【行测】-数量关系-解题技巧(完整版)
行测数量关系常见题型与答题技巧

行测数量关系常见题型与答题技巧在公务员行测考试中,数量关系一直是让众多考生头疼的一个模块。
但其实,只要我们掌握了常见的题型和有效的答题技巧,就能在这一部分取得不错的成绩。
下面,我将为大家详细介绍行测数量关系中常见的题型以及对应的答题技巧。
一、工程问题工程问题是数量关系中比较常见且容易掌握的一类题型。
其核心公式为:工作总量=工作效率×工作时间。
在解题时,我们通常需要根据题目所给条件,先确定工作总量、工作效率和工作时间这三个量中的已知量和未知量,然后通过设未知数、列方程来求解。
例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成。
两人合作需要多少天完成?我们设工作总量为 1(也可以设为甲、乙工作时间的最小公倍数30),那么甲的工作效率就是 1/10,乙的工作效率就是 1/15。
两人合作的工作效率为 1/10 + 1/15 = 1/6,所以两人合作完成这项工程需要的时间为 1÷(1/6) = 6 天。
答题技巧:对于工程问题,当题目中给出的工作时间的数值是具体的量时,我们往往将工作总量设为时间的最小公倍数,这样可以方便计算工作效率。
二、行程问题行程问题也是行测数量关系中的高频考点,主要包括相遇问题、追及问题、流水行船问题等。
相遇问题的核心公式为:相遇路程=速度和×相遇时间;追及问题的核心公式为:追及路程=速度差×追及时间;流水行船问题中,顺水速度=船速+水速,逆水速度=船速水速。
比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,经过 2 小时相遇。
A、B 两地相距多远?根据相遇问题的公式,相遇路程=(5 + 3)×2 = 16 千米,即 A、B 两地相距 16 千米。
再如:甲、乙两人同向而行,甲在乙前面 10 千米处,甲的速度为 4 千米/小时,乙的速度为 6 千米/小时,乙多久能追上甲?根据追及问题的公式,追及时间= 10÷(6 4)= 5 小时。
2023事业单位行测辅导:数量关系解题方法1500字

2023事业单位行测辅导:数量关系解题方法1500字2023事业单位行测辅导:数量关系解题方法数量关系是事业单位行测考试中的一个常见题型,需要考生在一定的时间内通过计算、比较和推理等方式,解答与数量关系相关的问题。
为了帮助考生提高数量关系解题能力,以下将介绍一些解题方法和技巧。
一、理清问题,明确思路在解数量关系题之前,首先要对问题进行仔细阅读和理解,明确题目的要求和条件。
可以逐句阅读,将关键信息标记出来,帮助理清思路和确定解题方向。
二、确定变量,建立表达式在数量关系题中,常常涉及到多个变量之间的关系。
因此,要根据题目的要求和条件,确定变量,并通过建立表达式,来描述这些变量之间的数学关系。
可以使用字母代表变量,并通过等式或不等式来表达这些关系。
三、利用数据关系,建立方程在数量关系题中,常常给出一些具体的数据,比如给出了某个变量的具体取值,或者给出了一些变量之间的比较关系。
可以利用这些数据关系,建立方程来解决问题。
四、进行计算,整理结果在建立了方程之后,可以通过计算来求解未知量的值。
需要注意的是,要仔细进行计算,确保计算结果的准确性。
同时,在计算的过程中,还要灵活运用数学运算的法则和技巧,比如可以化简、约分或配平等,以简化计算过程。
五、检查答案,筛除错误在计算出结果之后,要进行答案的检查。
要检查是否符合题目的要求和条件,同时也要检查计算过程是否有错误或者遗漏。
可以通过代入原方程进行验证,来确保答案的正确性。
六、灵活运用解题技巧在解数量关系题的过程中,还可以灵活运用一些解题技巧,来提高解题效率和准确性。
比如:1. 利用逻辑关系:在数量关系题中,常常涉及到逻辑推理。
可以通过分析题目的信息和条件,利用逻辑关系来推断出一些隐藏的信息,从而解决问题。
2. 制作表格图表:数量关系题可以通过制作表格、图表等形式来表达和分析问题,从而更直观地理解和处理问题。
3. 利用近似估算:在一些复杂的数量关系题中,计算过程较为繁琐,可以利用近似估算的方法,进行简化处理,提高解题效率。
行测数量关系答题技巧

行测数量关系答题技巧
1. 嘿,你知道吗?行测数量关系答题技巧里,“代入排除法”超好用啊!就像你找钥匙,一个一个试,总能找到对的那把!比如那道年龄问题,直接把选项代进去试试不就清楚啦!
