大学物理实验实验十六等厚干涉及应用
(完整版)光的等厚干涉实验报告

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 04 日,第11周,星期 二 第 5-6 节实验名称 光的等厚干涉教师评语实验目的与要求:1. 观察牛顿环现象及其特点, 加深对等厚干涉现象的认识和理解。
2. 学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。
3. 掌握读数显微镜的使用方法。
实验原理和内容: 1. 牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成, 结构如图所示。
当平行单色光垂直照射到牛顿环器件上时, 由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜, 经空气膜和玻璃之间的上下界面反射的两束光存在光程差, 它们在平凸透镜的凸面(底面)相遇后将发生干涉, 干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆, 称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等, 故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:成 绩教师签字设射入单色光的波长为λ, 在距接触点r k 处将产生第k 级牛顿环, 此处对应的空气膜厚度为d k , 则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=k k nd式中, n 为空气的折射率(一般取1), λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件, 当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=k k d k k由上页图可得干涉环半径r k , 膜的厚度d k 与平凸透镜的曲率半径R 之间的关系222)(k k r d R R +-=。
由于dk 远小于R , 故可以将其平方项忽略而得到22k k r Rd =。
等厚干涉原理与应用实验报告

等厚干涉原理与应用实验报告一、引言。
朋友们!今天我要和你们分享一个超有趣的实验——等厚干涉!这玩意儿可神奇啦,让我们一起走进这个奇妙的光学世界吧!二、实验目的。
咱做这个实验呢,主要就是想搞清楚等厚干涉是咋回事,还有就是学会用它来测量一些东西。
比如说,测量薄片的厚度或者表面的平整度啥的。
通过这个实验,也能让咱的动手能力和观察能力更上一层楼哟!三、实验原理。
等厚干涉这东西,说起来其实也不难理解。
想象一下,有一束光打在一个有厚度变化的透明薄片上,比如一个楔形的玻璃片。
由于光在不同厚度的地方走的路程不一样,就会产生干涉现象。
就好像两拨小朋友走路,有的走得快,有的走得慢,最后就会出现有的地方人多,有的地方人少的情况。
牛顿环就是等厚干涉的一个典型例子。
当一个平凸透镜放在一个平面玻璃上时,它们之间形成的空气薄膜的厚度就会从中心向外逐渐变化。
这时候用单色光照射,就能看到一圈一圈明暗相间的圆环,那可漂亮啦!四、实验仪器。
这次实验用到的家伙什儿有:读数显微镜、钠光灯、牛顿环装置、劈尖装置。
先说这个读数显微镜,它就像是我们的超级眼睛,能让我们看清那些微小的细节。
钠光灯呢,给我们提供了稳定的单色光,让干涉现象更明显。
牛顿环装置和劈尖装置就是产生等厚干涉的“魔法盒子”啦。
五、实验步骤。
1. 调整仪器。
首先得把钠光灯、牛顿环装置和读数显微镜摆好位置,让光能够顺利照到牛顿环上,然后通过调节显微镜的目镜和物镜,让我们能清楚地看到图像。
这一步可需要点耐心,就像给眼睛戴眼镜,得调到最合适的度数才能看得清楚。
2. 测量牛顿环的直径。
找到牛顿环的中心,然后从中心向外数,分别测量第 10、15、20 圈的直径。
测量的时候要小心,眼睛盯着显微镜,手慢慢地转动鼓轮,可别一下子转太多,不然就错过了。
3. 测量劈尖的厚度。
把劈尖装置放到显微镜下,同样要调整好焦距。
然后测量劈尖上几个条纹之间的距离,再根据公式算出劈尖的厚度。
六、数据处理与分析。
测量完数据可不算完,还得好好处理和分析一下。
等厚干涉实验报告记录

等厚干涉实验报告记录————————————————————————————————作者:————————————————————————————————日期:大学物理实验报告(等厚干涉)一、实验目的:1.、观察牛顿环和劈尖的干涉现象。
