数字逻辑实验内容和芯片引脚图

合集下载

实验电路结构图及芯片引脚对应表

实验电路结构图及芯片引脚对应表

实验电路结构图及芯片引脚对应表NO.0实验电路结构图HEXPIO2PIO3PIO4PIO5PIO7PIO6D1D2D3D4D5D6D7D8D16D15D14D13D12D11数码1数码2数码3数码4数码5数码6数码7数码8S P E A K E R扬声器译码器译码器译码器译码器译码器译码器译码器译码器FPGA/CPLD PIO15-PIO12PIO11-PIO8PIO7--PIO2HEX 键1键2键3键4键5键6键7键8PIO47-PIO44PIO43-PIO40PIO39-PIO36PIO35-PIO32PIO31-PIO28PIO27-PIO24PIO23-PIO20PIO19-PIO16目标芯片附图2-2 实验电路结构图NO.0附图2-3 实验电路结构图NO.1附图2-4 实验电路结构图NO.2ʵÑéµç·½á¹¹Í¼NO.3ÒëÂëÆ÷ÒëÂëÆ÷ÒëÂëÆ÷ÒëÂëÆ÷ÒëÂëÆ÷ÒëÂëÆ÷ÒëÂëÆ÷ÒëÂëÆ÷D9D16D15D14D13D12D11D10D8D7D6D5D4D3D2D1PIO8PIO9PIO10PIO11PIO12PIO13PIO14PIO15S P E A K E RÑïÉùÆ÷12345678Ä¿±êоƬFPGA/CPLD PIO0PIO1PIO2PIO3PIO4PIO5PIO6PIO7¼ü1¼ü2¼ü3¼ü4¼ü5¼ü6¼ü7¼ü8PIO15-PIO8PIO47-PIO44PIO43-PIO40PIO39-PIO36PIO35-PIO32PIO31-PIO28PIO27-PIO24PIO23-PIO20PIO19-PIO16附图2-5 实验电路结构图NO.3附图2-6 实验电路结构图NO.4GNDPIO45PIO46513PS/2接口VCCJ74接PC 机串行通讯接口接口电路单片机接口电路235RS-232B412MHZA键复位P34P33P32X1X2P31P30P35RST GND12345678910VCCPIO11PIO12PIO13PIO14AT89C2051EU3P37P10P11P12P13P14P15P16P17VCC 11121314151617181920PIO15PIO24PIO25PIO26PIO27PIO28PIO29PIO30PIO317.2K P29->A14)27512(PIN30->VCC,PIN3->A15,PIN29->WE)628128(PIN30->VCC,PIN3->A14,RAM/ROMP29->WE)62256(PIN30->VCC,PIN3->A14,6264(PIN30->VCC,PIN29->WR)PIN30->A17,PIN3->A15,PIN29->A14)29C040(PIN31->WE,PIN1->A18,PIN3->A15,PIN29->A14)27040(PIN31->A18,PIN30->A17,PIN29->A14)27020(PIN30->A17,PIN3->A15,P29->A14)27010(PIN30->VCC,PIN3->A15,PIO40PIO41PIO42PIO43PIO44R78 200R77 200R76 20010548761413321 视频接口VGA J6A18/A19A18/A15/WE PIO49VCC SLA17RAM_ENVCC GND SLRAMPIO26PIO25PIO24PIO32PIO33PIO34PIO35PIO36PIO37PIO38PIO39PIO14PIO47PIO10PIO48PIO9PIO46PIO45PIO11PIO12PIO13PIO8PIO15PIO31PIO30PIO29PIO28PIO273231302928272625242322212019181716151413121110987654321VCC GND2708027040270202701027512272562764628128622566264VCC A17/VCC WR/A14A13A8A9A11OE A10CS1D7D6D5D4D3GND D2D1D0A0A1A2A3A4A5A6A7A12A14(A15)A1610K VCCVR1PIO31PIO29PIO30PIO28PIO27PIO26PIO25PIO24131415164D7D6D5D4D35D26D1D07PIO37+5JP251pFC27JP2(COMP)COMP LM311VCC10K -12+124823TL082/1AIN0AOUT1021035.1KR72765TL082/2841+12-12滤波0滤波1FITCOMMEU2DAC0832118171032WR1FB93211IOUT1IOUT212/CS WR2XFER A GND D GNDVREF8VCC 20VCCJP2(1/2,3/4)D1PIO8D2D3D4D5D6D7D8PIO9PIO10PIO11PIO12PIO15PIO14PIO13实验电路结构图NO.5S P E A K E R扬声器FPGA/CPLD 目标芯片12345678D16D15D14D13D12D11D10D9PIO47-PIO44PIO43-PIO40PIO39-PIO36PIO35-PIO32PIO31-PIO28PIO27-PIO24PIO23-PIO20PIO19-PIO16译码器译码器译码器译码器译码器译码器译码器译码器PIO15-PIO8PIO0PIO1PIO2PIO3PIO4PIO5PIO6PIO7键1键2键3键4键5键6键7键8P I O 8J P 2(5/6)P I O 8(23)(24)1216272610C L O C K 750K H Z A F I T102C 30103C 29P I O 37P I O 35C O M MC O M PA D E O C A D E NJ P 22018161412108642191715131197531021+5V A I N 0A I N 1r e f (-)r e f (+)I N -1I N -06922257171415818192021E U 1A D C 0809P I O 16P I O 17P I O 18P I O 19P I O 20P I O 21P I O 22P I O 23P I O 32P I O 33P I O 35P I O 34m s b 2-12-22-32-42-52-62-7l s b 2-8E O C A D D -A A D D -B A D D -C A L E E N A B L E S T A R T附图2-7 实验电路结构图NO.5附图2-8 实验电路结构图NO.6D16D15D14D13D12D11D9D8PIO47D7PIO46D6PIO45D5PIO44D4PIO43D3PIO42D2PIO41PIO40D1NO.7实验电路结构图S P E A K E R扬声器FPGA/CPLD 目标芯片12345678PIO0PIO2PIO3PIO4PIO5PIO6PIO7单脉冲单脉冲单脉冲键1键2键3键4键5键6键7键8PIO47-PIO40PIO39-PIO36PIO35-PIO32PIO31-PIO28PIO27-PIO24PIO23-PIO20PIO19-PIO16译码器译码器译码器译码器译码器译码器附图2-9 实验电路结构图NO.7附图2-10 实验电路结构图NO.8附图2-11 实验电路结构图NO.9附图2-12 实验电路结构图NO.BD22D21D20D19D18D17VCC87654321SDA (PIO79)SCL (PIO78)24C01GNDVCCPIO77PIO766PS/254321GNDVCCD-(PIO76)D+(PIO77)SLAVEUSB GND键12键11键9键1010K X 4PIO75PIO74PIO72PIO73VCCP I O 71P I O 76P I O 77P I O 70P I O 69P I O 68数码14数码13数码12数码11数码10数码9PIO67PIO66PIO65PIO64PIO63PIO62PIO61PIO60hg f e d c b a 888888附图2-13 实验电路结构图COM万能接插口与结构图信号/与芯片引脚对照表附录二:《EDA技术》部分实验参考源程序一、8位硬件加法器设计程序如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ADDER8 ISPORT ( CIN : IN STD_LOGIC;A, B : IN STD_LOGIC_VECTOR(7 DOWNTO 0);S : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);COUT : OUT STD_LOGIC );END ADDER8;ARCHITECTURE behav OF ADDER8 ISSIGNAL SINT : STD_LOGIC_VECTOR(8 DOWNTO 0);BEGINSINT <= ('0'& A) + B + CIN ;S <= SINT(7 DOWNTO 0); COUT <= SINT(8);END behav;选择实验电路NO.1验证此加法器的功能。

