UBOOT详细解读

合集下载

uboot代码完全解析

uboot代码完全解析
1.相关文件 ....................................................................................................................................28 2.数据结构 ....................................................................................................................................28 3.ENV 的初始化...........................................................................................................................30
目录
u-boot-1.1.6 之 cpu/arm920t........................................................................2 u-boot 中.lds 连接脚本文件的分析 ...................................................................................................12 分享一篇我总结的 uboot 学习笔记(转) .....................................................................................15 U-BOOT 内存布局及启动过程浅析 ...................................................................................................22 u-boot 中的命令实现 ..........................................................................................................................25 U-BOOT 环境变量实现 ........................................................................................................................28

刷入uboot和大分区的方法

刷入uboot和大分区的方法

刷入uboot和大分区的方法一、概念解释1.1 uboot是什么U-boot是一种开源的引导加载程序,它通常用于嵌入式系统的启动过程中,负责引导操作系统的启动和初始化硬件设备。

在嵌入式系统中,uboot扮演着非常重要的角色,它的稳定性和可靠性直接影响整个系统的稳定性。

1.2 分区的作用分区是将存储设备按照一定的规则划分成多个逻辑部分的过程。

对于嵌入式系统而言,合理的分区管理可以提高存储设备的利用率,同时也方便系统的管理和维护。

二、刷入uboot的步骤2.1 确定目标设备我们需要明确要刷入uboot的目标设备是什么,是一个嵌入式开发板还是其他类型的设备。

不同的设备可能需要不同的uboot版本和刷入方法。

2.2 获取uboot源码接下来,我们需要从冠方或者其他可靠渠道获取uboot的源码。

一般来说,冠方的源码是最稳定和可靠的选择,我们可以从冠方的仓库或者全球信息站上下载源码。

2.3 编译uboot获取源码之后,我们需要根据目标设备的硬件配置,对源码进行编译。

在编译之前,我们需要配置好交叉编译工具链和相关的环境变量,确保编译过程顺利进行。

2.4 刷入uboot当uboot源码编译完成之后,我们需要将编译生成的二进制文件刷入目标设备的存储设备中。

这个过程可能涉及到串口或者其他调试工具的使用,需要特别注意刷入过程中的各项参数和配置。

2.5 测试uboot刷入完成后,我们需要对uboot进行测试,确保它能够正常启动,并且能够正确识别硬件设备。

三、创建大分区的步骤3.1 确定分区方案在创建大分区之前,我们需要确定硬盘或者TF卡的分区方案,包括分区的数量、大小和格式等。