2、了解形成等厚干涉现象的条件极其特点。
3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。
二、实验原理:1.牛顿环牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。
当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。
由牛顿最早发现)。
由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。
牛顿环实验装置的光路图如下图所示:设射入单色光的波长为λ,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空气膜上下两界面依次反射的两束光线的光程差为22λδ+=kknd式中,n为空气的折射率(一般取1),λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。
根据干涉条件,当光程差为波长的整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况:2)12(2222λλλδ+=+=kkdkkK=1,2,3,…K=0,1,2,…由上页图可得干涉环半径r k,膜的厚度d k与平凸透镜的曲率半径R之间的关系222)(kkrdRR+-=。
由于dk远小于R,故可以将其平方项忽略而得到22kkrRd=。
结合以上的两种情况公式,得到:λkRRdrkk==22,暗环...,2,1,0=k由以上公式课件,r k与d k成二次幂的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰,一般选取暗环作为观测对象。
等厚干涉及其应用实验报告

等厚干涉及其应用实验报告一、实验目的1. 了解等厚干涉的原理和方法。
2. 学习等厚干涉实验的基本技术及注意事项。
3. 掌握等厚干涉的应用。
二、实验仪器和材料1. 干涉仪2. 光源3. 透镜4. 反射镜5. 单色滤光片6. 微调平台7. 测量规等三、实验原理等厚干涉的原理是利用二分法来消除不均匀板材的厚度差异,使板材成为等厚的状况,然后通过干涉仪的干涉检查等厚度情况。
二分法的原理是使用两个不同波长的光源进行光程差测量,通过计算前后两次干涉的相位差,得到样品的厚度。
四、实验步骤1. 调整干涉仪的光源及其它必要的物件,使探测器接收到最强的光。
2. 将样品板安装在微调平台上,调整为初始位置,并将单色滤光片放在光源前方。
3. 调整反射镜使两束光重合并产生干涉条纹。
4. 通过干涉仪镜臂微调,调整测量表计读数。
5. 移动微调平台,使干涉条纹数量增加。
6. 测量板的厚度及其表面情况,记录实验数据。
五、实验结果及分析1. 在不同的干涉条件下,得到的干涉条纹间隔均匀,且随着板材的尺寸变化而变化。
2. 利用等厚干涉可测量厚度小于毫米级别的物体,且精度高、准确度高。
3. 根据所得数据,可计算出板材的等厚度,并结合其它参数进行分析。
六、实验结论本实验通过等厚干涉实验方法,得到了比较准确的板材等厚度测量结果,并且了解到等厚干涉的应用方向及其优点。
该实验方法线性精度高、稳定性效果佳,且可以测量一些薄板或其他一些难以测量的物体,治理误差准确度高,具有较大的应用价值。
七、实验心得在本次实验中,我们通过实际操作了解等厚干涉实验原理与方法,并根据测量数据对所得结果进行了分析和判断。
实验提供了一个有效的方法,可以在行业中用于硬度测量、材料分析等数据处理。
对于我而言,这次实验在技术和实践操作方面都起到了很好的学习和提升作用。
等厚干涉物理实验报告

等厚干涉物理实验报告等厚干涉物理实验报告引言:等厚干涉是一种基于光的干涉现象的实验方法,它通过观察干涉条纹的变化来研究光的性质和光学器件的特性。
本实验旨在通过等厚干涉实验,深入探究光的干涉现象,并通过实验结果分析其物理原理。
一、实验原理1.1 干涉现象干涉是光波的一种特性,当两束波长相同、频率相同、相位差固定的光波相遇时,它们会发生干涉现象。
干涉现象可以分为两种类型:构成干涉的光波可以是来自同一光源的不同光线(自然光干涉),也可以是来自不同光源的光线(人工光源干涉)。
1.2 等厚干涉等厚干涉是一种常见的干涉现象,它是由于光的传播速度在不同介质中不同而引起的。
当光线从一种介质射入另一种介质时,由于两种介质的折射率不同,光的传播速度也不同,从而导致光线的相位发生变化。
当光线经过介质后再次出射时,不同波前上的光线相遇,形成干涉现象。
