作三角形_尺规作图_

合集下载

三角形的尺规作图

三角形的尺规作图

三角形的尺规作图
06
应用
在几何问题中的应用
确定三角形形状
解决几何问题
通过尺规作图,可以确定给定条件的 三角形形状,如等腰三角形、直角三 角形等。
通过三角形的尺规作图,可以解决各 种几何问题,如求三角形面积、证明 线段相等或垂直等。
证明几何定理
利用三角形的尺规作图,可以证明几 何定理,如塞瓦定理、梅涅劳斯定理 等。
在奥林匹克数学竞赛中,三角形的尺规作图是常用的解题技巧之 一,用于解决几何问题。
数学奥林匹克国家队选拔赛
在数学奥林匹克国家队选拔赛中,三角形的尺规作图也是重要的考 察内容之一。
国际数学奥林匹克竞赛
在国际数学奥林匹克竞赛中,三角形的尺规作图也是选手必须掌握 的基本技能之一。
THANKS.
三角形的尺规作图
汇报人: 2024-01-02
目录
• 尺规作图的基本知识 • 三角形的性质和分类 • 三角形的尺规作图方法 • 特殊三角形的尺规作图 • 三角形的尺规作图技巧 • 三角形的尺规作图应用
尺规作图的基本知
01

尺规作图定义
尺规作图
使用无刻度的直尺和圆规进行图 形构造的方法。
限制条件
现代应用
尺规作图在几何学、工程 制图等领域有广泛的应用 。
02
三角形的性质和分

三角形的基本性质
三角形的不变形性
三角形的三边长度和三个 角的大小在尺规作图过程 中保持不变。
三角形的稳定性
三角形是一种稳定的几何 图形,不易发生形变。
三角形内角和定理
三角形的三个内角之和等 于180度。
三角形的边和角
直角三角形
总结词
直角三角形是一种有一个角为直角的三角形,其作图方法需要利用勾股定理。

作三角形_尺规作图_课件

作三角形_尺规作图_课件
·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··
如图,某人不小心把一块三角形的玻璃 打碎成三块,现在要到玻璃店去配一块 完全一样的玻璃,那么他最少要( )
A、带①去 C、带③去
③ ② ①
B、带②去 D、带①和②去
曾经的世界难题:
尺规作图,把一个角三等分
拿破仑的题目: 只用圆规把一个圆四等分。
E C B
D
你现在能帮助 豆豆画出三角 形了吗?
2. 已知∠α和∠β ,线段a,用尺规作一个三角形, 使其一个内角等于∠α,另一个内角等于∠β ,且 ∠α的对边等于a。 α
β
a
提示:先作出一个角等于∠α+∠β ,通过反向 延长角的一边得到它的补角,即三角形中的第三 个内角∠γ 。由此转换成已知∠β 和∠γ 及其 这两角的夹边a,求作这个三角形。
(3)以·为顶点,以··为一边, · · ·· ·· 作∠ ·· =∠ ·· ; ·· ·· ·· ··
(4)作一条线段·· = ·· ; ·· ·· ·· ··
你知道的常用作图语言 有哪些呢?
(5)连接·· ,或连接··交··于 ·· ·· ·· ·· ·· ·· 点·· ; ·· ··
(6)分别以· , ·为圆心, · · · · 以· , ·为半径画弧,两弧交 · · · · 于·点; · ·
1. 已知三角形的两角及其夹边,求作这个三角形。
C α β B A c 边 角 角 对于边和角,你想先作__,再作__,最后作__。
请按照给出的作法作出图形
作法: (1)作线段AB=c; A (2)以A为顶点,以AB为一边, 作∠DAB=∠α ; (3) 以B为顶点,以BA为一边,作 ∠ABE=∠β,BE交AD于点C。 △ABC就是所求作的三角形。

尺规作图已知三边作三角形(湘教)