3.2 使用分区工具常用的分区工具有fdisk、parted等,我们可以使用这些工具来创建和调整分区。

在使用分区工具时,需要特别注意当前存储设备上是否有重要的数据,避免误操作导致数据丢失。

3.3 格式化分区创建完分区之后,我们需要对分区进行格式化,以便后续的数据存储和管理。

UBOOT源码分析

UBOOT源码分析

UBOOT源码分析UBOOT是一种开放源码的引导加载程序。

作为嵌入式系统启动的第一阶段,它负责初始化硬件设备、设置系统环境变量、加载内核镜像以及跳转到内核开始执行。

Uboot的源码是开放的,让我们可以深入了解其内部工作机制和自定义一些功能。

Uboot源码的文件组织结构非常清晰,主要分为三个大类:目录、文件和配置。

其中目录包含了一系列相关的文件,文件存放具体的源码实现代码,配置文件包含了针对特定硬件平台的配置选项。

Uboot源码的核心部分是启动代码,位于arch目录下的CPU架构相关目录中。

不同的CPU架构拥有不同的启动代码实现,如arm、x86等。

这些启动代码主要包括以下几个关键功能:1. 初始化硬件设备:Uboot首先需要初始化硬件设备,例如设置时钟、中断控制器、串口等设备。

这些初始化操作是在启动代码中完成的。

通过查看该部分代码,我们可以了解硬件的初始化过程,以及如何配置相关寄存器。

2. 设置启动参数:Uboot启动参数存储在一个称为"bd_info"的数据结构中,它包含了一些关键的设备和内存信息,例如DRAM大小、Flash 大小等。

这些参数是在启动代码中设置的,以便内核启动时能够正确识别硬件情况。

3. 加载内核镜像:Uboot负责加载内核镜像到内存中,以便内核可以正确执行。

在启动代码中,会通过读取Flash设备或者网络等方式,将内核镜像加载到指定的内存地址处。

加载过程中,可能会进行一些校验和修正操作,以确保内核数据的完整性。

4. 启动内核:在内核镜像加载完成后,Uboot会设置一些寄存器的值,并执行一个汇编指令,跳转到内核开始执行。

此时,Uboot的使命即结束,控制权交由内核处理。

除了启动代码,Uboot源码中还包含了许多其他功能模块,如命令行解析器、存储设备驱动、网络协议栈等。

这些功能模块可以根据需求进行配置和编译,以满足不同平台的需求。

例如,可以通过配置文件选择启用一些功能模块,或者自定义一些新的功能。

2440超详细U-BOOT(UBoot介绍+H-jtag使用+Uboot使用)

2440超详细U-BOOT(UBoot介绍+H-jtag使用+Uboot使用)

凌FL2440超详细U-BOOT作业(UBoot介绍+H-jtag使用+Uboot使用)Bootloader是高端嵌入式系统开发不可或缺的部分。

它是在操作系统内核启动之前运行的一段小程序。

通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。

现在主流的bootloader有U-BOOT、vivi、Eboot等。

本次作业先做Uboot的烧写吧。

希望通过这个帖子,能让更多的初学者朋友了解一些UBoot的知识,也希望高手朋友对我的不足予以斧正。

首先说一下什么是Uboot:U-Boot,全称Universal Boot Loader,是遵循GPL条款的开放源码项目。

从FAD SROM、8xxROM、PPCBOOT逐步发展演化而来。

其源码目录、编译形式与Linux内核很相似,事实上,不少U-Boot源码就是相应的Linux内核源程序的简化,尤其是一些设备的驱动程序,这从U-Boot源码的注释中能体现这一点。

但是U-Boot不仅仅支持嵌入式Linu x系统的引导,当前,它还支持NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS嵌入式操作系统。

其目前要支持的目标操作系统是OpenBSD, NetBSD, FreeBSD,4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, LynxOS, pSOS, QNX, RTEMS, ARTOS。

这是U-Boot中Universal的一层含义,另外一层含义则是U-Boot除了支持PowerPC系列的处理器外,还能支持MIPS、x86、ARM、NIOS、XScale等诸多常用系列的处理器。

