=3 cm,∴长方体的高为3 cm;平面A′B′BA与平面CDD′C′之间的距离为4 cm;点A到平面BCC′B′的距离为5 cm.。
空间点线面的位置关系教案

空间点线面的位置关系教案一、教学目标通过本节课的学习,学生应能够: 1. 掌握空间中点、线、面的概念; 2. 理解点线面之间的位置关系; 3. 运用点线面的位置关系解决问题。
二、教学重难点1.重点:点线面的概念与辨析;2.难点:点线面之间的位置关系的判断及应用。
三、教学准备1.教学课件;2.白板、彩色粉笔;3.学生练习用纸。
四、教学过程步骤一:导入1.引入话题:让学生想象自己置身于一个空旷的大地,有一些身体上的特征点,如:头顶、鼻尖、脚尖等;2.提问:学生是否了解这些点在空间中的位置关系?步骤二:点、线、面的概念1.定义点:点是一个没有长度、宽度、高度,只有位置坐标的对象;2.定义线:线是由无数个点连接起来的;3.定义面:面是由无数个线连接起来的,有长度、宽度,但没有厚度。
步骤三:点线面的位置关系1.学习点与点的位置关系:–重合:两个点的位置坐标完全相同;–不重合:两个点的位置坐标不完全相同。
2.学习点与直线的位置关系:–在直线上:点在直线上;–不在直线上:点与直线没有交点。
3.学习点与平面的位置关系:–在平面内:点在平面内;–不在平面内:点与平面没有交点。
4.学习线与线的位置关系:–相交:两条线在某一点上有交集;–平行:两条线没有交点,永远不会相交;–重合:两条线在每个点上都重合。
5.学习线与平面的位置关系:–相交:线与平面有交集;–平行:线与平面没有交点,永远不会相交;–在平面内:线所在的点都在平面内。
6.学习面与面的位置关系:–相交:两个面有交集;–平行:两个面没有交集,永远不会相交;–重合:两个面在每个点上都重合。
步骤四:练习与讨论1.发放练习用纸,让学生尝试判断不同点线面之间的位置关系;2.学生互相交流答案,并进行讨论、核对。
步骤五:拓展应用1.引导学生思考如何运用点线面的位置关系解决问题;2.提供实际问题,鼓励学生利用所学知识进行解答。
五、课堂作业1.完成课堂练习;2.思考并撰写一篇关于点线面位置关系的小结,字数不少于200字。
2025届高考数学一轮复习教案:立体几何-空间点、直线、平面之间的位置关系

第二节空间点、直线、平面之间的位置关系课程标准1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义,了解四个基本事实和一个定理.2.能运用基本事实、定理和已获得的结论证明空间基本图形位置关系的简单命题.考情分析考点考法:以空间几何体为载体,考查基本事实及其结论在判断位置关系、交线问题、求角中的应用.求异面直线所成的角是高考的热点,在各个题型中均有所体现.核心素养:直观想象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.四个基本事实基本事实1:过不在一条直线上的三个点,有且只有一个平面.符号:A,B,C三点不共线⇒存在唯一的α使A,B,C∈α.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内.符号:A∈l,B∈l,且A∈α,B∈α⇒l⊂α.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号:P∈α,且P∈β⇒α∩β=l,且P∈l.基本事实4:平行于同一条直线的两条直线平行.符号:a∥b,b∥c⇒a∥c.2.基本事实的三个推论推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.3.空间点、直线、平面之间的位置关系项目直线与直线直线与平面平面与平面平行关系图形语言符号语言a ∥b a ∥αα∥β相交关系图形语言符号语言a ∩b =A a ∩α=A α∩β=l 其他关系图形语言-符号语言a ,b 是异面直线a ⊂α-【微点拨】(1)直线在平面外分直线与平面平行和直线与平面相交两种情况.(2)两条直线没有公共点分直线与直线平行和直线与直线异面两种情况.4.等角定理如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补.5.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任意一点O分别作直线a'∥a,b'∥b,把a'与b'所成的角叫做异面直线a与b所成的角(或夹角).(2)范围:,【基础小题·自测】类型辨析改编易错高考题号14231.(多维辨析)(多选题)下列结论错误的是()A.如果两个平面有三个公共点,则这两个平面重合B.经过两条相交直线,有且只有一个平面C.两两相交的三条直线共面D.若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线【解析】选ACD.A中的两个平面可能相交;B正确;C中的三条直线相交于一点时可能不共面;D中的两条直线可能是平行直线.2.(易错题)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交【解析】选B.由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.3.(多选题)(2022·新高考Ⅰ卷)已知正方体ABCD-A1B1C1D1,则()A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【解析】选ABD.