2. 哇塞,“数字特性法”可是个厉害的技巧哦!这就好比走捷径,一下子就能找到答案。
像那道关于整除的题,根据数字特性不就能快速选出来嘛!
3. 哎呀呀,“方程法”可是很基础但又超实用的呢!这就像给问题搭个桥,让你轻松走过去。
比如算那个购物的花费,设个方程不就迎刃而解啦!
4. 嘿,“赋值法”也很不错哟!就像给题目一个特定的值,让它变得简单易懂。
像那道工程问题,赋个值不就好算了嘛!
5. 哇哦,“画图法”简直太直观啦!就像给你一幅地图,答案一目了然。
比如那道几何题,画个图不就清楚各种关系啦!
6. 哈哈,“分类讨论法”能让你考虑得更全面呀!这就像把东西分类整理,清楚明白。
像那种有多种情况的题,分类讨论一下不就全搞定啦!
7. 哎哟喂,“比例法”也是很妙的呢!就如同掌握了一把钥匙,能打开很多难题的锁。
比如那道速度问题,用比例关系不就能轻松求解嘛!
8. 嘿呀嘿呀,“尾数法”有时候能快速出答案哦!就像一眼就能看出
特别之处。
像那道计算的题,看看尾数不就知道啦!
9. 哇哈哈,“归纳推理法”也很牛呀!就好像从一堆线索中找出关键。
比如那道规律题,归纳一下不就找到窍门啦!
10. 嘿嘿,这些行测数量关系答题技巧是不是很厉害?就像拥有了一群得力助手,帮你攻克难题!我觉得掌握这些技巧,那在考场上可就如鱼得水啦!。
行测数量关系--还原与年龄问题之解答技巧

【典型问题】1. 某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?解答:(6×6+6)÷6-6=1,这个数是1.2. 两个两位数相加,其中⼀个加数是73,另⼀个加数不知道,只知道另⼀个加数的⼗位数字增加5,个位数字增加1,那么求得的和的后两位数字是72,问另⼀个加数原来是多少?解答:和的后两位数字是72,说明另⼀个加数变成了99,所以原来的加数是99-51=48.3. 有砖26块,兄弟⼆⼈争着去挑。
弟弟抢在前⾯,刚摆好砖,哥哥赶到了。
哥哥看弟弟挑的太多,就抢过⼀半。
弟弟不肯,⼜从哥哥那⼉抢⾛⼀半。
哥哥不服,弟弟只好给哥哥5块,这时哥哥⽐弟弟多挑2块。
问最初弟弟准备挑多少块?解答:先算出最后各挑⼏块:(和差问题)哥哥是(26+2)÷2=14,弟弟是26-14=12,然后来还原:1. 哥哥还给弟弟5块:哥哥是14-5=9,弟弟是12+5=17;2. 弟弟把抢⾛的⼀半还给哥哥:抢⾛了⼀半,那么剩下的就是另⼀半,所以哥哥就应该是9+9=18,弟弟是17-9=8;3. 哥哥把抢⾛的⼀半还给弟弟:那么弟弟原来就是8+8=16块.4. 甲、⼄、丙三⼈钱数各不相同,甲最多,他拿出⼀些钱给⼄和丙,使⼄和丙的钱数都⽐原来增加了两倍,结果⼄的钱最多;接着⼄拿出⼀些钱给甲和丙,使甲和丙的钱数都⽐原来增加了两倍,结果丙的钱最多;最后丙拿出⼀些钱给甲和⼄,使甲和⼄的钱数都⽐原来增加了两倍,结果三⼈钱数⼀样多了。
如果他们三⼈共有81元,那么三⼈原来的钱分别是多少元?解答:三⼈最后⼀样多,所以都是81÷3=27元,然后我们开始还原:1. 甲和⼄把钱还给丙:每⼈增加2倍,就应该是原来的3倍,所以甲和⼄都是27÷3=9,丙是81-9-9=63;2. 甲和丙把钱还给⼄:甲9÷3=3,丙63÷3=21,⼄81-3-21=57;3. 最后是⼄和丙把钱还给甲:⼄57÷3=19,丙21÷3=7,甲81-19-7=55元.5. 甲、⼄、丙三⼈各有糖⾖若⼲粒,甲从⼄处取来⼀些,使⾃⼰的糖⾖增加了⼀倍;接着⼄从丙处取来⼀些,使⾃⼰的糖⾖也增加了⼀倍;丙再从甲处取来⼀些,也使⾃⼰的糖⾖增加了⼀倍。
公务员行测数量关系解题技巧

数量关系行政能力测验(概况)比较省时的题目:常识判断,类比推理,选词填空,片段阅读(细节判断除外)比较耗时的题目:图形推理,数字判断,资料分析(好找的,好计算的)第一种题型数字推理备考重点:A基础数列类型B五大基本题型(多级,多重,分数,幂次,递推)C基本运算速度(计算速度,数字敏感)数字敏感(无时间计算时主要看数字敏感):a单数字发散b多数字联系对126进行数字敏感——单数字发散1).单数字发散分为两种1,因子发散:判断是什么的倍数(126是7和9的倍数)64是8的平方,是4的立方,是2的6次,1024是2的10次2.相邻数发散:11的2次+5,1215的3次+1,1252的7次-2,1282).多数字联系分为两种:1共性联系(相同)1,4,9——都是平方,都是个位数,写成某种相同形式2递推联系(前一项变成后一项(圈2),前两项推出第三项(圈3))——一般是圈大数注意:做此类题——圈仨数法,数字推理原则:圈大不圈小【例】1、2、6、16、44、()圈6 16 44 三个数得出 44=前面两数和得2倍【例】一.基础数列类型1常数数列:7,7 ,7 ,72等差数列:2,5,8,11,14等差数列的趋势:a大数化:123,456,789(333为公差)582、554、526、498、470、()b正负化:5,1,-33等比数列:5,15,45,135,405(有0的不可能是等比);4,6,9——快速判断和计算才是关键。