这两个特点正是U-Boot项目的开发目标,即支持尽可能多的嵌入式处理器和嵌入式操作系统。

uboot启动流程分析

uboot启动流程分析

uboot启动流程分析Uboot启动流程分析。

Uboot是一种常用的嵌入式系统启动加载程序,它的启动流程对于嵌入式系统的正常运行至关重要。

本文将对Uboot启动流程进行分析,以便更好地理解其工作原理。

首先,Uboot的启动流程可以分为以下几个步骤,Reset、初始化、设备初始化、加载内核。

接下来我们将逐一进行详细的分析。

Reset阶段是整个启动流程的起点,当系统上电或者复位时,CPU会跳转到Uboot的入口地址开始执行。

在这个阶段,Uboot会进行一些基本的硬件初始化工作,包括设置栈指针、初始化CPU寄存器等。

接着是初始化阶段,Uboot会进行一系列的初始化工作,包括初始化串口、初始化内存控制器、初始化时钟等。

这些初始化工作是为了确保系统能够正常地运行,并为后续的工作做好准备。

设备初始化阶段是Uboot启动流程中的一个重要环节,它包括对外设的初始化和检测。

在这个阶段,Uboot会初始化各种外设,如网卡、存储设备等,并对其进行检测,以确保它们能够正常工作。

最后一个阶段是加载内核,Uboot会从存储设备中加载操作系统的内核镜像到内存中,并跳转到内核的入口地址开始执行。

在这个过程中,Uboot会进行一些必要的设置,如传递启动参数给内核,并最终将控制权交给内核。

总的来说,Uboot的启动流程是一个非常重要的过程,它涉及到系统的硬件初始化、外设的初始化和内核的加载等工作。

只有当这些工作都顺利完成时,系统才能够正常地启动运行。

因此,对Uboot启动流程的深入理解对于嵌入式系统的开发和调试具有重要意义。

通过本文对Uboot启动流程的分析,相信读者对Uboot的工作原理有了更清晰的认识。

希望本文能够对大家有所帮助,谢谢阅读!。

深度解析:嵌入式之uboot

深度解析:嵌入式之uboot

深度解析:嵌入式之uboot1.为什么要有uboot1.1、计算机系统的主要部件(1)计算机系统就是以CPU为核心来运行的系统。

典型的计算机系统有:PC机(台式机+笔记本)、嵌入式设备(手机、平板电脑、游戏机)、单片机(家用电器像电饭锅、空调)(2)计算机系统的组成部件非常多,不同的计算机系统组成部件也不同。

但是所有的计算机系统运行时需要的主要核心部件都是3个东西:CPU + 外部存储器(Flash/硬盘) + 内部存储器(DDR SDRAM/SDRAM/SRAM)1.2、PC机的启动过程(1)部署:典型的PC机的BIOS程序部署在PC机主板上(随主板出厂时已经预制了),操作系统部署在硬盘上,内存在掉电时无作用,CPU在掉电时不工作。

(2)启动过程:PC上电后先执行BIOS程序(实际上PC的BIOS就是NorFlash),BIOS程序负责初始化DDR内存,负责初始化硬盘,然后从硬盘上将OS镜像读取到DDR中,然后跳转到DDR中去执行OS直到启动(OS启动后BIOS 就无用了) 1.3、典型嵌入式linux系统启动过程(1)典型嵌入式系统的部署:uboot程序部署在Flash(能作为启动设备的Flash)上、OS部署在FLash(嵌入式系统中用Flash代替了硬盘)上、内存在掉电时无作用,CPU在掉电时不工作。

(2)启动过程:嵌入式系统上电后先执行uboot、然后uboot负责初始化DDR,初始化Flash,然后将OS从Flash中读取到DDR中,然后启动OS(OS启动后uboot就无用了)总结:嵌入式系统和PC机的启动过程几乎没有两样,只是BIOS 成了uboot,硬盘成了Flash。

1.4、android系统启动过程(1)Android系统的启动和Linux系统(前面讲的典型的嵌入式系统启动)几乎一样。

几乎一样意思就是前面完全一样,只是在内核启动后加载根文件系统后不同了。

(2)可以认为启动分为2个阶段:第一个阶段是uboot到OS启动;第二个阶段是OS启动后到rootfs加载到命令行执行;现在我们主要研究第一个阶段,android的启动和linux的差别在第二阶段。