二、实验步骤2.1 实验器材准备准备一台光源、一块玻璃板、一块透明薄膜、一块白色纸板、一块平面镜、一块半透明薄膜。
2.2 实验操作1)将光源置于实验台上,并调整光源位置,使其能够照射到实验所需的玻璃板和透明薄膜上。
2)将玻璃板放置在实验台上,并将透明薄膜放在玻璃板上。
3)将白色纸板放置在透明薄膜上方,作为观察干涉条纹的背景。
4)在实验台上放置平面镜,并将半透明薄膜放置在平面镜上。
5)调整实验装置,使光线从光源经过玻璃板和透明薄膜后,再经过半透明薄膜和平面镜反射,最后照射到白色纸板上。
2.3 实验观察与记录观察白色纸板上的干涉条纹,并记录下观察到的现象。
三、实验结果与分析通过实验观察,我们可以看到在白色纸板上形成了一系列明暗相间的干涉条纹。
这些干涉条纹是由于光线经过玻璃板和透明薄膜后,发生了等厚干涉而形成的。
根据实验结果,我们可以得出以下结论:3.1 干涉条纹的间距与波长有关根据等厚干涉的原理,干涉条纹的间距与光的波长有关。
当光的波长增大时,干涉条纹的间距也会增大;反之,当光的波长减小时,干涉条纹的间距也会减小。
等厚干涉原理与应用实验报告doc

等厚干涉原理与应用实验报告篇一:等厚干涉实验—牛顿环和劈尖干涉等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。
由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。
获得相干光方法有两种。
一种叫分波阵面法,另一种叫分振幅法。
1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。
(2)掌握读数显微镜的基本调节和测量操作。
(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法(4)学习用图解法和逐差法处理数据。
2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。
分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。
分振幅干涉分两类称等厚干涉,一类称等倾干涉。
用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射Rre(a)(b)图9-1 牛顿环装置和干涉图样光,满足相干条件。
当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。
这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。
等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。
下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。
相互接触的透镜凸面与平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。
如图9-1(a)所示。
当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b)所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。
等厚干涉及其应用实验报告

等厚干涉及其应用实验报告嘿,大家好!今天咱们聊聊等厚干,听起来是不是有点高大上,其实呢,它就是一种在材料科学里特别好用的小工具。
等厚干这东西,简单来说就是把材料做得均匀厚度,然后进行各种测试,看看它的性能到底咋样。
你说,这和咱们日常生活有什么关系呢?其实关系可大了!就像咱们吃的蛋糕,切得均匀了,才能每块都好吃嘛!如果你吃到一块特别厚的,那简直就是悲剧。
咱们的实验就是围绕这个“等厚”来展开的。
我们准备了一些样品,材料各不相同,有金属,有塑料,还有那些神秘的合金,简直是五花八门。
然后就开始了我们的大显身手。
为了确保厚度均匀,我们用上了各种仪器,测量得跟精细的厨师做蛋糕一样。
哎呀,那感觉真是紧张兮兮的,生怕一不小心就搞错了。
就像玩游戏打boss一样,稍微出错就得重来。
实验的过程中,我们有个小伙子,叫小明。
他特热衷于用一些生动的比喻来形容这些材料。
小明说,这金属就像个硬汉,强壮得不得了,而塑料就像个柔情似水的姑娘,虽然轻巧但很容易变形。
哈哈,大家都乐了,这比喻真形象!小明每次发言都能把大家逗笑,轻松的氛围让实验也变得更顺利了。