等比数列的趋势:a数字非正整化(非正整的意思是不正或不整)负数或分数小数或无理数8、12、18、27、()A.39B.37C.40.5D.42.5b数字正负化(略)4质数(只有1和它本身两个约数的数,叫质数)列:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83 ,89,97——间接考察:25,49,121,169,289,361(5,7,11,13,17,19的平方)41,43,47,53,(59)615合数(除了1和它本身两个约数外,还有其它约数的数,叫合数)列:4.6.8.9.10.12.14.15.16.18.20.21.22.24.25.26.27.28.30.32.33.34.35 .36.38.39.40.42.44.45.46.48.49.50.51.52.54.55.56.57.58.60.62.63.64.65.66.68.69.70.72.74.75.76.77.78.80.81.82.84.85.86.87.88.90.91.92.93.94.95.96.98.99.100【注】1既不是质数、也不是合数。
2024公务员联考行测数量关系解题技巧

2024公务员联考行测解题技巧1、利用插空法解决排列组合题“排列组合问题”是行测数量关系中常考的题型,也是大家觉得较难的题型。
往往很多同学看到排列全颗就直接放弃不做,其实解排列组合题目也是讲究方法的,当我们找准方法时,解题就能事半功倍了。
一、要点梳理插空法:当排列组合题中,有元素要求不相邻,先将其它元素排好,再将指定的不相邻的元素指入到已排好的元素的间隙或两端位置。
二、例题解析【例1】某学习平台的学习内容由观看视频、阅读文章、收藏分享、论坛交流、考试答题五个部分组成。
某考生要先后学完这五个部分,若观看视频和阅读文章不能连续进行,该学员学习顺序的选择有()种。
A.24B.72C.96D.120答案:B【解析】题目要求观看视频和阅读文章不能连续进行,也就是说两者不相邻,那我们可以使用插空法解题。
即先将除观看视频和文章阅读外的三个学习内容排好,题目当中说考生需要先后完成五个部分的学习且五个部分的学习内容不同,那收藏分享、论坛交流、考试答题中部分内容的安排可列式为A33,而三个元素排好包含两端会产生4个位置,接下来在4个位置中选两个位置插入观看视频和阅读文章即可,又因为需要考虑观看视频和阅读文章的顺序,所以列式为A24。
第一步安排其他三个学习内容,第二步按排观看视频和阅读文章,分步运算用乘法,因此该学员学习顺序共有A33×A24=72种,故选B项。
【例2】某条道路一侧共有20盥路灯。
为了节约用电,计划只打开其中的10盏。
但为了不影响行路安全,要求相邻的两盏路灯中至少有一盏是打开的,则共有()种开灯方案。
A.2B.6C.11D.13答案:c【解析】题目要求说相邻的两盏路灯中至少有一盏是打开的,也就是找不到两盏相邻的不亮的路灯,即不亮的路灯不能相邻,选择插空法。
先将亮着的10盏路灯排好,因为路灯与路灯一样,没有顺序要求,所以10盏亮着的路灯就一种情况。
10盏路灯包括两端会形成11个位置C1011=11种,故选择c项。
数量关系解题技巧附例题解析

数量关系解题技巧附例题解析数量关系解题技巧附例题解析:解题技巧一、解题时整体把握,抓住出题人思路【例1】将A、B、C三个水管打开向水池放水,水池12分钟可以灌满;将B、C、D三个水管打开向水池放水,水池15分钟可以灌满;将A、D两个水管打开向水池放水,水池20分钟可以灌满。
如果将A、B、C、D四个水管打开向水池放水,水池需( )分钟可以灌满。
A.25B.20C.15D.10解析:选择D。
此题出题人考的是考生整体把握的能力,A、B、C三个水管打开向水池放水,水池12分钟可以灌满,而现在加入D管,帮助A、B、C三个水管放水,因此时间一定低于12分钟,因此此题选D。
解题技巧二、题干信息与选项成比例或倍数关系:想倍数,想整除【例2】一列客车长250米,一列货车长350米,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过15秒,已知客车与货车的速度之比是5:3。