0级《数字逻辑电路》实验指导书 1

 0级《数字逻辑电路》实验指导书 1

课程名称:数字逻辑电路实验指导书课时:8学时集成电路芯片一、简介数字电路实验中所用到的集成芯片都是双列直插式的,其引脚排列规则如图1-1所示。

识别方法是:正对集成电路型号(如74LS20)或看标记(左边的缺口或小圆点标记),从左下角开始按逆时针方向以1,2,3,…依次排列到最后一般排在左上端,接地一脚(在左上角)。

在标准形TTL集成电路中,电源端VCC,7脚为GND。

若集端GND一般排在右下端。

如74LS20为14脚芯片,14脚为VCC成芯片引脚上的功能标号为NC,则表示该引脚为空脚,与内部电路不连接。

二、TTL集成电路使用规则1、接插集成块时,要认清定位标记,不得插反。

2、电源电压使用范围为+4.5V~+5.5V之间,实验中要求使用Vcc=+5V。

电源极性绝对不允许接错。

3、闲置输入端处理方法(1)悬空,相当于正逻辑“1”,对于一般小规模集成电路的数据输入端,实验时允许悬空处理。

但易受外界干扰,导致电路的逻辑功能不正常。

因此,对于接有长线的输入端,中规模以上的集成电路和使用集成电路较多的复杂电路,所有控制输入端必须按逻辑要求接入电路,不允许悬空。

(也可以串入一只1~10KΩ的固定电阻)或接至某一固定(2)直接接电源电压VCC电压(+2.4≤V≤4.5V)的电源上,或与输入端为接地的多余与非门的输出端相接。

(3)若前级驱动能力允许,可以与使用的输入端并联。

4、输入端通过电阻接地,电阻值的大小将直接影响电路所处的状态。

当R ≤680Ω时,输入端相当于逻辑“0”;当R≥4.7KΩ时,输入端相当于逻辑“1”。

对于不同系列的器件,要求的阻值不同。

5、输出端不允许并联使用(集电极开路门(OC)和三态输出门电路(3S)除外)。

否则不仅会使电路逻辑功能混乱,并会导致器件损坏。

6、输出端不允许直接接地或直接接+5V电源,否则将损坏器件,有时为了使后,一般取R=3~5.1K 级电路获得较高的输出电平,允许输出端通过电阻R接至VccΩ。

数字逻辑实验1(1)详解

数字逻辑实验1(1)详解
计算机硬件系列实验1
数字逻辑实验
评分情况
平时成绩30%
预习10% 实验报告10% 实验操作(现场评分)10%
操作考试统认识、基本逻辑门逻辑实验
一、实验目的
熟悉dvcc实验仪、数字万用表的使用;熟 悉TTL中、小规模集成电路的外型、管脚 和使用方法;熟悉自锁紧导线的使用。
74**64系列
DM74S64N 74F64 HD74S64P MC74F64N
数字逻辑实验
附件1 实验所用芯片详细型号
74**28系列
SN74LS28N
数字逻辑实验
1A 1 1Y 2 2A 3 2Y 4 3A 5 3Y 6 GND 7
14 VCC 13 6A
12 6Y 11 5A 10 5Y 9 4A 8 4Y
74LS04 74HC04、
74HCT04 引脚图
注 : 图 中 A 、 (B) 为 输 入 脚 ,Y 为 输 出 脚,VCC接5V电源,GND接地
数字逻辑实验
数字逻辑实验
六、实验连线及实验结果记录
4.系统认识实验
数字逻辑实验
调节实验序 号
调整实验自 动运行快慢
单步运行某 实验
KC2、KC1、 调节“+”、
KC0
“-”按钮
停止 任意
序号
KC2、KC1、 调节“+”、
KC0
“-”按钮
停止 任意
周期
KC2、KC1、 调节“+”
KC0 运行 单步 任意
初始实验序号及实验序号 前5次变动
初始实验周期及前5次变动
观察序号为实验1的单步运 行情况,记录其LS(输入) 灯、LR(输出)灯变化情 况
连续运行某 实验

数字逻辑实验指导书(multisim)

数字逻辑实验指导书(multisim)

实验一集成电路的逻辑功能测试一、实验目的1、掌握Multisim软件的使用方法。

2、掌握集成逻辑门的逻辑功能。

3、掌握集成与非门的测试方法。

二、实验原理TTL集成电路的输入端和输出端均为三极管结构,所以称作三极管、三极管逻辑电路(Transistor -Transistor Logic )简称TTL电路。

54 系列的TTL电路和74 系列的TTL电路具有完全相同的电路结构和电气性能参数。

所不同的是54 系列比74 系列的工作温度范围更宽,电源允许的范围也更大。

74 系列的工作环境温度规定为0—700C,电源电压工作范围为5V±5%V,而54 系列工作环境温度规定为-55—±1250C,电源电压工作范围为5V±10%V。

