低电阻测量实验报告

合集下载

低电阻的测量实验报告

低电阻的测量实验报告

一、实验目的1. 了解等效的物理研究方法;2. 掌握用伏安法测量低电阻的方法;3. 学习用双电桥测量低电阻的原理及方法;4. 测量铜棒和铝棒的电阻率。

二、实验原理1. 伏安法测低电阻的原理:通过测量通过低电阻的电流和低电阻两端的电压,根据欧姆定律计算出低电阻的阻值。

2. 双电桥测量低电阻的原理:利用惠斯通电桥的原理,通过调节电桥中的电阻,使得电桥达到平衡,从而计算出低电阻的阻值。

三、实验器材1. 电阻箱2. 电流表3. 毫安表4. 标准电阻5. 检流计6. 螺旋测微器7. 待测低电阻8. 滑线变阻器9. 开关及导线10. 直尺四、实验步骤1. 用伏安法测量铜棒和铝棒的电阻:(1)将铜棒和铝棒分别接入电路,确保连接良好。

(2)闭合开关,调节滑动变阻器,使电路中的电流稳定。

(3)记录通过铜棒和铝棒的电流值I,以及两端的电压值U。

(4)根据欧姆定律,计算出铜棒和铝棒的电阻值R。

2. 用组装双电桥测量铜棒和铝棒的电阻:(1)按照电路图连接双电桥,确保连接良好。

(2)闭合开关,调节滑动变阻器,使电桥达到平衡。

(3)记录电桥中各个电阻的阻值,以及待测低电阻的阻值。

(4)根据双电桥的原理,计算出铜棒和铝棒的电阻值。

3. 测量铜棒和铝棒的电阻率:(1)将铜棒和铝棒分别放入电阻率测量仪中。

(2)按照仪器操作规程,测量铜棒和铝棒的电阻率。

五、实验数据及处理1. 伏安法测量数据:铜棒:I = 0.5A,U = 1.2V;R = U/I = 2.4Ω铝棒:I = 0.6A,U = 1.5V;R = U/I = 2.5Ω2. 双电桥测量数据:铜棒:R1 = 10Ω,R2 = 20Ω,R3 = 30Ω,Rx = 2.4Ω铝棒:R1 = 15Ω,R2 = 25Ω,R3 = 35Ω,Rx = 2.5Ω3. 电阻率测量数据:铜棒:ρ = 1.7×10^-8Ω·m铝棒:ρ = 2.8×10^-8Ω·m六、实验结果与分析1. 通过伏安法和双电桥两种方法测得的铜棒和铝棒的电阻值基本一致,说明实验方法可行。

用开尔文电桥测量低电阻实验报告

用开尔文电桥测量低电阻实验报告

用开尔文电桥测量低电阻实验报告开尔文双电桥测低电阻开尔文双电桥测低电阻一、前言电阻是电路的基本元件之一,电阻值的测量是基本的电学测量。

电阻的分类方法很多,通常按种类划分称碳膜电阻、金属电阻、线绕电阻等:按特性划分称固定电阻、可变电阻、特种电阻(光敏电阻,压敏电阻,热敏电阻)等;按伏安特性曲线(电压~电流曲线)的曲直分为线性电阻和非线性电阻(典型非线性电阻有白炽灯泡中的钨丝、热敏电阻、光敏电阻、半导体二极管和三极管等);按阻值大小分为低电阻、中电阻和高电阻。

常用电阻属于中电阻,其测量方法很多,多数也为大家所熟知。

而随着科学技术的发展,常常需要测量高电阻与超高阻(如一些高阻半导体、新型绝缘材料等),也还需要测量低电阻与超低阻(如金属材料的电阻、接触电阻、低温超导等),对这些特殊电阻的测量,需要选择合适的电路,消除电路中导线电阻、漏电电阻、温度等的影响,才能把误差降到最小,保证测量精度。

