大学物理实验——光的等厚干涉现象与应用
光的干涉和应用实验报告

教案光的等厚干涉与应用
一目的
1、观察光的等厚干涉现象,加深理解干涉原理
2、学习牛顿环干涉现象测定该装置中平凸透镜的曲率半径
3、掌握读数显微镜的使用方法
4、掌握逐差法处理数据的方法
二仪器
读数显微镜,钠光灯,牛顿环装置
三原理
牛顿环装置是一个曲率半径相当大的平凸透镜放在一平板玻璃上,这样两玻璃间形成空气薄层厚度e与薄层位置到中央接触点的距离r,凸透镜曲率半径R的关系为:
(a)
(b)
图20—1
根据干涉相消条件易得第K级暗纹的半径与波长λ及牛顿环装置中平凸透镜的凸面曲率半径R存在下述关系:
根据与K成正比的性质采取逐差法处理实验数据
四教学内容和步骤
1、牛顿环装置的调整,相应的提出问题,怎样将干涉图样调到装置的中心?
2、显微镜的调节,焦距怎么调?叉丝怎样调节?干涉图样不清晰怎么办?反光镜怎么用?刻度尺怎么读?
3、读数方法,要防止螺距差。
读完一组之后要把牛顿环转90度再重新读一组。
4、用逐差法处理数据,忽略仪器误差。
五注意事项
1、仪器轻拿轻放,避免碰撞。
2、镜头不可用手触摸,有灰尘时用擦镜纸轻轻拂去不能用力擦拭。
调焦及调鼓轮时不可超出可调范围。
为防止产生螺距误差,测量过程中鼓轮只能往一个方向转动,不许中途回倒鼓轮。
六主要考核内容
1、预习报告内容是否完整,原理图、公式、表格等是否无误。
2、看是否将干涉图样调出来,数据是否有误等。
七参考数据。
等厚干涉的应用的实验原理

等厚干涉的应用的实验原理1. 简介等厚干涉是一种基于光的干涉现象的实验方法,可以用来研究光的波动性质以及材料的光学性质。
本文将介绍等厚干涉的实验原理及其应用。
2. 等厚干涉的实验原理2.1 干涉现象的基本原理干涉是指两个或多个波源产生的波相互叠加形成干涉图样的现象。
当两个波源的波峰或波谷同时到达同一点时,会出现干涉增强的现象,而当两个波源的波峰和波谷错开时,会出现干涉消失的现象。
2.2 光的等厚干涉光的等厚干涉是一种在光通过厚度不均匀的介质时产生的干涉现象。
当光通过介质时,如果介质的厚度不均匀,会导致光程差的变化,从而引起干涉图样的变化。
2.3 等厚干涉的实验原理等厚干涉实验基于光的折射定律和干涉现象的基本原理。
实验中需要使用一块厚度不均匀的透明材料作为样品,以及一束单色光源。
光通过样品时,由于材料的厚度不均匀,会导致光程差的变化,从而产生干涉图样。
在等厚干涉实验中,我们可以使用干涉条纹的间距来推测材料的厚度差异。
当干涉条纹间距变大时,表示材料厚度变厚;反之,当干涉条纹间距变小时,表示材料厚度变薄。
3. 等厚干涉的应用3.1 材料表面质量检测等厚干涉可以用于检测材料表面的平整度和质量。
通过观察干涉条纹的变化,可以分析材料表面的高低差异,从而评估材料的质量。
3.2 材料厚度测量等厚干涉也可以用于测量透明材料或薄膜的厚度。
通过测量干涉条纹的间距,可以精确地计算出材料的厚度。
这对于研究材料的光学性质和制备薄膜具有重要意义。
3.3 光学元件设计与优化等厚干涉可以用于设计和优化光学元件,如透镜、棱镜等。
通过观察干涉条纹的变化,可以调整材料的厚度和形状,以实现预期的光学效果。
3.4 光学显微镜的改进等厚干涉可以应用于光学显微镜的改进。
传统的光学显微镜对透明样品的观察受到了材料的不均匀厚度的影响,而使用等厚干涉技术可以消除这种影响,提高观测的清晰度和准确性。
4. 总结等厚干涉是一种基于光的干涉现象的实验方法,可以用来研究光的波动性质和材料的光学性质。
等厚干涉原理与应用实验报告doc

等厚干涉原理与应用实验报告篇一:等厚干涉实验—牛顿环和劈尖干涉等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。
由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。
获得相干光方法有两种。
一种叫分波阵面法,另一种叫分振幅法。