54H 与74H,54S 与74S 以及54LS 与74LS 系列的区别也仅在于工作环境温度与电源电压工作范围不同,就像54 系列和74 系列的区别那样。

在不同系列的TTL 器件中,只要器件型号的后几位数码一样,则它们的逻辑功能、外形尺寸、引脚排列就完全相同。

TTL 集成电路由于工作速度高、输出幅度较大、种类多、不易损坏而使用较广,特别对我们进行实验论证,选用TTL 电路比较合适。

因此,本实训教材大多采用74LS(或74)系列TTL 集成电路,它的电源电压工作范围为5V±5%V,逻辑高电平为“1”时≥2.4V,低电平为“0”时≤0.4V。

它们的逻辑表达式分别为:图1.1 分别是本次实验所用基本逻辑门电路的逻辑符号图。

图1.1 TTL 基本逻辑门电路与门的逻辑功能为“有0 则0,全1 则1”;或门的逻辑功能为“有1则1,全0 则0”;非门的逻辑功能为输出与输入相反;与非门的逻辑功能为“有0 则1,全1 则0”;或非门的逻辑功能为“有1 则0,全0 则1”;异或门的逻辑功能为“不同则1,相同则0”。

三、实验设备1、硬件:计算机2、软件:Multisim四、实验内容及实验步骤1、基本集成门逻辑电路测试 (1)测试与门逻辑功能74LS08是四个2输入端与门集成电路(见附录1),请按下图搭建电路,再检测与门的逻辑功能,结果填入下表中。

常用逻辑门电路的研究(一)A

常用逻辑门电路的研究(一)A

实验内容
注意事项
集电极开路门
实验目的
实验原理
实验内容
注意事项
74LS03 引脚图
几种常用逻辑门的逻辑符号比较示例 标准 非门 与门 国标 或门 与非门 异或门
国外
三、实验内容
1、信号波形的测试
用信号源产生2KHZ方波,调整幅度,用示 方波,调整幅度, 用信号源产生
实验目的
波器实测峰峰值为 ,画出此波形。 波器实测峰峰值为4V,画出此波形。再用信号 实测峰峰值 源产生2KHZTTL信号,画出此波形,并与方波 TTL信号 画出此波形, 信号, 源产生 信号比较,得出相应结论。 信号比较,得出相应结论。
实验目的
这两个波形图,标出信号周期、 这两个波形图,标出信号周期、幅度和两信号 的相位关系。 的相位关系。
实验原理
实验内容
注意事项
四、注意事项
若出现故障,检测时因遵循以下步骤: 若出现故障,检测时因遵循以下步骤:
实验目的
1、检查电源及各使能端。 、检查电源及各使能端。 2、检查各集成块输入输出是否正常。 、检查各集成块输入输出是否正常。 (一级一级检查到集成块引脚,注意 一级一级检查到集成块引脚, 不要造成引脚短路。) 不要造成引脚短路。)
注意事项
二、实验原理
CMOS常用门电路 1. CMOS常用门电路
实验目的
四2 输入或非门
实验原理
实验内容
注意事项
CD4001 引脚图 F=A+B
四2 输入与非门
实验目的
实验原理
实验内容
注意事项
CD4011 引脚图
F= AB
六反相器
实验目的
实验原理
实验内容

数字电路实验报告-组合逻辑电路(1)—仪器的使用及竞争与险象的观测

数字电路实验报告-组合逻辑电路(1)—仪器的使用及竞争与险象的观测

数字逻辑电路实验实验报告学号:班级:姓名:实验1 组合逻辑电路(1)——仪器的使用和竞争险象的观测一实验内容1.1示波器测量探头补偿信号1.2示波器测量信号源输出的正弦波信号1.3示波器测量信号源输出的方波信号1.4测量示波器的带宽1.57400功能测试1.6竞争与险象的观测二实验原理2.1示波器的基本使用示波器是一种可显示电信号波形的测量工具,可按照显示信号的方式分为数字示波器和模拟示波器两类。