电桥法是一种用比较法进行测量的方法,它是在平衡条件下将待测电阻与标准电阻进行比较以确定其待测电阻的大小。

电桥法具有灵敏度高、测量准确加上方法巧妙,使用方便、对电源稳定性要求不高等特点,已被广泛地应用于电工技术和非电量电测中。

二、实验目的1. 掌握平衡电桥的原理——零示法与电压比较法;2. 了解双电桥测低电阻的原理及对单电桥的改进;3. 学习使用QJ19型单双电桥、电子检流计;4. 学习电桥测电阻不确定度的计算,巩固数据处理的一元线性回归法。

三、实验原理(1)惠斯通电桥:惠斯通电桥是惠斯通于1843年提出的电桥电路。

它由四个电阻和检流计组成,RN为精密电阻,RX为待测电阻(电路图如图1)。

图1 接通电路后,调节R1、R2和RN ,使检流计中电流为零,电桥达到平衡,此时有RX=RIRN/R2。

通过交换测量法(交换RN与RX的位置,不改变RI、R2)得RX=(2)惠斯通电桥测低电阻的特殊矛盾:惠斯通电桥(单电桥)测量的电阻,其数值一般在10Ω~Ω之间,为中电阻。

双臂电桥测量低电阻实验报告

双臂电桥测量低电阻实验报告

双臂电桥测量低电阻实验报告实验报告
实验目的:通过双臂电桥的测量方法,测定低电阻值。

实验原理:低电阻值的测量需要采用高灵敏度的电桥方法。


桥测量法是将待测电阻连接入一个电桥电路中,通过改变电桥电
路中的电阻值,使其成为平衡状态,从而得到电桥电路中待测电
阻的阻值。

双臂电桥是一种特殊的电桥,它可以精确测量低电阻值。

实验器材:双臂电桥、标准电阻、待测电阻、万用表、导线等。

实验步骤:
1. 将双臂电桥连接好,通电后调整电桥的灵敏度和零点位置。

2. 加入标准电阻,调节滑动变阻器,使电桥达到平衡状态。


录标准电阻的阻值。

3. 拆换标准电阻,加入待测电阻,并调整滑动变阻器,使电桥
达到平衡状态。

记录待测电阻的阻值。

4. 重复步骤2和3,进行多次测量,保证结果的准确性。

实验结果:我们进行了10次测量,得到的待测电阻阻值如下:
0.13Ω,0.12Ω,0.14Ω,0.12Ω,0.11Ω,0.13Ω,0.12Ω,0.12Ω,0.14Ω,0.11Ω
这些测量值的平均值为0.124Ω。

因此我们认为待测电阻的阻值
为0.124Ω。

实验结论:通过双臂电桥的测量方法,我们成功地测定了低电
阻值,并得到了0.124Ω的结果。

本实验结果总体精确度较高,结
果可信。

双电桥测低电阻实验报告

双电桥测低电阻实验报告

一、实验目的1. 理解双电桥的原理和特点,掌握双电桥的使用方法。

2. 掌握测量低电阻的特殊性,学会消除接触电阻和导线电阻对测量的影响。

3. 通过实验,验证双电桥测量低电阻的准确性。

二、实验原理双电桥是一种用于测量低电阻的电路,其原理是在电路中引入一个已知的标准电阻Rn和一个待测电阻Rx,通过调节电桥中的电阻,使电桥达到平衡状态。

在平衡状态下,根据基尔霍夫定律,可得到以下方程:I1R1 = I2R2I1R1 + I2R3 = I3Rx其中,I1、I2、I3分别为电桥中三个电流,R1、R2、R3为电桥中的电阻。

通过测量电流和电阻的值,可以计算出待测电阻Rx的值。

三、实验仪器与设备1. 双电桥实验装置2. 标准电阻Rn3. 待测电阻Rx4. 毫伏表5. 电流表6. 电源7. 导线8. 开关四、实验步骤1. 按照电路图连接双电桥实验装置,确保连接正确无误。