尺规作图已知三边作三角形(湘教)
步骤如下
1. 确定已知的两边和夹角。
2. 以已知一边为基线,另一边为邻边,在基线的同侧作一个角,使其等 于已知夹角。
已知两边及夹角作三角形
3. 使用尺规作图,以基线的另 一端点为圆心,已知的另一边 为半径作圆弧。
4. 在所作的圆弧上,以夹角的 顶点为起点,截取与圆弧相交 的线段长度等于已知一边。
5. 连接两个端点,得到所需的 三角形。
动了尺规作图的发展。
随着几何学的发展,尺规作图在 数学领域中的应用越来越广泛, 成为几何学研究的重要分支之一。
02 已知三边作三角形的作图 方法
已知两边及夹角作三角形
• 已知两边及夹角作三角形的作图方法基于三角形的全等定理, 即SAS(Side-Angle-Side)定理。
பைடு நூலகம்
已知两边及夹角作三角形
已知三边作三角形
• 已知三边作三角形的作图方法基于三角形的全等定理,即 SSS(Side-Side-Side)定理。
已知三边作三角形
步骤如下 1. 确定三边的长度。
2. 以任意一边为基线,在其同侧作两个角,使两角的角度之和等于180度。
已知三边作三角形
3. 使用尺规作图,分 别以两角的顶点为圆 心,另两边为半径作 圆弧。
04 尺规作图的应用与实例
几何定理的证明
定理证明
通过尺规作图,可以证明几何定理,例如勾股定理、毕达哥 拉斯定理等。这些定理在数学中有着重要的地位,对于理解 几何学的基本原理和性质非常有帮助。
证明方法
利用尺规作图的精确性和规范性,通过一系列的作图步骤, 可以推导出几何定理的正确性。这种方法不仅有助于理解几 何定理的本质,还可以培养逻辑推理和证明的能力。
建筑设计中的应用

《三角形的尺规作图》

《三角形的尺规作图》
7. 连接AE、AF、BF,则三角形AEF即为所求。
04
已知一角及两边长度作三 角形
已知一角及两边长度作三角形的方法
确定已知角
首先确定一个已知角,这 个角的大小不能超过180 度。
确定已知两边
确定两条已知的边长,这 两条边必须能够与已知角 形成一个三角形。
使用尺规作图
使用尺子和圆规,首先绘 制已知角,然后根据已知 两边,分别绘制两条线段 ,形成一个三角形。
使用尺子和圆规,首先绘制出 30度的角,然后分别绘制两条
线段,形成三角形。
05
复杂三角形的尺规作图
已知两边及夹角,作一个等腰三角形
总结词
使用尺规作图,可以根据已知两边及夹角 ,作一个等腰三角形。
VS
详细描述
首先,使用圆规以已知夹角的一边为半径 ,以夹角的顶点为圆心画弧,与已知的另 一边相交于两点。然后,使用直尺将两点 连接,从而得到等腰三角形的底边。最后 ,使用圆规以等腰三角形的底边为半径, 以底边的两个端点为圆心分别画弧,相交 于三角形的顶点,从而完成三角形的作图 。
第二步
以A点为圆心,以$BC$为半径画弧线,与 AB和AC两侧的延长线分别相交于D和E两 点。
第四步
以$AO$为半径,分别以$B$和$C$为圆心 画弧线,两段弧线在BC的同侧交于一点, 记作$F$。
第三步
连接$DC$和$EB$,得到的两条线段相交 于点$O$。
证明所作三角形为唯一的方法
• 根据圆的唯一性定理,以已知边长和夹角可以唯一确定一个圆。因此,已知两边及夹角作三角形的方法是唯一的。
已知一边及邻角,作一个直角三角形
总结词
通过已知一边及邻角,可以尺规作图得到一个直角三 角形。
详细描述

13.4 三角形的尺规作图课件(共15张PPT)