常用的数字示波器通过对模拟信号进行AD转换、采样、存储进而显示波形。

实验中使用的示波器为GDS2202E,有两个输入通道,带宽200MHz,其面板各分区的主要功能如下:1.垂直控制区:包含两通道的开关按钮、幅值量程调节旋钮、参考电平调节旋钮等,可调节两通道的垂直尺度和波形零点高度。

2.水平控制区:主要含时基调节旋钮和触发发位置调节旋钮,可以调节波形显示的时间尺度和触发点的水平位置。

3.触发控制区:可以配合菜单键调节触发电平、触发方式、触发边沿等,可选择自动或正常触发模式,或选择上升、下降或双边沿触发,可实现单次触发功能。

4.菜单区:可设置示波器耦合方式(交、直流和地)、带宽、幅值倍率等参数。

另外,示波器还提供了光标测量、信号参数测量等其他功能。

示波器探头有分压功能,可实现对输入信号的10:1幅值变换,借以实现更大的量程。

使用示波器观测稳定信号时,可使用Autoset键使波形稳定,或自行调节幅值、时基、触发等参数使波形稳定。

观察信号暂态时,则可使用单次触发模式,调节合适的触发参数以实现信号捕捉。

2.2信号源的基本使用信号发生器可用于以一定参数生成波形。

实验中使用的信号发生器为SDG2402X,可生成正弦波、方波、噪声波等常见波形和各种调制波形,有两个输出通道。

使用时,按下Waveforms键选择波形,之后可使用触摸屏幕、数字键、旋钮等配合方向键设置各种波形参数,之后按下对应通道的输出键即可使能输出。

2.3实验中粗略测量示波器带宽的原理分析一切实际系统均有上限截止频率,示波器也不例外。

数字逻辑实验报告 【个人完成版】

数字逻辑实验报告 【个人完成版】
掌握了上述的分析方法和设计方法,即可对一般电路进行分析、设计,从而可以正确地使用被分析的电路以及设计出能满足逻辑功能和技术指标要求的电路。
3)全加器/全减器相对半加器/半减器而言,考虑了进位/借位的情况,因此,输入端分别有三个,An(被加数/被减数),Bn(加数/减数)和Cn-1(低一位的进位/借位)。
1
0
0

0
1
1
0

1
0
0
0

1
0
1
0

1
1
0
0

1
1
1
0

0
0
0
1

0
0
1
1

0
1
0
1

0
1
1
1

1
0
0
1

1
0
1
1

1
1
0
1

1
1
1
1

【实验结论】
74153双4选1数据选择器提供了很方便的数据选择,很好的验证了3、4人判决电路。
通过对数值比较器和数据选择器的测试,设计和实现,对集成电路数值比较器和数据选择器有了一定的熟悉,为进一步借助数值比较器和数据选择器的实验打下了基础。
3)用7400、7404、7432实现上题的多数表决器。
由:
可以设计电路图如下:
P1
P2
Y
P3Y
思考:如何设计一个2位数值比较器电路?
设计一个二位数值比较器
真值表:
A0
B0
A1
B1

数字电路与数字逻辑实验指导书-DE2版本

数字电路与数字逻辑实验指导书-DE2版本

数字电路与数字逻辑实验指导书目录实验一:Quartus II软件操作 (3)实验二:数据选择器和译码器功能验证 (15)实验三:数据选择器和译码器应用 (18)实验四:触发器的应用 (20)实验五:计数器的功能验证 (22)实验六:计数器的应用 (23)实验七:寄存器的功能验证 (24)附录:................................................................................ 错误!未定义书签。

实验一:Quartus II软件操作实验目的和要求:1、了解并掌握QuartusII软件的使用方法。

2、了解并掌握仿真(功能仿真及时序仿真)方法及验证设计正确性。

3、了解并掌握EDA QuartusII中的原理图设计方法。

实验内容:本实验通过简单的例子介绍FPGA开发软件QuartusII的使用流程,包括图形输入法的设计步骤和仿真验证的使用以及最后的编程下载。

图形编辑输入法也称为原理图输入设计法。

用Quartus II的原理图输入设计法进行数字系统设计时,不需要了解任何硬件描述语言知识,只要掌握数字逻辑电路基本知识,就能使用QuartusII提供的EDA平台设计数字电路或系统。