2. 调节电源电压,使电流表读数在合适的范围内。

3. 调节电桥中的电阻,使毫伏表读数为零,即电桥达到平衡状态。

4. 记录此时电桥中的电阻值。

5. 将待测电阻Rx接入电路,再次调节电桥中的电阻,使毫伏表读数为零,即电桥达到平衡状态。

6. 记录此时电桥中的电阻值。

7. 根据实验原理,计算出待测电阻Rx的值。

五、实验数据与结果1. 标准电阻Rn的阻值为10Ω,待测电阻Rx的阻值为5Ω。

2. 电桥平衡时,毫伏表读数为0.1V,电流表读数为0.1A。

3. 电桥平衡时,电桥中的电阻值分别为:R1=5Ω,R2=10Ω,R3=10Ω。

4. 根据实验原理,计算出待测电阻Rx的值为:Rx = Rn (I1R1 + I2R3) / I3 = 5Ω。

六、实验结果分析1. 实验结果显示,双电桥可以准确地测量低电阻,误差较小。

2. 在实验过程中,需要注意调节电桥中的电阻,使电桥达到平衡状态。

3. 实验过程中,应保持电流和电压稳定,以减小误差。

七、实验结论通过本次实验,我们掌握了双电桥的原理和特点,学会了双电桥的使用方法。

5双臂电桥测低电阻实验报告

5双臂电桥测低电阻实验报告

5双臂电桥测低电阻实验报告实验目的:本实验旨在通过利用双臂电桥测量低电阻,熟悉双臂电桥的使用方法,掌握测量低电阻的技术。

实验仪器与材料:1.双臂电桥:包括滑动电阻丝、电池组、准直器等。

2.标准电阻箱:用于提供已知电阻值的标准电阻。

3.低电阻样品:用于测量低电阻值的样品。

实验原理:双臂电桥是一种测量电阻的电桥,由滑动电阻丝和标准电阻箱组成。

在使用时,将待测低电阻样品连接在双臂电桥的一臂上,调节另一臂上的滑动电阻丝,使电桥平衡,通过读取电桥两臂上的电阻值来计算待测低电阻样品的电阻值。

实验步骤:1.将滑动电阻丝调至中心位置,然后接通电源,调节电源电压,使电流不超过0.1A。

2.将标准电阻箱和待测低电阻样品按照电路图连接好,将其连接在电桥一臂上,调整滑动电阻丝的位置,使电桥达到平衡状态。

3.记录下电桥两臂上的滑动电阻丝位置和电阻箱上的电阻值。

4.逐步增大待测低电阻样品的电阻值,重复步骤3,直至滑动电阻丝达到端点位置,并记录下所对应的电流和电桥两臂上的电阻值。

5.根据实验数据计算出低电阻样品的电阻值。

实验数据记录与处理:实验数据如下表所示:序号,滑动电阻丝位置(mm),电流(A),电阻箱电阻值(Ω),电桥两臂电阻值(Ω)------,-----------------,---------,----------------,----------------1,3.5,0.08,5,102,6.2,0.08,10,203,8.7,0.08,20,404,11.5,0.08,40,805,14.5,0.08,80,160根据以上数据,计算出低电阻样品的电阻值为:1.通过第一组数据:R1/R2=R3/R4,5/R2=10/R4,R2=10Ω,R4=20Ω,所以R1=5Ω,R3=10Ω。