uboot命令解释与运行分析

uboot命令解释与运行分析

uboot命令解释与运行分析题记: 省略200字这一回来分析一下uboot中命令行的解释, 所以我们直接从main_loop开始分析.1. 从汇编阶段进入c阶段的第一个函数是start_xxx, 如/lib_unicore/board.c中的start_unicoreboot. 前半部分调用了若干初始化函数来进行部分硬件的初始化, 并设置一下环境. 这里不是我们本回要讨论的所以一一跳过. 在start_xxx的最后调用了main_loop(), 而且还是被一个死循环死死圈住了;2. 现在我们已经进入了这个圈套那么只能往里钻了. common/main.c文件中的main_loop().上面代码主要是对自启动部分的描述, 其中命令执行部分是在run_command中进行的, 这个等在后文分析. 如果我们没有bootcmd 或者在延时中被打断, 那么代码会继续向下执行3.read_line()读取到命令行后会调用common/main.c文件中的run_command().现在是分析run_command()的时候了,不管是从环境变量还是终端获得命令,都是由run_command()来处理的.中场休息,下面要进入处理cmdbuf的循环中了, 长征马上开始以;分割. 忽略'\;'for(inquotes = 0, sep = str;*sep; sep++){if((*sep=='\'')&&(*(sep-1)!='\\'))inquotes=!inquotes;if(!inquotes &&(*sep ==';')&&( sep != str)&&(*(sep-1)!='\\'))break;}//如果上面for循环找到一条以';'结束的命令, 那么sep指向命令末尾token = str;if(*sep){str = sep + 1;*sep ='\0';}elsestr = sep;process_macros (token, finaltoken);if((argc = parse_line (finaltoken, argv))== 0){rc =-1;4.就此打断一下, 我们要分析一下find_cmd了, 不能再跳过了. find_cmd()在.u_boot_cmd段中寻找该命令的cmd_tbl_t结构, 找到后返回该结构. 该命令的结构是通过定义在include/command.h中的宏定义U_BOOT_CMD登记进.u_boot_cmd段中的.5. 刚才我们在长征的半路翻越了一座雪山, 现在继续回到while循环中if(cmdtp->cmd == do_bootd){if(flag & CMD_FLAG_BOOTD){puts("'bootd' recursion detected\n");rc =-1;continue;}else{flag |= CMD_FLAG_BOOTD;}}#endif//长征马上结束, 胜利就在眼前! 调用结构体中注册的cmd函数, 何时注册的呢? 上面不远处介绍的U_BOOT_CMD!if((cmdtp->cmd)(cmdtp, flag, argc, argv)!= 0){ rc =-1;}repeatable &= cmdtp->repeatable;if(had_ctrlc ())return-1;}。

uboot 命令详解

uboot 命令详解

u-boot 技术文档1.U boot 命令详解1.1查看帮助命令使用help 或者?1.2环境变量打印环境变量:printenv设置环境变量:setenv(不会保存)保存环境变量:saveenv这个时候就有了1.3nandflash命令使用nand查看nandflash 所有指令擦除nand erase1.4norflash命令查看Flash信息命令: flinfo加/解写保护命令: protect擦除命令: erase1.5内存命令nm1.5USB指令使用help usb 查看usb具体指令使用usb 启动使用usb tree查看信息f atls usb 0 罗列u盘信息1.5.1实例演练usb指令烧写1.6实例演练ftp指令烧写环境变量中体现了开发板上的IP地址为192.168.0.2,网关为192.168.0.1,要求电上的tftp 服务器的IP为192.168.0.1;运行电脑上tftp服务器,指定好根目录,将内核和根文件系统放在根目录下。

注:线接上后,电脑上的本地连接可能是显示网络电缆没插好,这很正常!在使用过程中它们会自动去连接!<2>分别下载内核和根文件系统到内存0x30008000开始的空间先检查坏块nand bad再擦除坏块清理某个区域0x560000 0x3b22c00将根文件系统加载到0x30008000然后再将根文件系统写到0x560000 0x3b22c00这个位置然后重启:重复上面的步骤:nand erase 0x60000 0x267000将内核文件保存到0x60000 0x267000这块区域运行1.8系统重启指令2.U boot 内核移植在cpu/arm920t/start.S中添加以下代码在修改并添加为以下代码在include/configs/mini2440.h修改为如下:将以下代码修改为:将以下代码修改为:将以下代码修改为:在drivers/mtd/nand/s3c2410_nand.h 在最后下面代码上添加如下带码:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大多数bootloader都分为stage1和stage2两部分,u-boot也不例外。

依赖于CPU体系结构的代码(如设备初始化代码等)通常都放在stage1且可以用汇编语言来实现,而stage2则通常用C语言来实现,这样可以实现复杂的功能,而且有更好的可读性和移植性。

1、Stage1 start.S代码结构u-boot的stage1代码通常放在start.S文件中,他用汇编语言写成,其主要代码部分如下:(1)定义入口。

由于一个可执行的Image必须有一个入口点,并且只能有一个全局入口,通常这个入口放在ROM(Flash)的0x0地址,因此,必须通知编译器以使其知道这个入口,该工作可通过修改连接器脚本来完成。