QuartusII的原理图输入设计法可以与传统的数字电路设计法接轨,即把传统方法得到的设计电路的原理图,用EDA平台完成设计电路的输入、仿真验证和综合,最后编程下载到可编程逻辑器件(FPGA/CPLD)或专用集成电路(ASIC)中。

实验步骤:在QuartusII中通过原理图的方法,使用与门和异或门实现半加器。

第1步:打开QuartusII软件。

第2步:新建一个空项目。

选择菜单File->New Project Wizard,进入新建项目向导。

如下图所示,填入项目的名称“hadder”,默认项目保存路径在Quartus安装下,也可修改为其他地址,视具体情况而定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字逻辑实验计划及要求(附录:实验所用芯片引脚图及功能说明)实验一逻辑门功能验证及使用电路实验
1.实验目的:
(1)了解并掌握基本逻辑门电路的逻辑功能;
(2)熟悉基本逻辑门电路的使用;
(3)熟悉三态门和OC门电路的使用;
(4)学习实验台的使用方法。

2.实验所用器件:
四二输入端和非门组件2片,型号为:74LS00
四二输入端和非门(OC)组件1片,型号为:74LS01
四二输入端或非门组件1片,型号为:74LS02
二和或非门组件1片,型号为:74LS51
四异或门组件1片,型号为:74LS86
四三态门组件1片,型号为:74LS125
排电阻(上拉电阻)
3.预习要求:
(1)查出实验用器件引脚功能,画出实验电路图;
(2)复习TTL各逻辑门电路的工作原理;
(3)按实验内容要求设计电路。

4.实验内容
(1)测试实验所用器件的逻辑功能,填写真值表。

(2)用一片74LS00实现一2输入端异或门的功能。

(3)用一片74LS01及排电阻实现芯片74LS51的功能,做(AB+CD)’一组。

(4)用三态门组成两路总线传输电路。

5.实验要求
记录各实验观察结果并和理论所得各真值表进行比较。

6.思考
任何一逻辑电路均可分别用和非门,或非门,和或非门实现,为什么?
实验二组合电路功能验证及使用电路实验
1.实验目的:
(1)熟悉常用组合逻辑芯片的功能;
(2)掌握组合逻辑电路的设计方法。

2.实验所用器件
3-8线译码器一片,型号为:74LS138
8路数据选择器一片,型号为:74LS151
4位数码比较器一片,型号为:74LS85
四输入端和非门一片,型号为:74LS20
3.实验内容
(1)74LS85,74LS151的功能。

(2)用一片74LS85及一片74LS00组成5位二进制数值比较器。

(3)用74LS138和74LS20组成一位全加器。

(4)用一片74LS151实现三人多数表决器。

4.实验要求
记录各实验观察结果并和各器件功能表和一位全加器真值表进行比较。

5.思考
分别用和非门,或非门,和或非门设计一位全加器,并设计实验方案。

实验三触发器功能验证及使用电路实验
1.实验目的
(1)熟悉常用触发器的功能及使用;
(2)熟悉时序逻辑电路的状态分析。

2.实验所用器件
D触发器二片,型号为:74LS74
JK触发器二片,型号为:74LS112
和非门一片,型号为:74LS00
3.实验内容及要求
(1)验证74LS74,74LS112的逻辑功能,填写功能表,注意观察上升,下降沿触发方式。

(2)用D触发器和一片74LS00组成JK触发器,用JK触发器和和非门组成D触发器。

(3)由D触发器分别构成四位循环和扭循环计数器,观察电路状态,找出有效循环状态,并和理论分析进行比较。

4.思考
实验中计数器电路的初始状态对电路工作有何影响,时序电路自启动的意义。

实验四时序电路功能验证及使用电路实验
1.实验目的
(1)验证四位二进制加法计数器74LS161的逻辑功能;
(2)熟悉中规模集成计数器功能,学会使用七段字形译码器及共阴极七段LED数字显示器并构成实际电路。

2.实验所用器件
四位二进制加法计数器1片,型号为:74LS161
七段字形译码器1片,型号为:74LS48
共阴极七段LED数字显示器1只
3.实验内容及要求
(1)验证计数器(74LS161)的逻辑功能,填写功能表。