问两车的速度相差多少?A.10米/秒B.15米/秒C.25米/秒D.30米/秒解析:选择A。
此题问的是两车的速度相差,因此,做题时找与问题直接相关的数据,客车与货车的速度之比是5:3,而B、C比值正好是5:3,推断分别为客货车速度,而两车速度相差为10米/秒。
【例3】学校有足球和篮球的数量比为8∶7,先买进若干个足球,这时足球与篮球的数量比变为3∶2,接着又买进一些篮球,这时足球与篮球的数量比为7∶6。
已知买进的足球比买进的篮球多3个,原来有足球多少个?A.48B.42C.36D.30解析:选择A。
足球和篮球的数量比为8∶7,A、B选项刚刚为8:7,推断它们分别为足球与篮球的数量,而且只有48是8的倍数。
因此选A。
解题技巧三、确实没时间要放弃,根据奇偶性选与众不同的选项【例4】某地劳动部门租用甲、乙两个教室开展农村实用人才培训。
两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。
两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。
行测数量关系解题技巧 让数量关系变得简单又好学

行测数量关系解题技巧让数量关系变得简单又
好学
行测数量关系解题技巧行测数量关系答题技巧有很多,考生可针对不同的题型选择适宜自己的方法来帮助答题,常用的方法如下。
1、特值法所谓特值法,就是在某一范围内取一个特殊值,将繁杂的问题简单化,这对于只需要把握整体分析^p 的数学运算题非常有效。
其中,“有效设1法”是最常用的特值法。
2、分合法分合法主要包括分类讨论法和分步讨论法两种,重点应用于排列组合问题中。
在解答某些数学运算问题时,会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
而分步讨论法那么是指有时候有些问题是无法解决的,此时需要把问题进展分步,按步骤一步一步地解决。
3、方程法将题目中未知的数用变量(如x,y)表示,根据题目中所含的等量关系,列出含有未知数的等式,通过求解未知数的值,来解应用题的方法。
方程法应用较为广泛,公务
员考试数学运算局部有相当一局部的题目都可以通过方程法来求解。
4、比例法根据题干中相关比例数据,解题过程中将各局部份数正确画出来,进展分析^p ,往往能简化难题,加速解题。
5、计算代换法计算代换法是指解数学运算题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化。
本质是数量之间的转化,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
6、尾数计算法尾数法是数学运算题解答的一个重要方法,即当四个答案全不一样时,可以采用尾数计算法,最后选择出正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)单数字发散
1
“单数字发散”即从题目中所给的某一个数字出发,寻找与之相关的各个特征数字,从而找 到解析试题的“灵感”的思维方式。 “单数字发散”基本思路:从“基准数字”发散并牢记具有典型数字特征的数字(即“基准数字”),将题干中数字 与这些“基准数字”联系起来,从而洞悉解题的思路。 “因数分解发散”基本思路:牢记具有典型意义的数字的“因数分散”,在答题时通过分解这些典型数字的因子,从 而达到解题的目的。 常用幂次数如表 1.1、表 1.2 所示。
50,41,32,
3
12,22,32 9=(4-1)2=(4-1)×3 9=4×2+1=1×5+4
二、基本数列及其变式
(一)基础数列八大类型
常数数列,如:
3,3,3,3,3,3,3,3,3,…。
等差数列,如:
3,5,7,9,11,13,15,17,…。
等比数列,如:
3,6,12,24,48,96,192,…。
“质数表”记忆如下:
①“2,3,5,7,11,13,17,19”这几个质数作为一种特殊的“基准数”,是质数数列的“旗帜”,公务员考试中
对于质数数列的考核往往集中在这几个数字上。
②83,89,97 是 100 以内最大的 3 个质数,换言之 80 以上、100 以下的其他自然数均是合数,特别需要留意 91 是
一个合数(91=7×13)。
③像 91 这样较大的合数的“质因数分解”,也是公务员考试中经常会设置的障碍,牢记 200 以内一些特殊将其看作一种特殊意义上的“基准数”。
常用经典因数分解如表 1.5 所示。
表 1.5 常用经典因数分解