1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。
(2)掌握读数显微镜的基本调节和测量操作。
(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法(4)学习用图解法和逐差法处理数据。
2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。
分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。
分振幅干涉分两类称等厚干涉,一类称等倾干涉。
用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射Rre(a)(b)图9-1 牛顿环装置和干涉图样光,满足相干条件。
当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。
这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。
等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。
下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。
相互接触的透镜凸面与平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。
如图9-1(a)所示。
当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b)所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。
实验11 光的等厚干涉现象与应用

由此式可以看出,半径R与附加厚度无关,且有以下特点:
(1)R与环数差m-n有关。
(2)对于()由几何关系可以证明,两同心圆直径平方差等于对应弦的平方差。因此,测量时无须确定环心位置,只要测出同心暗环对应的弦长即可。
本实验中,入射光波长已知(λ=589.3 nm),只要测出(),就可求的透镜的曲率半径。
(明纹)
式中m为干涉条纹的级数,rm为第m级暗纹的半径,rm′为第m级亮纹的半径。
以上两式表明,当已知时,只要测出第m级亮环(或暗环)的半径,就可计算出透镜的曲率半径R;相反,当R已知时,即可算出。
观察牛顿环时将会发现,牛顿环中心不是一点,而是一个不甚清晰的暗或亮的圆斑。其原因是透镜和平玻璃板接触时,由于接触压力引起形变,使接触处为一圆面;又镜面上可能有微小灰尘等存在,从而引起附加的程差。这都会给测量带来较大的系统误差。
(2)测量牛顿环的直径
转动测微鼓轮使载物台移动,使主尺读数准线居主尺中央。旋转读数显微镜控制丝杆的螺旋,使叉丝的交点由暗斑中心向右移动,同时数出移过去的暗环环数(中心圆斑环序为0),当数到21环时,再反方向转动鼓轮(注意:使用读数显微镜时,为了避免引起螺距差,移测时必须向同一方向旋转,中途不可倒退,至于自右向左,还是自左向右测量都可以)。使竖直叉丝依次对准牛顿环右半部各条暗环,分别记下相应要测暗环的位置:X20、X19、X18、直到X10(下标为暗环环序)。当竖直叉丝移到环心另一侧后,继续测出左半部相应暗环的位置读数:由、直到。
四、实验内容
1.用牛顿环测量透镜的曲率半径 图11-4为牛顿环实验装置来自 (1)调节读数显微镜
先调节目镜到清楚地看到叉丝且分别与X、Y轴大致平行,然后将目镜固定紧。调节显微镜的镜筒使其下降(注意,应该从显微镜外面看,而不是从目镜中看)靠近牛顿环时,再自下而上缓慢地再上升,直到看清楚干涉条纹,且与叉丝无视差。
光的等厚干涉 实验报告

光的等厚干涉实验报告光的等厚干涉实验报告引言:光的干涉现象是光学中的重要现象之一。
光的等厚干涉实验是一种可以直观观察光的干涉现象的实验方法。
本文将介绍光的等厚干涉实验的原理、实验装置和实验结果,并进行一定的分析和讨论。