2.通过其他组数据同理可得:R1=40Ω,R3=80Ω。

3.所以低电阻样品的电阻值为40Ω。

实验结论:通过双臂电桥的测量,我们得到了低电阻样品的电阻值为40Ω。

低电阻的测量实验报告

低电阻的测量实验报告

低电阻的测量实验报告
实验目的:了解低电阻的测量原理与方法,掌握低电阻的测量技能,提高实验操作能力。

实验仪器:万用表、低电阻测量仪、标准电阻箱、电流源、导线等。

实验原理:低电阻的测量需要考虑接线电阻、电流源内阻等因素。

实验中采用四线法测量低电阻,即采用两对导线,一对用来传递电流,另一对用来测量电阻上的电压,以消除导线电阻的影响,提高测量精度。

实验步骤:
1.接线:将电流源的正负极分别与低电阻的两端相连;将低电阻的两端分别与低电阻测量仪的两个接头相连。

注意:使用四线法接线。

2.调节电流源:将电流源调至适当的电流值,建议在低电阻的额定电流范围内调节。

3.读取电压:读取低电阻上的电压值。

4.计算电阻:利用欧姆定律计算出低电阻的电阻值。

5.更换低电阻:更换低电阻,重复上述步骤。

实验结果:通过实验,我们成功地测量了不同电阻值的低电阻,获得了比较准确的测量结果,并对低电阻的测量原理与方法有了更深入的了解。

结论:低电阻的测量需要考虑接线电阻、电流源内阻等因素,采用四线法可以消除导线电阻的影响,提高测量精度。

在实验中,我们
可以根据电阻值的大小选择合适的电流值和测量仪器,较小的电阻值需要较大的电流值和精度更高的测量仪器。

用双臂电桥测低电阻实验报告

用双臂电桥测低电阻实验报告

用双臂电桥测低电阻实验报告1. 实验背景嘿,大家好!今天我们要聊聊怎么用双臂电桥来测量低电阻。

听到这里,你是不是有点懵?别急,慢慢来。

双臂电桥,这名字听起来有点高深莫测,其实它就是一种可以测量电阻的工具。

你可以把它想象成一个“电阻探测器”,专门用来找出电阻的“真实身份”。

这就像在玩“找茬”游戏,只不过找的是电阻。

简单来说,我们用这个玩意儿就是为了搞清楚一个电阻究竟有多小,不让它“藏匿”在我们视线之外。

2. 实验器材和准备2.1 器材清单首先,你得准备好实验的“战斗装备”。

咱们需要一台双臂电桥,这玩意儿就像是测量电阻的“秘密武器”。

其次,得有标准电阻,这些是已知电阻值的电阻,用来校准电桥。

还有导线、开关等配件,别忘了准备个电池供电,这样才能让电桥“活过来”。

最后,还需要一个小工具——电流表,来测量电流的强弱,确保我们能精准操作。

2.2 实验准备实验之前,得先把实验环境准备好。

把双臂电桥放在稳固的桌子上,确保它不会随便晃悠。

接着,连接好电池、导线,确保电流能够顺畅流通。

然后,把标准电阻接上,检查一下所有连接点是否牢靠。

试验前别忘了校准电桥,这就像给它“加油”,让它在最佳状态下工作。

3. 实验步骤3.1 测量过程好啦,正式开始啦!首先,调节双臂电桥的各个旋钮,使其指针指向零。

这一步就像调音师调整乐器,确保它们的状态完美。

然后,把待测电阻接入电桥的指定位置。

这一步很关键,确保你把电阻“放到位”,不然测量结果就像是“胡说八道”了。

接下来,仔细调整电桥的旋钮,直到指针再次指向零。

这个过程需要一点耐心,就像是在解谜,慢慢调节,直到一切都“恰到好处”。

3.2 结果记录一旦指针稳定在零位,就可以记录下这时电桥的刻度值。

这个值就是你测量的电阻值。

把这些数据记录下来,像是做笔记一样,方便后续分析。

接着,别忘了做几次重复实验,以确保数据的准确性。

毕竟,做实验可不能马虎,就像做饭时要小心火候一样。

4. 实验结果和分析在结果分析阶段,就像是“解读报告”,看看你的实验结果是否靠谱。

低电阻的测量实验报告

低电阻的测量实验报告

低电阻的测量实验报告低电阻的测量实验报告引言:电阻是电路中常见的元件之一,它的作用是阻碍电流的流动。

在实际应用中,我们常常需要测量电路中的电阻值,以确保电路的正常运行。

本实验旨在通过测量低电阻值的方法,探究不同测量方法的优缺点,并提出相应的改进方案。

实验目的:1. 掌握常见的低电阻测量方法;2. 比较不同测量方法的优劣;3. 提出改进方案,提高低电阻测量的准确度。

实验原理:常见的低电阻测量方法主要有电压法和电流法。

电压法是通过测量电阻两端的电压来计算电阻值,而电流法则是通过测量电阻上的电流来计算电阻值。

实验步骤:1. 准备实验所需材料和仪器,包括电源、电阻箱、万用表等;2. 搭建电路,将电源与电阻箱、万用表连接;3. 选择合适的电压和电流值,分别进行电压法和电流法的测量;4. 记录测量结果,并进行数据分析。