如图,连接AD1,在正方形A1ADD1中,AD1⊥DA1,因为AD1∥BC1,所以BC1⊥DA1,所以直线BC1与DA1所成的角为90°,故A正确.在正方体ABCD-A1B1C1D1中,CD⊥平面BCC1B1,又BC1⊂平面BCC1B1,所以CD⊥BC1,连接B1C,则B1C⊥BC1,因为CD∩B1C=C,CD,B1C⊂平面DCB1A1,所以BC1⊥平面DCB1A1,又CA1⊂平面DCB1A1,所以BC1⊥CA1,所以直线BC1与CA1所成的角为90°,故B正确.连接A1C1,交B1D1于点O,则易得OC1⊥平面BB1D1D,连接OB,因为OB⊂平面BB1D1D,所以OC1⊥OB,∠OBC1为直线BC1与平面BB1D1D所成的角.设正方体的棱长为a,则易得BC1=2a,OC1=22,所以在Rt△BOC1中,OC1=12BC1,所以∠OBC1=30°,故C错误.因为C1C⊥平面ABCD,所以∠CBC1为直线BC1与平面ABCD所成的角,易得∠CBC1=45°,故D正确.4.(必修二P134例1变形式)如图,在三棱锥A-BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.【解析】(1)因为四边形EFGH为菱形,所以EF=EH,因为EF=12AC,EH=12BD,所以AC=BD.(2)因为四边形EFGH为正方形,所以EF=EH且EF⊥EH.因为EF∥AC,EH∥BD,且EF=12AC,EH=12BD,所以AC=BD且AC⊥BD.答案:(1)AC=BD(2)AC=BD且AC⊥BD【核心考点·分类突破】考点一空间位置关系的判断[例1](1)(多选题)下列选项正确的是()A.两两相交且不过同一点的三条直线必在同一平面内B.过空间中任意三点有且仅有一个平面C.若空间两条直线不相交,则这两条直线平行D.若直线l⊂平面α,直线m⊥平面α,则m⊥l【解析】选AD.对于选项A,可设l1与l2相交,这两条直线确定的平面为α;若l3与l1相交于B,则交点B在平面α内,同理,l3与l2的交点A也在平面α内,所以AB⊂α,即l3⊂α,选项A正确.对于选项B,若三点共线,则过这三个点的平面有无数个,选项B错误.对于选项C,空间中两条直线可能相交、平行或异面,选项C错误.对于选项D,若直线m⊥平面α,则m垂直于平面α内所有直线.因为直线l⊂平面α,所以直线m⊥直线l,选项D正确.(2)如图,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH与MN是异面直线的图形有________.(填序号)【解析】题图①中,直线GH∥MN;题图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;题图③中,连接MG,则GM∥HN,因此GH与MN共面;题图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以题图②④中GH 与MN异面.答案:②④【解题技法】1.点、线共面的判断方法(1)纳入平面法:要证明“点共面”或“线共面”,可先由部分点或直线确定一个平面,再证其余点或直线也在这个平面内.(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.(3)证明四点共面常通过证明四点组成的四边形为平行四边形或梯形来解决. 2.两直线位置关系的判断【微提醒】平面外一点与平面内一点的连线与平面内不经过该点的直线是异面直线.【对点训练】1.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【解析】选C.由题意易知,c与a,b都可相交,也可只与其中一条相交,故A,B均错误;若c与a,b都不相交,则c与a,b都平行,根据基本事实4,知a∥b,与a,b为异面直线矛盾,D错误.2.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中错误的是__________(写出所有错误命题的序号).【解析】由基本事实4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错误;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错误;a⊂α,b⊂β,并不能说明a与b不同在任何一个平面内,故④错误.答案:②③④考点二基本事实及其应用[例2]如图,在长方体ABCD-A1B1C1D1中,E,F分别是B1C1和C1D1的中点.求证:(1)E,F,D,B四点共面;(2)BE,DF,CC1三线共点.【证明】(1)如图,连接EF,BD,B1D1,因为EF是△B1C1D1的中位线,所以EF∥B1D1,因为BB1与DD1平行且相等,所以四边形BDD1B1是平行四边形,所以BD∥B1D1,所以EF∥BD,所以E,F,D,B四点共面;(2)因为EF∥BD,且EF≠BD,所以直线BE和DF相交,延长BE,DF,设它们相交于点P,因为P∈直线BE,直线BE⊂平面BB1C1C,所以P∈平面BB1C1C,因为P∈直线DF,直线DF⊂平面CDD1C1,所以P∈平面CDD1C1,因为平面BB1C1C∩平面CDD1C1=CC1,所以P∈CC1,所以BE,DF,CC1三线共点.【解题技法】1.证明空间点共线问题的方法(1)一般转化为证明这些点是某两个平面的公共点,再根据基本事实3证明这些点都在这两个平面的交线上.(2)选择其中两点确定一条直线,然后证明其余点也在该直线上.2.