奥数周期问题练习题
小学五年级奥数周期问题及答案

小学五年级奥数周期问题及答案例1:有249朵花,按5朵红花,9朵黄花,13朵绿花地顺序轮流排列,最后一朵是什么颜色地花?这249朵花中,红花、黄花、绿花各有多少朵?朵花中,红花、黄花、绿花各有多少朵?249÷(5+9+13)=9(组)……6(朵)(朵)这六朵花,前5朵是红花,最后1朵应是黄花。
朵应是黄花。
红花:5×5×99+5=50(朵)黄花:9×9×99+1=82(朵)(朵)绿花:13×13×99=117(朵)(朵)答:最后一朵是黄花。
这249朵花中,红花有50朵,黄花有82朵,绿花有117朵。
朵。
模拟练习:模拟练习: 1、有红、白、黑三种纸牌共158张,按5张红色,3张白色,4张黑色的顺序排列下去,最后一张是什么颜色?第140张是什么颜色?张是什么颜色?158÷(5+3+4)=13(组)......2(张)140÷(5+3+4)=11(组)......8(张)(张)答:最后一张是红色。
第140张是白色。
张是白色。
2、有47盏彩灯,按二盏红灯、四盏蓝灯、三盏黄灯地顺序排列着。
最后一盏灯是什么颜色?三种颜色地灯各占总数地几分之几?颜色?三种颜色地灯各占总数地几分之几?47÷(2+4+3)=5(组)......2(盏)红灯有2×2×5+2=125+2=12(盏)蓝灯有4×4×5=205=20(盏) 黄灯有3×3×5=155=15(盏)答:最后一盏是红灯。
红灯占总数的12/47,蓝灯占总数的20/47;黄灯占总数的15/47。
例2:2002年元旦是星期二,那么,2003年1月1日是星期几?日是星期几?2002年是平年,365+1=366(天) 366÷366÷7=527=52(周)......2(天)答:每个周期的第一天是星期二,所以,2003年1月1日就是星期三。
五年级奥数周期问题练习题

五年级奥数周期问题练习题问题1:某个班级有30个学生,其中15个是男生,剩下的是女生。
男生和女生一起组成了几对?请在下面作答:解答1:班级有30个学生,其中15个是男生,剩下的是15个女生。
男生和女生是一对一配对的,所以有15对。
问题2:在一个奥数比赛中,一支队伍需要有4个人。
有9个学生报名参赛。
请问一共有多少种不同的组队方式?请在下面作答:解答2:从9个学生中选出4个来组成一支队伍,可以使用组合的方法来计算。
C(9, 4) = 9! / (4! * (9-4)!) = 126所以一共有126种不同的组队方式。
问题3:一个街区有10幢房子,每幢房子都有不同的颜色。
现在有4个人,每个人都要住在不同颜色的房子里。
请问一共有多少种不同的安排方式?请在下面作答:解答3:第一个人有10种选择,第二个人有9种选择,第三个人有8种选择,第四个人有7种选择。
所以一共有10 * 9 * 8 * 7 = 5040种不同的安排方式。
问题4:某个月有31天,现在要将这31天分成3个连续的周期(每个周期可以不完整)。
请问一共有多少种不同的分法?请在下面作答:解答4:将31天分成3个周期,可以使用组合的方法来计算。
C(31+3-1, 3-1) = C(33, 2) = 33! / (2! * (33-2)!) = 528所以一共有528种不同的分法。
问题5:一个四位数的各位数字互不相同,且是4个奇数。
请问一共有多少个满足条件的四位数?请在下面作答:解答5:个位数字只能是1、3、5、7、9中的一个。
百位数字只能是1、3、5、7、9中的一个,并且不能和个位数字相同,所以有4种选择。
千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字相同,所以有3种选择。
千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字、千位数字相同,所以有2种选择。
所以一共有5 * 4 * 3 * 2 = 120个满足条件的四位数。
四年级奥数周期问题