13.4 三角形的尺规作图课件(共15张PPT)
作图略.作出符合要求的三角形,关键是根据条件确定三角形的三个顶点的位置.解题时候要根据实际情况判断是否存在多个符合题设条件的△ABC.
归纳小结
只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图.
同学们再见!
授课老师:
时间:2024年9月15日
尺规作图所用的作图工具是指( ).A.刻度尺和圆规B.不带刻度的直尺和圆规C.刻度尺D.圆规
随堂练习
B
2.如图是作△ABC的作图痕迹,则此作图的已知条件是( ).A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角
C
3.已知:如图,线段a,b,∠α,求作:△ABC,使得BC=a,AC=b,∠ACB=∠α,






a
b
c
2.如图所示,已知∠α,求作∠AOB,使∠AOB=∠α.
α
新知引入
什么是尺规作图?
只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图.
这种作图方法不必用具体数值,只按给定图形进行再作图,这也是它与画图的区别所在.
用尺规作三角形
13.4 三角形的尺规作图
第十三章 全等三角形
学习目标
1.经历尺规作图实践操作的过程,训练和提高学生尺规作图的技能,能根据已知条件作三角形.2.在实际操作过程中,逐步规范作图语言,能依据规范作图语言作出相应的图形.
学习重难点
会尺规作图.
难点
重点
能根据已知条件作三角形.
问题导入
1.如图,已知线段a,b.求作:线段c,使线段c的长度为线段a,b长度的和.
由三角形全等判定可以知道,每一种判定两个三角形全等的条件(SSS,SAS,ASA,AAS),都只能作出唯一的三角形.

尺规作图2

尺规作图2

∵点P在线段AB的垂直平分线上
∴ PA=PB
A
C
B
N
线段的垂直平分线
一、性质定理:线段垂直平分线上的点到这条线段两个端 点的距离相等。 二、逆定理:到线段两个端点距离相等的点,在这条 线段的垂直平分线上。
点P在线段 AB的垂直 平分线上
线段垂直平分线上的点到这 条线段两个端点的距离相等
PA=PB
到线段两个端点距离相等的点, 在这条线段的垂直平分线上
3、如图PA=PB,则 直线MN是线段AB的 垂直平分线。
线段的垂直平分线
例1 已知:如图,在ΔABC中,边AB,BC的垂直平分线交于P. 求证:点P在AC的垂直平分线上;
分析:
点P在线段AB的 垂直平分线上 PA=PB 点P在线段BC的 垂直平分线上 PB=PC
B
A M
M’
P C N N’
PA=PB=PC ∵PA=PC ∴点P在AC的垂直平分线上
在烟威高速公路L的同侧,有两个化 工厂A、B,为了便于两厂的工人看病 市政府计划在公路边上修建一所医院, 使得两个工厂的工人都没意见,问医 B 院的院址应选在何处?
烟威 高 速 公 路
A
威海市政府为了方便居民的生活,计划在 三个住宅小区 A、 B、C之间修建一个购物 中心,试问,该购物中心应建于何处,才 能使得它到三个小区的距离相等。
线段的垂直平分线
动手操作:作线段AB的中垂线MN,垂
足为C;在MN上任取一点P,连结PA、PB; M P
量一量:PA、PB的长,你能发现什么?
PA=PB P1A=P1B ……
由此你能得出什么规律
命题:线段垂直平分线上的
点到这条线段两个端点的距 离相等。

全等三角形尺规作图

全等三角形尺规作图

全等三角形尺规作图xx年xx月xx日CATALOGUE目录•全等三角形基本概念•全等三角形尺规作图基本法则•尺规作图的技巧和方法•尺规作图的实例分析•尺规作图的应用和意义01全等三角形基本概念两个三角形全等是指它们能够完全重合,即三个内角相等且三条边相等。