共面、共点问题(1)先确定一个平面,然后再证其余的线(或点)在这个平面内;(2)利用确定平面的定理,如由点构造平行直线、构造相交直线等.【对点训练】1.如图,α∩β=l,A,B∈α,C∈β,且A,B,C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必经过()A.点AB.点BC.点C但不过点MD.点C和点M【解析】选D.因为AB⊂γ,M∈AB,所以M∈γ.又α∩β=l,M∈l,所以M∈β.根据基本事实3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.所以γ与β的交线必经过点C和点M.2.已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD 上的点,且CG=13BC,CH=13DC.求证:(1)E,F,G,H四点共面;(2)三直线FH,EG,AC共点.【证明】(1)连接EF,GH,因为E,F分别是AB,AD的中点,所以EF∥BD.又因为CG=13BC,CH=13DC,所以GH∥BD,所以EF∥GH,所以E,F,G,H四点共面.(2)易知FH与直线AC不平行,但共面,所以设FH∩AC=M,所以M∈平面EFHG,M∈平面ABC.又因为平面EFHG∩平面ABC=EG,所以M∈EG,所以FH,EG,AC共点.考点三异面直线所成的角[例3](1)如图所示,圆柱O1O2的底面半径为1,高为2,AB是一条母线,BD是圆O1的直径,C是上底面圆周上一点,∠CBD=30°,则异面直线AC与BD所成角的余弦值为()A.33535B.43535C.3714D.277【解析】选C.连接AO2,设AO2的延长线交下底面圆周上的点为E,连接CE,易知∠CAE(或其补角)即为异面直线AC与BD所成的角,连接CD(图略),在Rt△BCD 中,∠BCD=90°,BD=2,∠CBD=30°,得BC=3,CD=1.又AB=DE=AE=BD=2,AC=B2+B2=7,CE=B2+B2=5,所以在△CAE中,cos∠CAE=B2+B2-B22B·B==3714,即异面直线AC与BD所成角的余弦值为3714.(2)(2023·武汉模拟)在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=AA1,D,E分别为AC,BC的中点,则异面直线C1D与B1E所成角的余弦值为()A .33B .55C .1010D .3010【解析】选D .设AB =2,取A 1B 1的中点F ,连接C 1F ,DF ,DE ,则B 1F =12A 1B 1,因为D ,E 分别为AC ,BC 的中点,所以DE ∥AB ,DE =12AB ,因为A 1B 1∥AB ,A 1B 1=AB ,所以DE ∥B 1F ,B 1F =DE ,所以四边形DEB 1F 为平行四边形,所以DF ∥B 1E ,所以∠C 1DF 为异面直线C 1D 与B 1E 所成的角或补角.因为AB ⊥BC ,AB =BC =AA 1=2,D ,E 分别为AC ,BC 的中点,所以DF =B 1E =12+22=5,C 1F =12+22=5,C 1D =(2)2+22=6,所以cos ∠C 1DF =121D ==3010.【解题技法】求异面直线所成角的方法(1)求异面直线所成角的常用方法是平移法.平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成角的三步:一作、二证、三求.①一作:根据定义作平行线,作出异面直线所成的角;②二证:证明作出的角是异面直线所成的角;③三求:解三角形,求出所作的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.【对点训练】1.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.π2B.π3C.π4D.π6【解析】选D.如图,连接A1C1,BC1,因为AD1∥BC1,所以∠PBC1为直线PB与AD1所成的角.设正方体的棱长为2,则PB=6,PC1=2,BC1=22,则PB2+P12=B12,在Rt△PBC1中,因为sin∠PBC1=B1B1=2=12,所以直线PB与AD1所成的角为π6.2.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD, SO=OB=3,SE=14SB,则异面直线SC与OE所成角的正切值为()A .222B .53C .1316D .113【解析】选D .如图,过点S 作SF ∥OE ,交AB 于点F ,连接CF ,则∠CSF (或其补角)为异面直线SC 与OE 所成的角.因为SE =14SB ,所以SE =13BE.又OB =3,所以OF =13OB =1.因为SO ⊥OC ,SO =OC =3,所以SC =32.因为SO ⊥OF ,所以SF =B 2+D 2=10.因为OC ⊥OF ,所以CF =10.所以在等腰△SCF 中,tan ∠CSF =113.即异面直线SC 与OE 所成角的正切值为113.【加练备选】平面α过正方体ABCD-A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A .32B .22C .33D .13【解析】选A .如图所示,过点A 补作一个与正方体ABCD-A 1B 1C 1D 1相同棱长的正方体,易知平面α为平面AF 1E ,则m ,n 所成的角为∠EAF 1.因为△AF 1E 为正三角形,所以sin ∠EAF 1=sin 60°=32.。