接下来的步骤就是对这些样品进行一系列的测试,看看它们的耐压、耐温和抗腐蚀能力。
我们一边测试,一边讨论,现场气氛那叫一个火热。
测试的时候,有个同学把样品弄掉了,砸到了桌子上,发出“咣当”的一声。
大家瞬间都停下来了,心想这下完了,材料肯定要报废。
结果一看,居然没事,真是个意外之喜,大家都松了一口气。
等我们把所有数据都收集齐后,开始分析结果。
这时候,才真是见证了团队的力量。
每个人都在各自的领域里发挥着作用,像一台高效的机器,转起来就停不下来。
我们用各种图表、公式把数据整合在一起,像拼图一样,慢慢拼出一个个有趣的发现。
最有意思的是,有些材料的表现出乎意料,真是让人大开眼界。
我们总结了一下这次实验的收获。
不仅学到了等厚干的应用,也意识到团队合作的重要性。
就像打麻将,四个人齐心协力,才能赢得漂亮。
等厚干涉(干涉法测微小量)

姓名:;学号;班级;教师________;信箱号:______ 预约时间:第_____周、星期_____、第_____~ _____节;座位号:_______预习操作实验报告总分教师签字一、实验名称等厚干涉二、实验目的(1) 观察和研究等厚干涉的现象及其特点 .(2) 练习用干涉法测量透镜的曲率半径、微小厚度 ( 或直径 ).三、实验原理(基本原理概述、重要公式、简要推导过程、重要图形等;要求用自己的语言概括与总结,不可照抄教材)利用透明薄膜上、下两表面对入射光的依次反射,入射光的振幅将分解成有一定光程差的几个部分.这是一种获得相干光的重要途径,被多种干涉仪所采用若两束反射光在相遇时的光程差取决于产生反射光的薄膜厚度,则同一干涉条纹所对应的薄膜厚度相同.这就是所谓的等厚干涉。
(见右图)总的光程差为:(1)当△满足条件:(2)时,发生相长干涉,出现第K级亮纹。
而当:(3)时,发生相消干涉,出现第k级暗纹。
因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。
可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为rk,对应的膜厚度为ek ,则:(4)在实验中,R的大小为几米到十几米,而ek的数量级为毫米,所以R >>ek ,ek2相对于2Rk 是一个小量,可以忽略,所以上式可以简化为(5)如果rk是第k级暗条纹的半径,由式(1)和(3)可得:(6)代入式(5)得透镜曲率半径的计算公式(7)对给定的装置,R为常数,暗纹半径(8)和级数k的平方根成正比,即随着k的增大,条纹越来越细。
由于从劈尖的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在劈尖的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于劈尖厚度的两倍,即n = 0时,,即在两玻璃片交线处为零级暗条纹。
如果在细丝处呈现n = N级条纹,则待测细丝直径为(9)四、实验内容和步骤(要求用自己的语言概括与总结,不可照抄教材)1. 观察牛顿环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或薄纸片的厚度 d 为:
d=Nλ 2
(11)
由于 N 数目很大,为了简便,可先测出单位长度的暗条纹数 N0 ,再测出两玻璃板 交线处至金属丝或薄纸片的距离 L ,则
N = N0L
即得
d
=
N0L
λ 2
(12)
由(12)式可知,如果已知入射光波长 λ ,并测出 N0 和 L ,则可求出细金属丝直径或
薄片厚度。
图 1 牛顿环的干涉原理及干涉条纹
156
因此产生两束具有一定光程差的相干光,当它们相遇后就产生干涉现象。由于空气膜厚
度相等处是以接触点为圆心的同心圆,即以接触点为圆心的同一圆周上各点的光程差相
等,故干涉条纹是一系列以接触点为圆心的明暗相间的同心圆,如图 1(b)所示。这种 干涉现象最早为牛顿所发现,故称为牛顿环。
六、注意事项
1.使用读数显微镜时,为避免引进螺距差,移测时必须向同一方向旋转,中途不可 倒退。
2.调节牛顿环厚度时,螺旋不可旋得过紧,以免接触压力过大引起透镜弹性形变。 3.实验完毕应将牛顿环仪上的三个螺旋松开,以免牛顿环变形。 4.在测量劈尖干涉条纹的间距L0时,纵丝每次应与明、暗条纹的交界线重合;测量
射光形成的条纹有何不同?
2.实验中为什么要测牛顿环直径,而不测其半径? 3.在使用读数显微镜时,怎样判断是否消除了视差?使用时最主要的注意事项是 什么? 4.实验中如果用凹透镜代替凸透镜,所得数据有何异同? 5.如何用劈尖干涉检验光学平面的表面质量?