全等三角形的记号是“≌”,读作“全等形ABCD”或“三角形ABC全等于三角形DEF”。

全等三角形的对应边相等,对应角相等。

全等三角形的对应边上的高相等,对应边上的中线相等,对应角平分线相等。

SSS(Side-Side-Side):如果三角形的三条边相等,则它们全等。

AAS(Angle-Angle-Side):如果三角形的两个角相等且这两个角的夹边相等,则它们全等。

ASA(Angle-Side-Angle):如果三角形的两个角相等且其中一个角的对边相等,则它们全等。

SAS(Side-Angle-Side):如果三角形的两条边相等且这两条边的夹角相等,则它们全等。

全等三角形的判定方法02全等三角形尺规作图基本法则无刻度直尺只限制长度测量,无法进行面积、角度等测量。

圆规可以用来画圆和圆弧,也可以用来复制图形。

尺规作图的基本概念直接法通过圆规和无刻度直尺,直接画出全等三角形。

间接法通过画出一个三角形,再使用圆规和无刻度直尺,间接画出全等三角形。

全等三角形的尺规作图方法画出三角形使用圆规,以点A为圆心,以AB为半径画圆弧,得到点C;再以点B为圆心,以AB为半径画圆弧,得到点D;连接CD得到三角形ABC。

确定两个已知点确定两个已知点A和B,并连接两点得到线段AB。

判断全等通过比较AC和BC的长度,可以判断三角形ABC和三角形DEF是否全等。

作图步骤03尺规作图的技巧和方法1作图技巧23明确要画的图形,了解所需条件和限制条件。

确定作图目标根据已知条件逐步推导,按照顺序将图形画出来。

画图步骤检查画出的图形是否符合题目要求,确保准确性。

检验作图结果根据等边三角形的性质,通过平分已知角度或边长即可得到三个等边三角形。

7全等三角形的尺规作图

7全等三角形的尺规作图

第7讲三角形的尺规作图一、教学目标理解尺规作图的含义,掌握尺规作图的步骤。

二、知识点梳理1、尺规作图定义:只用直尺(没有刻度)和圆规也可以画出一些图形,这种画图的方法被称为尺规作图。

注意:尺规作图中的直尺没有刻度。

2、已知三边作三角形已知三边求作三角形是利用三角形全等的条件“边边边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,c求作:△ABC,使AB=c,BC=a,AC=b作法与示范:(1)作线段AB=c(2)以点A为圆心,b为半径画弧(3)以点B为圆心,a为半径画弧,两弧交于点C(4)连接AC,BC,△ABC即为所求3、已知两边及其夹角作三角形已知两边及其夹角作三角形是利用三角形全等的条件“边角边”来作图的,具体作图的方法、步骤、图形如下:已知:线段a,b,∠α求作:△ABC,使∠B=∠α,BC=a,BA=b作法与示范:(1)作∠MBN=∠α(2)在射线BM,BN上分别截取线段BC=a,BA=b(3)连接AC,则△ABC为所求作的三角形4、已知两角及其夹边作三角形已知两角及其夹边求作三角形是利用三角形全等的条件“角边角”来作图的,具体作图的方法、步骤、图形如下:已知:∠α,∠β,线段a求作:△ABC,使∠BAC=∠α,∠ABC=∠β,AB=a作法与示范:(1)作线段AB=a(2)在AB同侧,作∠DAB=∠α,∠EBA=∠β,AD与BE相交于点C,则△ABC为所求作的三角形三、典型例题例1 下列作图属于尺规作图的是()A、用量角器画出∠AOB的平分线B、用圆规和直尺作∠AOB等于已知的∠αC、用刻度尺画线段AB=3 cmD、用三角板作直线AB的平分线例2 如图13-4-1,已知:线段a、b。