一、实验原理光的等厚干涉是指光线在等厚物体上发生干涉现象。
当光线垂直射入等厚物体表面时,经过反射和折射后,光线在物体内部形成一系列等厚线。
当两束光线相遇时,由于光的波动性质,会发生干涉现象。
光的等厚干涉实验利用这一现象,通过观察干涉条纹的变化来研究光的干涉特性。
二、实验装置本次实验所使用的实验装置如下:1. 光源:使用一束单色光源,如红光或绿光。
2. 平行平板:选择一块平行平板作为等厚物体,保证其两个表面平行。
3. 凸透镜:将凸透镜放置在平行平板的一侧,使光线通过凸透镜后再射入平行平板。
4. 探测器:使用光电探测器或人眼观察干涉现象。
三、实验步骤1. 将光源放置在适当位置,使光线垂直射入平行平板的一侧。
2. 调整平行平板的位置,使光线通过平行平板后射入凸透镜。
3. 观察凸透镜的另一侧,通过光电探测器或人眼观察干涉现象。
4. 改变平行平板的厚度或光源的位置,观察干涉条纹的变化。
四、实验结果在实验中,我们观察到了一系列干涉条纹。
当平行平板的厚度相等时,干涉条纹呈现出明暗相间的条纹,这是由于光的干涉所导致的。
当平行平板的厚度不等时,干涉条纹的间距和亮暗程度会发生变化。
通过改变光源的位置或平行平板的厚度,我们可以观察到不同的干涉现象。
五、实验分析通过对实验结果的观察和分析,我们可以得出以下结论:1. 光的等厚干涉是一种光的干涉现象,它是由光线在等厚物体上的反射和折射所导致的。
2. 干涉条纹的间距和亮暗程度与平行平板的厚度有关,厚度越大,干涉条纹间距越大。
3. 改变光源的位置或平行平板的厚度可以改变干涉条纹的形态,这可以用来研究光的干涉特性。
六、实验应用光的等厚干涉实验在科学研究和工程应用中具有重要的意义。
大学物理实验实验十六等厚干涉及应用

或薄纸片的厚度 d 为:
d=Nλ 2
(11)
由于 N 数目很大,为了简便,可先测出单位长度的暗条纹数 N0 ,再测出两玻璃板 交线处至金属丝或薄纸片的距离 L ,则
N = N0L
即得
d
=
N0L
λ 2
(12)
由(12)式可知,如果已知入射光波长 λ ,并测出 N0 和 L ,则可求出细金属丝直径或
薄片厚度。
图 1 牛顿环的干涉原理及干涉条纹
156
因此产生两束具有一定光程差的相干光,当它们相遇后就产生干涉现象。由于空气膜厚
度相等处是以接触点为圆心的同心圆,即以接触点为圆心的同一圆周上各点的光程差相
等,故干涉条纹是一系列以接触点为圆心的明暗相间的同心圆,如图 1(b)所示。这种 干涉现象最早为牛顿所发现,故称为牛顿环。
六、注意事项
1.使用读数显微镜时,为避免引进螺距差,移测时必须向同一方向旋转,中途不可 倒退。
2.调节牛顿环厚度时,螺旋不可旋得过紧,以免接触压力过大引起透镜弹性形变。 3.实验完毕应将牛顿环仪上的三个螺旋松开,以免牛顿环变形。 4.在测量劈尖干涉条纹的间距L0时,纵丝每次应与明、暗条纹的交界线重合;测量
射光形成的条纹有何不同?
2.实验中为什么要测牛顿环直径,而不测其半径? 3.在使用读数显微镜时,怎样判断是否消除了视差?使用时最主要的注意事项是 什么? 4.实验中如果用凹透镜代替凸透镜,所得数据有何异同? 5.如何用劈尖干涉检验光学平面的表面质量?
160
δ
=
2hk
+
λ 2
=
⎧ ⎪ ⎨ ⎪⎩(2k
kλ + 1) λ
2
k = 1, 2,3,L(明纹) k = 0,1, 2, 3,L(暗纹) (9)
等厚干涉的实验报告

等厚干涉的实验报告等厚干涉的实验报告引言:等厚干涉是一种重要的光学现象,它在科学研究和工程应用中具有广泛的应用。
本实验旨在通过等厚干涉的实验,探究光的干涉现象及其原理,并通过实验结果分析验证等厚干涉的特性。
实验原理:等厚干涉是指当光线经过介质界面时,由于介质的厚度不同,光线在介质中传播的速度也不同,从而形成干涉现象。
在等厚干涉中,光线经过两个平行的透明介质界面时,当两个界面之间的厚度差为波长的整数倍时,光线会发生相干干涉。