8、一列长230米的火车,以平均速度每秒30米的速度过一座长730米的大桥,完全过桥需要多少秒时间?
签
课前审核: 家长签字:
字
日期:年月日日期:年月日
上课班级:
中年级
课பைடு நூலகம்:
周期问题
授课人:
陈
老师
教
学
过
程
例题1:有一列数5,6,2,4,5,6,2,4 …… (1)第89个数是多少?(2)这89个数相加的和是多少?
2、有一列数1,4,2,8,5,7,1,4,2,8,5,7……(1)第58个数是多少?(2)这58个数相加的和是多少?
3、有一列数是4、5、3、7、4、5、3、7……(1)第80个数是多少?(2)前50个数的和是多少?
5、一些彩笔按2支红色、3支蓝色、5支绿色的顺序依次排列,如果从头到尾一共排了47支,那其中蓝笔比绿笔少多少支?
练习:1、有一列数按6、7、3、4、9、6、7、3、4、9……排列,(1)那么前66个数的和是多少?(2)前88个数字中数字6比数字9多多少个?
2、
甲
乙
丙
丁
甲
乙
丙
丁
春
夏
秋
春
夏
秋
春
夏
上表中汉字按规律排列,每一列两个汉字组成一组,如第一组“甲春”,第二组“乙夏”……问第20组是什么?第100组又是什么?
3、计算(1)6+10+14+18+22+……+102(2)10000-3-6-9-12-……-90
4、小天和小美一共有500张卡片,如果小天给小美43张,小天还比小美多42张,原来两人各有多少张卡片?
三年级奥数--10周期问题

训练点10——周期问题例题1 小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列(如下图),请你算一算,第32个珠子是什么颜色?从上图可以看出,珠子是按“两红一白三黑”的规律重复排列,即6个珠子为一周期。
32÷6=5(组)……2(个),32个珠子中含有5个周期多2个,所以第32个珠子就是重复5个周期后的第2个珠子,应为红色。
练习一1,如图,算出第20个图形是什么?○△△□□□○△△□□□○△△……2,“数学趣味题数学趣味题……”依次重复排列,第2001个字是什么?3,把38面小三角旗按下图排列,其中有多少面白旗?例题2 2001年10月1日是星期一,问:10月25日是星期几?思路导航:我们知道,每星期有7天,也就是说以7天为一个周期不断地重复。
从10月1日到10月25日经过25-1=24天,24÷7=3(星期)……3(天),说明24天中包括3个星期还多3天。
所以从10月1日开始过3个星期,最后一天还是星期一,从这最后一天起再过3天就应是星期四。
练习二1,2001年5月3日是星期四,5月20日是星期几?2,2001年8月1日是星期三,8月28日是星期几?3,2001年6月1日是星期五,9月1日是星期几?例题3 100个3相乘,积的个位数字是几?思路导航:这道题我们只考虑积的个位数字的排列规律。
1个3,积的个位是3;2个3相乘积的个位数字是9;3个3相乘积的个位数字是7;4个3相乘积的个位数字是1;5个3相乘积的个位数字是3……可以发现,积的个位数字分别以3、9、7、1不断重复出现,即每4个3积的个位数字为一周期。
100÷4=25(个),因此100个3相乘积的个位数字是第25个周期中的最后一个,即是1。
练习三1,23个3相乘,积的个位数字是几?2,100个2相乘,积的个位数字是几?3,50个7相乘,积的个位数字是几?例题4 有一列数按“432791864327918643279186……”排列,那么前54个数字之和是多少?思路导航:上面一列数中,从第1个数字开始重复出现的部分是“43279186”,周期数是8。
小学四年级奥数-周期问题

周期问题(一)我们知道,一年有12个月,从一月开始,一月、二月、三月、……十二月;每周有七天,从星期一开始,星期一、星期二、……星期天。
在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。
解答这类题目只有找到规律,才能获得正确的方法。
例1.●●○●●○●●○……上面黑、白两色小球按照一定的规律排列着,其中第90个是( )例2.有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。
第144个珠是什么颜色?例3.有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?例4.有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。
三种颜色的弹子各有多少个?例5.上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是( )练习与思考1.根据图中物体的排列规律,填空。
(2)□○△□○△……第55个是( )2.把1~100号的卡片依次发给小红、小芳、小华、小明四个人,已知1号发绘小红,16号发给谁?38号呢?3.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。
“72”是谁报的?“190”呢?4.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?●●●○●●●○●●●○……5.有同样大小的红、白、黑珠共90个,按先3个红的,后2个白的,再1个黑的排列。
黑珠共有几个?第68个珠子是什么颜色?6.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色的花?四种花各有几朵?7.第26列的字母和数字各是什么?B ),第26组是什么?周期问题(二)例1.10个2连乘的积的个位数是几?例2.1998年元旦是星期四,1999年元旦是星期几?例3.黑珠、白珠共185个串成一串,排列如图:○●○○○●○○○●○○○……例4.把自然数按下图的规律排列后,分成A 、B 、C 、D 、E 五类,例如,4在D 类,10在B 类。
二年级奥数《周期问题》练习题