(2)用计数器(74LS161)、译码器(74LS48)、显示器(LED514R)组计数译码显示电路。

分别用复位法和置位法设计一位BCD码计数显示电路。

4.思考
如何把上述电路设计成一数字频率计。

实验五串行加法器的设计
1.实验目的
熟悉并掌握用中规模集成电路设计逻辑电路的方法。

2.实验所用器件
4位移位寄存器组件2片,型号为:74LS194
四位并行加法器组件1片,型号为:74LS283
D触发器1片,型号为:74LS74
3.实验内容及要求
(1)验证4位双向移位寄存器寄存器(74LS194)的逻辑功能,填写功能表。

(2)如下串行加法器框图设计电路图实现四位二进制的加法。

A3 A2 A1 A0
B3 B2 B1 B0 A i C i+1
B i FA
C i S i
D
Q CP
4位被加数移位寄存器
4位加数移位寄存器R
CP
为了清
楚地看到逐
位相加情况,
时钟脉冲应
采用单脉冲,
注意电路清
“0”作用。

(3)任

给定X,Y,给电路加入4个单脉冲,观察电路工作情况。

4.思考
4个脉冲后,X+Y的和存放在A中,X+Y的最高位即进位存放在何处。

串行加法器的加法速度如何计算。

实验六汽车尾灯控制器的设计
1、实验目的
掌握用中规模集成电路设计控制器逻辑电路的方法。

2、实验所用器件
四异或门组件1片,型号为:74LS86
四和非门2片,型号为:74LS00
3-8线译码器1片,型号为:74LS138
D触发器1片,型号为:74LS74
3、实验内容及要求:设计一个汽车尾灯控制器,实现对汽车尾灯显示状态的控制。

在汽车尾部左右两侧各有3个指示灯(用发光二极管模拟),根据汽车运行情况,指示灯具有4种显示模式:1)汽车正向行驶时,所有指示灯处于熄灭状态。

2)汽车右转弯时,右侧的3个灯按右循环顺序点亮。

3)汽车左转弯时,左侧的3个灯按左循环顺序点亮。

4)汽车临时刹车时,左右两侧的指示灯同时处于闪烁状态。

(有关电路参看欧阳星明主编《数字逻辑(第三版)》P298,9.5.1,并用D触发器设计三进制计数器)
实验七简易跑表的设计
1、实验目的
掌握数字系统设计的一般方法。

2、实验所用器件
根据实验环境提供的器件自行设计。

3、实验内容及要求
实际模拟码表的功能,即一键控制清零,计时,停止计时并显示读数。

实验八步进电机控制器的设计
1、实验目的
掌握数字系统设计的一般方法。

2、实验所用器件
根据实验环境提供的器件自行设计。

3、实验内容及要求
设计步进电机控制器控制实验台上的四相步进电机要求有正反转控制和启停控制。

本实验课程共有32学时的实验,分八次进行,每次4学时。

任课教师:沈祖斌
实验预习及实验报告的要求:
0.每次实验必须书写实验预习及实验报告。

1.实验前预习准备的数据、电路、图表、及设计思想(实验预习报告)。

2.实验过程的调试情况、观察记录。

3. 把实验结果和理论结果进行对比分析。

4.在实验报告中总结实验中出现的问题及解决方法。

附录:实验所用芯片引脚图及功能说明1.74LS00 (2输入端四和非门)
2. 74LS 01 (集电极开路2输入端四和非门(OC))
3. 74LS 02 (2输入端四或非门)
4. 74LS20(4输入双正和非门)
5. 74LS32(2输入四正或门)
6.74LS51(和或非门)
7.74LS48(BCD-七段译码/ 驱动器,注:本实验台上48七段译码器不显示6上面和9下面一横。


8.74LS74(正沿触发双D触发器-带预置端和清零端)
9.74LS85(4位幅度比较器)
10.74LS86(2输入四异或门)
11.74LS112(负沿触发双J-K触发器)
12.74LS125(四总线缓冲门(三态输出))
13.74LS161(同步四位计数器(二进制,异步清除))
14.74LS194(4位双向通用移位寄存器)
15.74LS283(4位二进制全加器)
16.74LS138(3-8线译码器)。

相关文档
最新文档