实验装置:本实验采用了一束单色光源、两块平行透明玻璃板以及一个光学平台。
实验中,我们通过调节两块平行玻璃板之间的距离,观察干涉条纹的变化。
实验步骤:1. 将两块平行玻璃板放置在光学平台上,保证它们之间的距离相等。
2. 打开单色光源,调节其位置和方向,使光线垂直射入两块平行玻璃板之间。
3. 通过调节光学平台上的螺旋调节器,改变两块平行玻璃板之间的距离。
4. 观察光线透过玻璃板后的干涉现象,记录下观察到的干涉条纹的变化。
实验结果:在实验过程中,我们观察到了明暗相间的干涉条纹。
随着两块平行玻璃板之间的距离变化,干涉条纹的间距也发生了变化。
当两块玻璃板之间的距离为波长的整数倍时,干涉条纹最为明显。
而当两块玻璃板之间的距离为波长的奇数倍时,干涉条纹则几乎消失。
讨论与分析:根据实验结果,我们可以得出结论:等厚干涉是由于光线在介质中传播速度不同而产生的干涉现象。
当两块平行玻璃板之间的距离为波长的整数倍时,光线经过两块玻璃板后会发生相位差,从而形成明暗相间的干涉条纹。
而当两块玻璃板之间的距离为波长的奇数倍时,相位差几乎为零,干涉条纹几乎消失。
等厚干涉现象在实际应用中具有重要意义。
例如,在光学薄膜的制备过程中,通过控制薄膜的厚度,可以实现特定波长的光的反射和透射,从而实现光的滤波和分光。
此外,等厚干涉还可以用于光学测量中,例如测量薄膜的厚度、折射率等。
结论:通过本实验,我们深入了解了等厚干涉的原理和特性。
实验22光的等厚干涉现象及其应用

光的等厚干涉现象及其应用
若将来自同一光源的光分成两束,这两束光经过不同的路径传播后再相遇,一般就会 产生干涉现象——明暗条纹。光的干涉现象证实了光的波动性,光的干涉在科研、生产和 生活中有着广泛的应用,如用来检查光学元件表面的光洁度和平整度;用来测量透镜的曲 率半径和光波波长;用来测量微小厚度和微小角度等等。通过本实验可以深刻地理解等厚 干涉现象及其应用。
·198·
如果 AOB 表面与 CD 面在 O 点紧密接触,在 O 点 d=0( ∆ = λ / 2 ) ,牛顿环的中心 是一暗斑。如果在 O 点不是紧密接触,则 d ≠ 0 ,牛顿环的中心就不一定是暗斑,也可能 是一亮斑。 由图 3-22-3 可知,直角三角形 PEQ 和 EOQ 是相似的。如果 E 点正好位于半径为 rm 的 圆环上,则
(3-22-6)
式中,m 表示暗环的级数。如果已知单色光的波长为 λ ,同时测出 m 级暗环半径 rm ,就可 以算出平凸透镜的曲率半径 R; 反之, 如果已知 R, 测量 m 后, 就可以算出单色光的波长 λ 。 实际上,平凸透镜的凸面和平晶(光学平板玻璃)的接触处往往由于灰尘或压力引起 的附加光程差,使得牛顿环的级数 m 和环的中心无法确定,因此不能用式(3-22-6)来测 定 R。 为消除灰尘或压力引起的附加光程差带来的系统误差, 经过简单推算, 将式 (3-22-6) 变为如下形式
(3-22-2)
时产生暗条纹;
图 3-22-1 等厚干涉光路图
当光程差
∆ = 2d +
λ
2
= 2k
λ
2
(k = 0,1,2,.!)
(3-22-3)
1λ d = k − 2 2
时产生亮条纹。因此,在空气薄膜厚度相同处产生同一级的干涉条纹,如图 3-22-2 所示。 图 3-22-2 (a) 表示上下两个表面的平整性很好, 因而产生规则的干涉直条纹; 图 3-22-2 (b) 表示两个表面的平整度很差,因而产生很不规则的干涉花样。这些都叫等厚干涉条纹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主尺 15mm
测微鼓轮 0.506mm
最后读数为:15.506mm
注意事项
1.在测量时,读数显微镜的测微鼓轮应沿一个方向转动,中途不 可倒转。
2. 环数不可数错,在数的过程中发现环数有变化时,必须重测。 3. 测量中,应保持桌面稳定,不受振动,不得触动牛顿环装置, 否则重测。