160
δ
=
2hk
+
λ 2
=
⎧ ⎪ ⎨ ⎪⎩(2k
kλ + 1) λ
2
k = 1, 2,3,L(明纹) k = 0,1, 2, 3,L(暗纹) (9)
由干涉条件可得两相邻明(或暗)条纹所对应的空气膜厚度差为
hk +1
− hk
=
λ 2
(10)
如果由两玻璃板交线处到细金属丝处的劈尖面上共有 N 条干涉条纹,则金属丝直径
(3)用读数显微镜测出 20 条( N0 )暗条纹间的垂直距离 L0 ,再测出棱边到细丝所在 处的总长度 L ,求出细丝直径 d 。
(4)重复步骤 3,各测三次,将数据填入自拟表格中。求其平均值 d 。
五、数据记录和处理
159
1.实验记录表格
λ = 589.3nm , m − n = 10
环的级数
序,直到十字准线回到牛顿环中心,核对该中心是否是 k = 0。如果十字准线回到牛顿
环中心时k≠0,如k=1,则应如何处理数据,请同学们自己思考?
(5)继续按原方向转动读数鼓轮,越过干涉圆环中心,记录十字准线与右边第10、
11、12、13、14、15和31、32、33、34、35环中心相切时的读数。注意从35环移到另一
(2)
式中 R 是透镜凸面 AOB 的曲率半径。因 rk << R, hk << R ,可略去二级小量,得:
hk
=
rk 2 2R
根据干涉相长和相消的条件有
(3)
δ
=
2hk
+
λ 2
=
⎧⎪ ⎨ ⎪⎩(2k
kλ + 1) λ
2
k = 1, 2,3,L(明纹) k = 0,1, 2, 3,L(暗纹) (4)
侧35环的过程中鼓轮不能倒转。然后再反向转动鼓轮,并读出反向移动时各暗环次序,
并核对十字准线回到牛顿环中心时是否是k = 0。
(6)按上述步骤重复测量 3 次,将牛顿暗环位置的读数填入表中。
2.用劈尖干涉法测细丝直径或薄纸片厚度(选做内容) (1)将被测细丝或薄纸片夹在两块平板玻璃的一端,另一端直接接触,形成劈尖, 然后置于读数显微镜载物台上。 (2)调节叉丝方位和劈尖放置方位,使镜筒移动方向与干涉条纹相垂直,以便准确 测出条纹间距。
劈尖长度 L 时,劈尖棱边和纸片处均以内侧位置为准; 5.由于读数显微镜的量程较短( 5cm 左右),所以每次测量前均应将显微镜镜筒放
置在主刻度尺的适当位置,以避免未测量完成而镜筒却已移到了主刻度尺的端头。 6.调焦过程中应该先将读数显微镜调下,然后向上调焦,以免压坏牛顿环和劈尖。
七、思考题
1.从牛顿环仪透射出到环底的光能形成干涉条纹吗?如果能形成干涉环,则与反
两表面反射的两束相干光
相遇时发生干涉。两者光
程差 δ
=
2hk
+
λ 2
,其中
hk 是第 k 级干涉条纹处
对应的劈尖空气膜厚度,
λ 为半波损失。干涉图形 2
形成在劈尖膜上表面附
图 2 劈尖干涉
近,是一组与玻璃板交线相平行的等间距明暗相间的平行直条纹,如图 2(b)所示。这 也是一种等厚干涉条纹。
劈尖干涉的条件为:
二、实验原理
当一束单色光入射到透明薄膜上时,通过薄膜上下表面依次反射而产生两束相干 光。如果这两束反射光相遇时的光程差仅取决于薄膜厚度,则同一级干涉条纹对应的薄 膜厚度相等,这就是所谓的等厚干涉。牛顿环和劈尖干涉都是典型的等厚干涉。
1.牛顿环 将一块平凸透镜的凸面放在一块光学平板玻璃上,因而在它们之间形成以接触点 O 为中心向四周逐渐增厚的空气薄膜,离 O 点等距离处厚度相同。如图 1(a)所示。当光 垂直入射时,其中有一部分光线在空气膜的上表面反射,一部分在空气膜的下表面反射,
(2)将牛顿环仪 N 放在读数显微镜的平台上,调 节 45°反射镜 G,以便获得最大的照度,如图 3 所示。