91=7×13
111=3×37
第二章 数量关系
数量关系主要测查应试者理解、把握事物间量化关系和解决数量关系问题的技能主要涉及数字和数据关系的分析、 推理、判断、运算。
第一节 数字推理
在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。一般而言,先考察前 面相邻的两三个数字之间的关系,在中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字 与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否 定,就马上改变思路,提出另一种数量规律的假设。另外,有时从后往前推,或者“中间开花”向两边推也是有效 的。 即使一些表面看起来很复杂的数列,只要我们对其进行细致的分析和研究,就会发现,将相邻的两个数相加或相减、 相乘或相除之后,它们也不过是通过一些简单的排列规律复合而成的。只要掌握它们的排列规律,善于开动脑筋, 就会获得理想的效果。 在做一些复杂的题目时,要有一个基本思路:尝试错误。很多数字推理题不太可能一眼就看出规律、找到答案,而 是要经过两三次的尝试,逐步排除错误的假设,最后才能找到正确的规律。 另外还有一些关键点需掌握: ①培养数字、数列敏感度是应对数字推理的关键,例如,看到数列数字比较多就要马上想到多重数列等; ②熟练掌握各种基本数列(自然数列、平方数列、立方数列等); ③熟练掌握各种数列的变式; ④掌握最近几年的最新题型并进行大量的习题训练。
常用幂次数记忆:
①对于常用的幂次数字,考生务必将其牢记在心,这不仅仅对于数字推理的钥匙很重要,对数学运算及至资料分析
试题的迅速、准确解答都有着至关重要的作用。
②很多数字的幂次数都是相通的。比如 729=36=93=272,256=28=44=162 等。
③“21~29”的平方数是相联系的,以 25 为中心,24 与 26、23 与 27、22 与 28、21 与 29,它们的平方数分别相差
质数型数列,如:
2,3,5,7,11,13,17,19,…。
合数数列,如:
4,6,8,9,10,12,14,15,…。
周期数列,如:
1,3,7,1,3,7,…。
对称数列,如:
1,3,7,4,7,3,1,…。
简单递推数列:各、差、积、商,如:
1,1,2,3,5,8,13,…。
37,23,14,9,5,4,1,…。
2,3,6,18,108,1 944,…。
256,32,8,4,2,2,1,2,…。
(二)质数数列及变式
例题 1 2,3,5,7,( )
119=7×17 133=7×19 117=9×13 143=11×13
147=7×21 153=9×17
161=7×23 171=9×19 187=11×17 209=19×11
有了上述“基准数”的知识储备,在解题中即可以此为基础用“单数字发散”思维解题。
(二)多数字发散
“多数字联系”概念定义:即从题目中所给的某些数字组合出发,寻找其间的联系,从而找到解析例题的“灵感” 的思维方式。 “多数字联系”基本思路:把握数字之间的共性;把握数字之间的递推关系。 例如:题目中出现了数字 1,4,9,则从 1,4,9 出发我们可以联想到:
表 1.4 200 以内质数表 2 3 5 7 11 13 17 19 23 43 47 53 59 61 67 71 73 79 103 107 109 113 127 131 137 139 149 173 179 181 191 193 197 199
29 31 83 89 151 157
37 41 97 101 163 167
100、200、300、400。
常用阶乘数见表 1.3.
n!=1×2×3×4…x(n-1)×n
表 1.3 常用阶乘数
数字 1 2 3 4 5
6
7
8
9
10
2
阶 乘 1 2 6 24 120 720 5040 40 320 362 880 3 628 800
n 的阶乘写作 n!。 200 以内质数表(特别留意划线部分)如表 1.4 所示。
表 1.1 平方数
底数 1
2
3
4
5
6
7
8
平方 1
4
9 16
25 36 49 64
底 数 11 12 13 14
15 16 17 18
平 方 121 144 169 196 225 256 289 324
9 10
81
100
19
20
361 400
表 1.2 立方数
底数 1
2
3
4
5
6
7
8
9
10
立方 1
8
27 64 125 216 343 512 729 1000