(2)设置异常向量(Exception Vector)。

(3)设置CPU的速度、时钟频率及终端控制寄存器。

(4)初始化内存控制器。

(5)将ROM中的程序复制到RAM中。

(6)初始化堆栈。

(7)转到RAM中执行,该工作可使用指令ldr pc来完成。

2、Stage2 C语言代码部分lib_arm/board.c中的start arm boot是C语言开始的函数也是整个启动代码中C语言的主函数,同时还是整个u-boot(armboot)的主函数,该函数只要完成如下操作:(1)调用一系列的初始化函数。

(2)初始化Flash设备。

(3)初始化系统内存分配函数。

(4)如果目标系统拥有NAND设备,则初始化NAND设备。

(5)如果目标系统有显示设备,则初始化该类设备。

(6)初始化相关网络设备,填写IP、MAC地址等。

(7)进去命令循环(即整个boot的工作循环),接受用户从串口输入的命令,然后进行相应的工作。

3、U-Boot的启动顺序(示例,其他u-boot版本类似)cpu/arm920t/start.S@文件包含处理#include <config.h>@由顶层的mkconfig生成,其中只包含了一个文件:configs/<顶层makefile中6个参数的第1个参数>.h#include <version.h>#include <status_led.h>/**************************************************************************** Jump vector table as in table 3.1 in [1]***************************************************************************/注:ARM微处理器支持字节(8位)、半字(16位)、字(32位)3种数据类型@向量跳转表,每条占四个字节(一个字),地址范围为0x0000 0000~@0x0000 0020@ARM体系结构规定在上电复位后的起始位置,必须有8条连续的跳@转指令,通过硬件实现。

他们就是异常向量表。

ARM在上电复位后,@是从0x00000000开始启动的,其实如果bootloader存在,在执行@下面第一条指令后,就无条件跳转到start_code,下面一部分并没@执行。

设置异常向量表的作用是识别bootloader。

以后系统每当有@异常出现,则CPU会根据异常号,从内存的0x00000000处开始查表@做相应的处理/******************************************************;当一个异常出现以后,ARM会自动执行以下几个步骤:;1.把下一条指令的地址放到连接寄存器LR(通常是R14).---保存位置;2.将相应的CPSR(当前程序状态寄存器)复制到SPSR(备份的程序状态寄存器)中---保存CPSR ;3.根据异常类型,强制设置CPSR的运行模式位;4.强制PC(程序计数器)从相关异常向量地址取出下一条指令执行,从而跳转到相应的异常处理程序中*********************************************************/.globl _start /*系统复位位置,整个程序入口*/@_start是GNU汇编器的默认入口标签,.globl将_start声明为外部程序可访问的标签,.globl 是GNU汇编的保留关键字,前面加点是GNU汇编的语法_start: b start_code @0x00@ARM上电后执行的第一条指令,也即复位向量,跳转到start_code@reset用b,就是因为reset在MMU建立前后都有可能发生@其他的异常只有在MMU建立之后才会发生ldr pc, _undefined_instruction /*未定义指令异常,0x04*/ldr pc, _software_interrupt /*软中断异常,0x08*/ldr pc, _prefetch_abort /*内存操作异常,0x0c*/ldr pc, _data_abort /*数据异常,0x10*/ldr pc, _not_used /*未适用,0x14*/ldr pc, _irq /*慢速中断异常,0x18*/ldr pc, _fiq /*快速中断异常,0x1c*/@对于ARM数据从内存到CPU之间的移动只能通过L/S指令,如:ldr r0,0x12345678为把0x12345678内存中的数据写到r0中,还有一个就是ldr伪指令,如:ldr r0,=0x12345678为把0x12345678地址写到r0中,mov只能完成寄存器间数据的移动,而且立即数长度限制在8位_undefined_instruction: .word undefined_instruction_software_interrupt: .word software_interrupt_prefetch_abort: .word prefetch_abort_data_abort: .word data_abort_not_used: .word not_used_irq: .word irq_fiq: .word fiq@.word为GNU ARM汇编特有的伪操作,为分配一段字内存单元(分配的单元为字对齐的),可以使用.word把标志符作为常量使用。