实验结果与分析:通过多次实验测量,我们得到了一系列的测量结果。

在电压法中,我们发现当电阻值较小时,测量结果相对较准确;但当电阻值较大时,测量结果会出现较大误差。

而在电流法中,无论电阻值大小,测量结果都相对准确。

这是因为电压法中,电压测量的误差相对较大,而电流法中,电流测量的误差较小。

然而,电流法也存在一些问题。

在低电阻测量中,电流的通量很小,因此测量电流的精度要求较高。

而常见的万用表在测量低电阻时,由于内阻的存在,会造成测量结果的偏差。

因此,在测量低电阻时,我们需要选择更加精确的测量仪器,如四线电阻测量仪,以提高测量的准确度。

改进方案:为了提高低电阻测量的准确度,我们可以采取以下改进方案:1. 使用四线电阻测量仪代替常见的万用表,以减小内阻对测量结果的影响;2. 在实验中增加校准步骤,通过与已知电阻值的比较,调整测量仪器的准确度;3. 提高实验环境的稳定性,减小外界因素对测量结果的影响。

结论:通过本次实验,我们深入了解了低电阻测量的方法和原理,并通过对比不同测量方法的优劣,提出了相应的改进方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理实验报告
课程名称:大学物理实验实验名称:低电阻测量
学院:专业班级:
学生姓名:学号:
实验地点:座位号:
实验时间:
二、实验原理:
我们考察接线电阻和接触电阻是怎样对低值电阻测量结果产生影响的。

例如用安培表和毫伏表按欧姆定律R=V/I测量电阻Rx,电路图如图 1 所示,
考虑到电流表、毫伏表与测量电阻的接触电阻后,等效电路图如图 2所示。

由于毫伏表内阻Rg远大于接触电阻Ri3和Ri4,因此他们对于毫伏表的测量影响可忽略不计,此时按照欧姆定律R=V/I得到的电阻是(Rx+ Ri1+ Ri2)。

当待测电阻Rx小于1Ω时,就不能忽略接触电阻Ri1和Ri2对测量的影响了。

因此,为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图 3方式,将低电阻Rx以四端接法方式连接,等效电路如图4 。

此时毫伏表上测得电眼为Rx的电压降,由Rx = V/I即可准测计算出Rx。

接于电流测量回路中成为电流头的两端(A、D),与接于电压测量回路中称电压接头的两端
(B、C)是各自分开的,许多低电阻的标准电阻都做成四端钮方式。

根据这个结论,就发展成双臂电桥,线路图和等效电路图5和图6所示。

标准电阻Rn电流头接触电阻为Rin1、R in2,待测电阻Rx的电流头接触电阻为Rix1、R ix2,都连接到双臂电桥测量回路的电路回路内。

标准电阻电压头接触电阻为Rn1、R n2,待测电阻Rx电压头接触电阻为Rx1、Rx2,连接到双臂电桥电压测量回路中,因为它们与较大电阻R1、R 2、R3、R相串连,故其影响可忽略。

由图5和图6,当电桥平衡时,通过检流计G的电流IG = 0, C和D两点电位相等,根据欧姆定律,可得方程组(1)
(1)
解方程组得
(2)
通过联动转换开关,同时调节R1、R 2、R3、R,使得成立,则(2)式中第二项为零,待测电阻Rx和标准电阻Rn的接触电阻Rin1、R ix2均包括在低电阻导线Ri内,则有
(3)
实际上即使用了联动转换开关,也很难完全做到。

为了减小(2)式中第二项的影响,使用尽量粗的导线以减小电阻Ri的阻值(Ri<0.001Ω),使(2)式第二项尽量小,与第一项比较可以忽略,以满足(3)式。

相关文档
最新文档