第七讲周期问题(必做与选做)1.找出下列图形的规律,根据规律算出第18个图形是()。
A. △B. ○C. ☆D. □解析:这列图形的排列是有一定的规律,它是按照一个○、一个△、一个□、一个☆的次序排列的,也就是每4个图形一组,不断重复出现。
我们算18个图形可以排成几组,18÷4=4(组)……2(个),余数是2,表示第18个图形是第5组的第2个,是△。
2.找出下列图形的规律,根据规律算出第34个图形是()。
A. △B. ◇C. □D. ○解析:这列图形的排列是有一定的规律,它是按照2个△、1个◇、1个□,1个○的次序排列的,也就是每5个图形一组,不断重复出现。
我们算34个图形可以排成几组,34÷5=6(组)……4(个),余数是4,表示第34个图形是第7组的第4个,是□。
3.按照下面的规律画圆,第21个圆应该是()的。
A. 蓝色B. 红色C. 绿色D. 黄色解析:这些圆按照1个蓝色、3个红色、2个绿色、1个黄色的规律排列的,也就是每7个图形一组,不断重复出现。
我们算21个圆可以排成几组,21÷7=3(组),没有余数,表示第21个圆是第3组的最后一个,是黄色的圆。
4.有编号1—20个球,阿派、欧拉、米德、卡尔四人依次按编号顺序拿球,9号球会被()拿到。
A. 阿派B. 米德C. 欧拉D. 卡尔解析:这些球从左到右每4个球为一组,要求9号球被谁拿到,根据9÷4=2(组)……1(个),余数为1,说明9号球应该在阿派手上。
5.二(2)班教室四周挂了60个彩球,按红、黄、绿、蓝、紫的顺序依次排列,那么第28个彩球是()颜色。
A. 红B. 黄C. 绿D. 紫解析:这些彩球按“红、黄、绿、蓝、紫”5个颜色分组,也就是5个彩球分为一组,要知道第28个彩球是什么颜色,根据28÷5=5(组)……3(个),余数是3,说明第28个彩球应该是绿色。
6.如果除0以外的全体自然数如下表排列,第40个应该排在()字母下面。
小学数学奥数测试题-周期问题

小学奥数应用题专题——周期问题1.在一根绳子上依次穿2个红珠、3个白珠、5个黑珠,并按此方式反复。
如果从头开始数,直到第77颗,那么其中白珠比黑珠少多少颗?2.如图,用红、橙、黄、绿、青、蓝、紫7种彩笔,在一张方格纸中自左上到右下的斜行里按顺序循环涂色.求第20行30列交叉处所涂的颜色。
3.在图所示的表中,将每列上、下两个字组成一组,例如第一组为(共社),第二组为(产会).那么,第340组是什么?4.如图,4只小动物不断交换座位。
一开始,小鼠坐第1号椅子,小猴坐第2号椅子,小免坐第3号椅子,小猫坐第4号椅子。
第1次前后两排交换.第2次是在第1次交换的基础上左右两排交换。
第3次又是前后两排交换.第4次再左右两排交换,……,这样一直换下去。
问:第10次交换座位后,小兔坐在第几号椅子上?5.甲、乙、丙、丁4个停车场里分别停放着10,7,5,4辆车.从停放汽车最多的车场中往另外3个车场各开去一辆汽车,称为一次调整.那么经过1998次这样的调整后,甲场中停放着多少辆汽车?6.500名士兵排成一列横队,第一次从左到右l至5循环报数,第二次反过来从右到左l至6循环报数。
那么,既报l又报6的士兵有多少名?7.甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为多少厘米?8.有一些小朋友排成一行。
从左面开始,发给第一个人一个苹果,以后每隔2人发一个苹果;从右面开始,发给第一个人一个橘子,以后每隔4人发一个橘子。
结果有10个小朋友苹果和橘子都拿到。
那么,这些小朋友最多可能有多少人?9.如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈。
现在,一只红跳蚤从标有数“0”的圆圈按顺时针方向跳了1991步,落在一个圆圈里。
一只黑跳蚤也从标有数“0”的圆圈起跳,但它是沿着逆时针方向跳了1949步,落在另一个圆圈里。
2022-2023学年小学四年级奥数测试卷(全国通用)11《周期问题》(解析版)