必修二空间点直线平面之间的位置关系教案

必修二空间点直线平面之间的位置关系教案一、教学目标:1.了解空间中点、直线、平面的基本概念,并能够准确描述它们之间的位置关系。
2.掌握直线与直线、直线与平面、平面与平面相交时的几何性质。
3.应用所学知识解决实际问题。
二、教学重点:1.掌握直线与直线、直线与平面、平面与平面相交时的基本属性。
2.能够应用所学知识解决实际问题。
三、教学内容:1.空间中点、直线、平面的概念及其表示方法。
2.直线与直线的位置关系:相交、平行。
3.直线与平面的位置关系:相交于一点、平行于平面。
4.平面与平面的位置关系:相交、平行。
四、教学过程:步骤一:导入新知识(15分钟)1.复习并巩固二维平面几何中的直线和平行线的概念,积累一些直线和平行线的性质;2.通过一些常见的平行线的例子,引出直线和直线、直线和平面、平面和平面之间的位置关系。
步骤二:点、直线、平面的概念及表示方法(10分钟)1.引导学生回顾点、直线、平面的概念和表示方法,使用示意图加深理解;2.提问引导学生思考:点确定直线,直线确定平面,点和平面之间是否必然相交?步骤三:直线与直线的位置关系(15分钟)1.引导学生观察直线与直线相交时的几何性质,总结并记录下来;2.引导学生观察直线与直线平行时的几何性质,总结并记录下来;3.提供一些实例让学生进行练习,巩固所学知识;步骤四:直线与平面的位置关系(15分钟)1.引导学生观察直线与平面相交于一点时的几何性质,总结并记录下来;2.引导学生观察直线与平面平行时的几何性质,总结并记录下来;3.提供一些实例让学生进行练习,巩固所学知识;步骤五:平面与平面的位置关系(15分钟)1.引导学生观察平面与平面相交时的几何性质,总结并记录下来;2.引导学生观察平面与平面平行时的几何性质,总结并记录下来;3.提供一些实例让学生进行练习,巩固所学知识;步骤六:综合应用(15分钟)1.提供一些综合性问题,让学生应用所学知识解决问题;2.引导学生分析问题,并给出解决思路;3.让学生个别或小组合作展开思考,解决问题;4.客观给予学生合理的评价和鼓励。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1.1 平面一、教学目标:1、知识与技能(1)利用生活中的实物对平面进行描述;(2)掌握平面的表示法及水平放置的直观图;(3)掌握平面的基本性质及作用;(4)培养学生的空间想象能力。
2、过程与方法(1)通过师生的共同讨论,使学生对平面有了感性认识;(2)让学生归纳整理本节所学知识。
3、情感与价值使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。
二、教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。
难点:平面基本性质的掌握与运用。
三、学法与教学用具1、学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、正(长)方形模型、三角板四、教学思想(一)实物引入、揭示课题师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗引导学生观察、思考、举例和互相交流。
与此同时,教师对学生的活动给予评价。
师:那么,平面的含义是什么呢这就是我们这节课所要学习的内容。
(二)研探新知1、平面含义师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的。
2、平面的画法及表示师:在平面几何中,怎样画直线(一学生上黑板画)之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
D C BA α如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片)课本P41 图 说明平面内有无数个点,平面可以看成点的集合。
点A 在平面α内,记作:A ∈α点B 在平面α外,记作:B α3、平面的基本性质教师引导学生思考教材P41的思考题,让学生充分发表自己的见解。
师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出以下公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(教师引导学生阅读教材P42前几行相关内容,并加以解析)符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等…… 引导学生归纳出公理2公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
教师用正(长)方形模型,让学生理解两个平面的交线的含义。
引导学生阅读P42的思考题,从而归纳出公理3公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据4、教材P43 例1通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用。