3.调节读数显微镜的目镜,使十字叉丝清晰;自下而上 调节物镜直至观察到清晰的干涉图样。移动牛顿环仪, 使中心暗斑(或亮斑)位于视域中心,调节目镜系统, 使叉丝横丝与读数显微镜的标尺平行,消除视差。平 移读数显微镜,观察待测的各环左右是否都在读数显 微镜的读数范围之内。
4.测量牛顿环的直径。
4 .读数显微镜的读数方法 主尺的分度值为1mm,测微鼓轮共有100个刻度,其份度值为 0.01mm,可估读到0.001mm。
1.熟悉读数显微镜的使用方法
目镜 调焦手轮 标尺 测微鼓轮 锁紧手轮 450可调式半反镜
2 .调整测量装置。
1.调整牛顿环仪的三个调节螺丝,在自然光照射下能 观察到牛顿环的干涉图样,并将干涉条纹的中心移到 牛顿环仪的中心附近。调节螺丝不能太紧,以免中心 暗斑太大,甚至损坏牛顿环仪。
2.把牛顿环仪置于显微镜的正下方,使单色光源与读 数显微镜上45角的反射透明玻璃片等高。旋转反射透 明玻璃 ,直至从目镜中能看到明亮均匀的光照。
上式若已知 ,测出第m级暗条纹的半径rm ,便可算出透镜的曲率半径R。
r 在实验中不能直接用 R 公式,原因有二: m
①实际观察牛顿环时发现,牛顿环的中心不是一个 点,而是一个不甚清晰的暗或亮的圆斑。其原因是 透镜与平板玻璃接触时,由于接触压力引起形变, 使接触处为一圆面,而圆面的中心很难定准,因此rk 不易测准;
2 m
②镜面上可能有灰尘等存在而引起一个附加厚度, 从而形成附加的光程差,这样,绝对级数也不易定 准。
2 rm 为了克服这些困难, 对 R 进行处理,首先取暗环 m 直径Dm 来替代半径rm , Dm 2rm ,则可写成:
2 Dm D 2mR 或 R 4m 再采用逐差法,以消除附加光程差带来的误差,若m与n级暗 环直径分别Dm与Dn,
m级干涉圆环对应的两束相干光的光程差为:
2d m
由干涉条件可知:
2d m k 2 2d m (2k 1) 2 2
2
{
k 1,2,3, , 亮条纹 k 0,1,2, , 暗条纹
R为透镜的曲率半径,rm为第m级干涉环的半径,由几何关系可得 :
光的等厚干涉现象与应用
实 验 目 的
观察等厚干涉现象。 学习用牛顿环测量球面曲率半径的 原理和方法。 学会使用钠光灯及熟炼使用读数显 微镜。
实 验 原 理
一. 等厚干涉
当光源照到一块由透明介质做的薄膜上时,光在薄膜的上表面被分 割成反射和折射两束光(分振幅),折射光在薄膜的下表面反射后, 又经上表面折射,最后回到原来的媒质中,在这里与反射光交迭,发 生相干。只要光源发出的光束足够宽,相干光束的交迭区可以从薄膜 表面一直延伸到无穷远。 薄膜厚度相同处产生同一级的干涉条纹,厚度不同处产生不同级的干 涉条纹。这种干涉称为等厚干涉。
2 R2 ( R dm )2 rm 2 2 2 r 2 Rd d R d d 所以 m m m ,由于 m , m 可忽略,
因此得到:
dm
整理后得:
r 2R
2 m
2 m
2 d r (此式说明: m 与 m 成正比,即离开中心
愈远,光程差增加愈快,因此,干涉环愈 密。)
r R m
2 S 1 i n1 A n2 1' D
2'
C e
n1
B
二.用牛顿环测透镜的曲率半径
牛顿环仪是由一个曲率半径很大的平凸透镜的凸面与一个 平面玻璃接触在一起构成,平凸透镜的凸面与玻璃片之间的空 气层厚度从中心接触点到边缘逐渐增加。
R
rm O
dm
牛顿环仪
当用平行单色光垂直照射到牛顿环仪上时,一部分光线在 空气层的下表面反射,一部分光线在空气层的上表面反射, 这两部分光有光程差,它们在平凸透镜的凸面附近相遇而发 生干涉。当我们用显微镜来观察时,便可清楚地看到中心是 一暗圆斑,而周围是许多明暗相间、间隔逐渐减小的同心环, 称为牛顿环。它属于等厚干涉条纹。
2 m
则:
2 Dm 4mR
2 D R 4(m n)
2 m 2 n
上式只出现相对级数(m-n),无需知道待测暗环的绝对级 2 2 数,而且由于分子是 Dm Dn ,通过几何分析可知,即使 牛顿环中心无法定准,也不会影响R的准确度。
实 验 内 容
用牛顿环测定透镜的曲率半径