求作:△ABC,使AB=2a,AC=b,BC=a。

例3 如图13-4-3,已知:线段m,n,∠α。

求作:△ABC,使AB=2m,AC=2n,∠A=∠α。

例4 如图13-4-5,已知:线段a和∠α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在射线B N上截取BA= c, (3)连接AC
已知三角形的两角及它们的夹边,求作三角形
已知:∠α,∠β,线段c,
α
β
c
求作△ABC,使∠A=∠α,∠B=∠β,AB= c
剪下各自所作的三A角S形A和:两同角伴及比它较看们是的否夹全边等对?应 能说出全等的理由相吗等?的两个三角形全等
已知两角及一角的对边,你会作三角形吗
C、已知两锐角
D、已知一锐角及一直角边
如图,某人不小心把一块三角形的玻璃 打碎成三块,现在要到玻璃店去配一块 完全一样的玻璃,那么他最少要( )
A、带①去
B、带②去
C、带③去
D、带①和②去
③② ①
拓展练习
如图,在ABC中,BC=5厘米,AC=3 厘米, AB=3.5厘米,∠B=36°,∠C= 44°,请你选择适当数据,画与△ABC全等 的三角形(用三种方法画图,不写做法,但要 从所画的三角形中标出用到的数据)
A、2厘米、3厘米、5厘米 B、4厘米、4厘米、9厘米
C、1厘米、2厘米、 3厘米 D、2厘米、3厘米、4厘米
2、利用尺规不能唯一作出的三角形是( D )
A、已知三边
B、已知两边及夹角
C、已知两角及夹边 D、已知两边及其中一边的对角
3、利用尺规不能唯一作出的直角三角形是 ( C )
A、已知斜边及一条直角边 B、已知两条直角边
想一想: 你能用直尺和圆规找出一条线段的中点吗? 你能用直尺和圆规画出一个直角吗?
3.已知:∠AOB,求作∠A′O′B′,使 ∠A′O′B′=∠AOB
A
作法:
O
(1)做射线O′B′
B
(2)以O为圆心,任意长为半径画弧,交OA于D点,交OB于C点。
(3)以O′为圆心,OC长为半径画弧,交O′B′于C′点 。
(4)以C′为圆心,DC长为半径画弧,交前弧于D′点 。 (5)过D′做射线O′A′
则∠A′O′B′为所求作的角
4.已知∠α 、∠β ,求作∠ABC , 使∠ABC = ∠α + ∠β .
α
β
1.4作三角形
(尺规作图)
学习要点
1、会根据已知三角形的两边及其夹角作三角 形;(第30页)
2、会根据已知三角形的两角及其夹边作三角 形;会根据已知三角形的三边做三角形; (第31-32页)
尺规作图:
在几何作图中,我们把没有刻度 的直尺和圆规作图,简称尺规作图。
据说,为了显示谁的逻辑能力更 强,古希腊人限制了几何作图的工具, 结果一些普通的画图题让数学家思索 了2000多年。尺规作图特有的魅力, 使无数人沉湎其中。
尺规作图题:
1.作已知角的角平分线 A
O
B
2.作已知线段的中垂线
A
B
A
B
C
5厘米
曾经的世界难题: 尺规作图,把一个角三等分
拿破仑的题目: 只用圆规把一个圆四等分。
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
作法
已知三角形的三边求作三角形
a
已知:线S段SSa:,b三,c边对应相等cb的 求作:△ABC,两使B个C三=a角,A形C=全b,等AB.=c
(1)做线段BC=a
(2)以C为圆心, b为半径画弧
(3)以B为圆心, C为半径画弧两弧相交于点A (4)连接AB,AC
选一选
1、以下列线段为边能作三角形的是 ( D )
3、随堂练习、习题1.11第3题。(第31页)。
已知三角形的两边及其
夹角,求作三角形
已知:线段a, c, ∠α ,求作:△ABC,使BC= a,
AB= c, ∠ABC =∠α
E
a
c
a
D
作法与示范
N
作法
A E′
B
D′ )作∠MBN= ∠α (2)在射线B M上截取BC= a,
相关文档
最新文档