5、课堂练习:课本P44 练习1、2、3、4αβ α β ·B ·A αL A · α C · B · A · α P · α Lβ·B6、课时小结:(师生互动,共同归纳)(1)本节课我们学习了哪些知识内容(2)三个公理的内容及作用是什么7、作业布置(1)复习本节课内容;(2)预习:同一平面内的两条直线有几种位置关系§2.1.2 空间中直线与直线之间的位置关系一、教学目标:1、知识与技能(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。
2、过程与方法(1)师生的共同讨论与讲授法相结合;(2)让学生在学习过程不断归纳整理所学知识。
3、情感与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。
二、教学重点、难点重点:1、异面直线的概念;2、公理4及等角定理。
难点:异面直线所成角的计算。
三、学法与教学用具1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型、三角板四、教学思想(一)创设情景、导入课题1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。
2、师:那么,空间两条直线有多少种位置关系(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:共面直线2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。
在空间中,是否有类似的规律组织学生思考:长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'与DD'平行吗生:平行再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线a∥b=>a∥cc∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
(2)例2(投影片)例2的讲解让学生掌握了公理4的运用(3)教材P47探究让学生在思考和交流中提升了对公理4的运用能力。
3、组织学生思考教材P47的思考题(投影)让学生观察、思考:∠ADC与A'D'C'、∠ADC与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
教师强调:并非所有关于平面图形的结论都可以推广到空间中来。
4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。
(1)师:如图,已知异面直线a、b,经过空间中任一点O作直线a'∥a、b'∥b,我们把a'与b'所成的锐角(或直角)叫异面直线a与b所成的角(夹角)。
① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
(3)例3(投影)例3的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识。
(三)课堂练习教材P49 练习1、2充分调动学生动手的积极性,教师适时给予肯定。
(四)课堂小结在师生互动中让学生了解:(1)本节课学习了哪些知识内容(2)计算异面直线所成的角应注意什么(五)课后作业1、判断题:(1)a ∥b c ⊥a => c ⊥b ( )(1)a ⊥c b ⊥c => a ⊥b ( )2、填空题:在正方体ABCD-A'B'C'D'中,与BD'成异面直线的有 ________ 条。
§2.1.3 — 空间中直线与平面、平面与平面之间的位置关系一、教学目标:1、知识与技能(1)了解空间中直线与平面的位置关系;(2)了解空间中平面与平面的位置关系;(3)培养学生的空间想象能力。
2、过程与方法(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;(2)让学生利用已有的知识与经验归纳整理本节所学知识。
二、教学重点、难点重点:空间直线与平面、平面与平面之间的位置关系。
难点:用图形表达直线与平面、平面与平面的位置关系。
三、学法与教学用具1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型四、教学思想(一)创设情景、导入课题2教师以生活中的实例以及课本P49的思考题为载体,提出了:空间中直线与平面有多少种位置关系(板书课题)(二)研探新知1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点(3)直线在平面平行 —— 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a ∩α=A a ∥α例4(投影)师生共同完成例4例4的给出加深了学生对这几种位置关系的理解。
2、引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系:(1)两个平面平行 —— 没有公共点(2)两个平面相交 —— 有且只有一条公共直线用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为α∥β α∩β= L教师指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行。
教材P51 探究让学生独立思考,稍后教师作指导,加深学生对这两种位置关系的理解教材P51 练习学生独立完成后教师检查、指导(三)归纳整理、整体认识教师引导学生归纳,整理本节课的知识脉络,提升他们掌握知识的层次。
(四)作业1、让学生回去整理这三节课的内容,理清脉络。
2、教材P52 习题2.1 A 组第5题α β α β L。