(3)调节读数显微镜调焦手轮,直至在读数显微 镜内能看到清晰的干涉条纹的像。适当移动牛顿环位 置,使干涉条纹的中央暗区在显微镜叉丝的正下方, 观察干涉条纹是否在读数显微镜的读数范围内,以便 测量(注意:调焦过程中应该先将读数显微镜调下, 然后向上调焦,以免压坏牛顿环和劈尖)。
m 35 34 33 32 31 15 14 13 12 11
环的位置
左
mm
右
直径 Dm / m m
Dm2 (mm)2
环的级数
n 35 34 33 32 31 15 14 13 12 11
环的位置
左
mm
右
直径 Dn / mm
Dn2 (mm)2
2.用逐差法进行数据处理
R = (D325 − D125 ) + (D324 − D124 ) + ⋅ ⋅ ⋅ + (D321 − D121) 5× 4 × (m − n)
R = rm2 − rn2 λ(m − n)
因暗环圆心不易确定,故可用暗环的直径代替半径,得:
(7)
157
R = Dm2 − Dn2 4(m − n)λ
(8)
2.劈尖
劈尖干涉装置如图 2(a)所示。将两块光学平板玻璃迭在一起,在一端放入一薄片
或细丝,则在两玻璃板间形成一空气劈尖,当用单色光垂直照射时,在劈尖薄膜的上下
实验十五 等厚干涉及应用
光的干涉是重要的光学现象,它为光的波动性提供了有力的实验证明。光的干涉广 泛应用于科学研究、工业生产和检测技术中,如用于测量光波波长,精确测量微小物体 的长度、厚度和角度,检测加工工件表面的光洁度和平整度及机械元件的内应力分布等。
一、实验目的
1.观察等厚干涉现象,加深对等厚干涉现象的认识; 2.掌握测量平凸透镜曲率半径的方法和微小厚度的方法; 3.进一步熟悉读数显微镜使用; 4. 学习用逐差法处理数据。
将(3)式代入(4)式得第 k 级暗纹的半径为:
rk = kRλ
(5)
由(5)式可见, rk 与 k 和 R 的平方根成正比,随着 k 的增大,环纹愈来愈密,而
且愈细。
同理可推得,亮纹的半径为:
rk′ =
(2k −1)R λ 2
(6)
通过上面推导知,若入射光波长 λ 已知,测出各级暗环的半径,则可算出曲率半径
设入射光是波长为 λ 的单色光,第 k 级干涉环的半径为 rk ,该处空气膜厚度为 hk ,
则空气膜上、下表面反射光的光程差为
δ
=
2hk
+
λ 2
(1)
其中 λ 是由于光从光疏媒质射到光密媒质的交界面上反射时,发生半波损失引起的。
2
由图 1(a)的几何关系可知:
R2 = (R − hk )2 + rk 2
R 。但实际观察牛顿环时发现,牛顿环的中心不是理想的一个接触点,而是一个不甚清
晰的暗或亮的圆斑。其原因是透镜与平玻璃板接触处,由于接触压力引起形变,使接触
处为一圆面;又因镜面上可能有尘埃存在,从而引起附加的光程差。因此难以准确判定
级数 k 和测出 rk 。我们改用两个暗环的半径 rm 和 rn 的平方差来计算 R ,由(5)式可得:
(4)转动读数鼓轮,观察十字准线从中央缓慢向
左(或向右)移至38环,然后反方向至第35环向右移
动,当十字准线竖线与35环中心相切时,记录读数显
微镜上的位置读数x35,然后继续转动鼓轮,使竖线依 次与34、33、32、31环中心相切,并记录读数,移至
图 3 读数显微镜测牛顿环装置
15环时又继续记录读数,至第11环中心。过了11环后继续转动鼓轮,并注意读出环的顺
劈尖干涉除了用于测量薄片(薄纸等)厚度、细丝直径外,还可以用于鉴定一个抛
光面的平面度,本实验不再讨论。
158
三、实验仪器
读数显微镜,钠灯,牛顿环仪,劈尖等。
四、 实验内容和步骤
1.牛顿环测平凸透镜的曲率半径
(1)接通钠光灯电源使灯管预热,调节牛顿环仪边框上三个螺旋,使在牛顿环仪中 心出现一组同心干涉环。