【四年级奥数举一反三—全国通用】测评卷11《周期问题》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共7小题,满分21分,每小题3分)1.(2016•创新杯)将某数的3倍减5,计算出答案:将这个答案的3倍减5,计算出答案;⋯;这样反复4次,最后得出的结果是1177,那么原数是()A.14 B.15 C.16 D.17【解答】解:第四次计算后的结果为1177,第三次计算后的结果为:(11775)3394+÷=,第二次计算后的结果为:(3945)3133+÷=,第一次计算后的结果为(1335)346+÷=,原数为:(465)317+÷==.故选:D。
2.(2012•华罗庚金杯)在2012年,1月1日是星期日,并且()A.1月份有5个星期三,2月份只有4个星期三B.1月份有5个星期三,2月份也有5个星期三C.1月份有4个星期三,2月份也有4个星期三D.1月份有4个星期三,2月份有5个星期三【解答】解:因为2012年1月有31天,2月有29天,⋯(天),÷=(星期)33174⋯(天),÷=(星期)12974所以1月份有4个星期三,2月份有5个星期三.故选:D。
3.(2011•其他模拟)鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物依次代表各年的年号,如果公元1年是鸡年,那么公元2005年是()年.A.鸡B.牛C.虎D.兔【解答】解:2005121671÷=⋯,所以,以鸡开始循环的第1种动物是鸡,由此得出,公元2005年是鸡年,故选:A。
4.(2014•迎春杯)为了减少城市交通拥堵的情况,某城市拟定从2014年1月1日起开始试行新的限行规则,规定尾号为1、6的车辆周一、周二限行,尾号2、7的车辆周二、周三限行,尾号3、8的车辆周三、周四限行,尾号4、9的车辆周四、周五限行,尾号5、0的车辆周五、周一限行,周六、周日不限行.由于1月31日是春节,因此,1月30日和1月31日两天不限行.已知2014年1月1日是周三并且限行,那么2014年1月份()组尾号可出行的天数最少.A.1、6 B.2、7 C.4、9 D.5、0【解答】解:依题意可知:1月份共31天,由于1月1日是周三,所以1月份周三、周四、周五共5天,周一、周二共4天.其中1月30日周四、1月31日周五.所以只看周三即可.周三2、7以及3、8限行.故选:B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数练习题(周期问题)
1、明明把折的200朵纸花按先3朵红花,再2朵黄花、最后4朵紫花这样的顺序一直往下排.第180朵是什么颜色的花这200朵花中三种颜色的花各有多少朵
2、在
3、6、8、9四个数字组成不同的四位数,把它们从小到大排列,第16个是多少
3、在2、5、7、8四个数字组成不同的四位数,把它们从大到小排列,第15个是多少
4、有一个80位的数,各位数字都是1,这个数除以6,商的末位数字是几
5、今年(2016年)1月1日是星期五,9月1日是星期几
6、2008年8月8日是星期五,2009年8月8日是星期几
7、1—5五个数字共能排120个五位数,把它们从小到大排列,第52个是多少
8、东东把积存下来的硬币按先3个1分,再5个2分,最后2个5分这样的顺序一直往下排.他排到第120个是几分硬币这120个硬币合起来是多少元钱
9、同学们排队,按照最前面站2个三年级学生,中间站5个五年级学生,后面跟3个四年级学生的顺序一直往后排,小明排在第100位,小明是几年级的学生。