如_fiq:.word fiq即把fiq存入内存变量_fiq中,也即是把fiq放到地址_fiq中。

.balignl 16,0xdeadbeef@.balignl是.balign的变体@ .align伪操作用于表示对齐方式:通过添加填充字节使当前位置@满足一定的对齐方式。

.balign的作用同.align。

@ .align {alignment} {,fill} {,max}@其中:alignment用于指定对齐方式,可能的取值为2的次@幂,缺省为4。

fill是填充内容,缺省用0填充。

max是填充字节@数最大值,如果填充字节数超过max, 就不进行对齐,例如:@ .align 4 /* 指定对齐方式为字对齐*/【参考好野人的窝,于关u-boot中的.balignl 16,0xdeadbeef的理解/84511571.html】/**************************************************************************** Startup Code (called from the ARM reset exception vector)** do important init only if we don't start from memory!* relocate armboot to ram* setup stack* jump to second stage**************************************************************************@保存变量的数据区,保存一些全局变量,用于BOOT程序从FLASH拷贝@到RAM,或者其它的使用。

@还有一些变量的长度是通过连接脚本里得到,实际上由编译器算出@来的_TEXT_BASE:@因为linux开始地址是0x30000000,我这里是64M SDRAM,所以@TEXT_BASE = 0x33F80000 ???.word TEXT_BASE /*uboot映像在SDRAM中的重定位地址*/@TEXT_BASE在开发板相关的目录中的config.mk文档中定义, 他定@义了代码在运行时所在的地址, 那么_TEXT_BASE中保存了这个地@址(这个TEXT_BASE怎么来的还不清楚).globl _armboot_start_armboot_start:.word _start@用_start来初始化_armboot_start。

(为什么要这么定义一下还不明白)/** These are defined in the board-specific linker script.*/@下面这些是定义在开发板目录链接脚本中的.globl _bss_start_bss_start:.word __bss_start@__bss_start定义在和开发板相关的u-boot.lds中,_bss_start保存的是__bss_start标号所在的地址。

.globl _bss_end_bss_end:.word _end@同上,这样赋值是因为代码所在地址非编译时的地址,直接取得该标号对应地址。

@中断的堆栈设置#ifdef CONFIG_USE_IRQ/* IRQ stack memory (calculated at run-time) */.globl IRQ_STACK_STARTIRQ_STACK_START:.word 0x0badc0de/* IRQ stack memory (calculated at run-time) */.globl FIQ_STACK_STARTFIQ_STACK_START:.word 0x0badc0de#endif/** the actual start code*/@复位后执行程序@真正的初始化从这里开始了。

其实在CPU一上电以后就是跳到这里执行的reset:/** set the cpu to SVC32 mode*/@更改处理器模式为管理模式@对状态寄存器的修改要按照:读出-修改-写回的顺序来执行@31 30 29 28 --- 7 6 - 4 3 2 1 0N Z C V I F M4 M3 M2 M1 M00 0 0 0 0 User26 模式0 0 0 0 1 FIQ26 模式0 0 0 1 0 IRQ26 模式0 0 0 1 1 SVC26 模式1 0 0 0 0 User 模式1 0 0 0 1 FIQ 模式1 0 0 1 0 IRQ 模式1 0 0 1 1 SVC 模式1 0 1 1 1 ABT 模式1 1 0 1 1 UND 模式1 1 1 1 1 SYS 模式mrs r0,cpsr@将cpsr的值读到r0中bic r0,r0,#0x1f@清除M0~M4orr r0,r0,#0xd3@禁止IRQ,FIQ中断,并将处理器置于管理模式msr cpsr,r0@以下是点灯了,这里应该会牵涉到硬件设置,移植的时候应该可以不要blcoloured_LED_initblred_LED_on@针对AT91RM9200进行特殊处理#if defined(CONFIG_AT91RM9200DK) || defined(CONFIG_AT91RM9200EK)/** relocate exception table*/ldr r0, =_startldr r1, =0x0mov r2, #16copyex:subs r2, r2, #1@sub带上了s用来更改进位标志,对于sub来说,若发生借位则C标志置0,没有则为1,这跟adds指令相反!要注意。

相关文档
最新文档