基于PLC的小型搬运机械手控制系统设计
基于PLC的搬运机械手控制系统设计

基于PLC的搬运机械手控制系统设计搬运机械手是一种自动化设备,广泛应用于工业生产中的物料搬运、装卸、组装等工序。
为了实现搬运机械手的自动化控制,可以采用基于可编程逻辑控制器(PLC)的控制系统。
本文将介绍一个基于PLC的搬运机械手控制系统的设计。
搬运机械手控制系统的主要功能是对机械手的运动进行控制。
基于PLC的控制系统可以实现对机械手的运动、速度和位置等参数进行精确控制,从而提升机械手的工作效率和准确性。
首先,需要确定搬运机械手的运动方式和结构。
常见的机械手运动方式包括直线运动、旋转运动和联动运动等。
根据任务需求,可以选择合适的运动方式和结构。
然后,需要选择合适的PLC设备。
PLC是一种专门用于工业自动化控制的设备,具有高可靠性、灵活性和可扩展性等特点。
根据机械手的规模和工作要求,选择适当的PLC设备。
接下来,需要设计搬运机械手的控制电路。
控制电路是实现机械手运动控制的关键部分,包括传感器、电磁阀、继电器等元件的连接和控制逻辑的设计。
在设计控制逻辑时,可以使用PLC提供的编程软件进行编程。
根据机械手的工作要求和操作流程,编写PLC程序,实现对机械手的自动控制。
此外,还需要设计人机界面(HMI)用于操作和监控机械手的运行状态。
HMI通常使用触摸屏或按钮等输入设备,以及显示屏或指示灯等输出设备。
通过HMI,操作人员可以控制机械手的运动和监控运行状态。
最后,进行系统调试和测试。
在将系统投入使用之前,需要进行调试和测试,确保搬运机械手的运动控制正常,并满足工作要求。
总结起来,基于PLC的搬运机械手控制系统设计包括确定运动方式和结构、选择合适的PLC设备、设计控制电路、编写PLC程序、设计人机界面以及进行系统调试和测试等步骤。
通过PLC控制系统的应用,可以提高机械手的自动化程度,提升生产效率和产品质量。
小型搬运机械手的PLC控制系统设计

小型搬运机械手的PLC控制系统设计
小型搬运机械手的PLC控制系统设计包括以下几个方面:
1. 确定系统需求:首先需要明确机械手的工作任务和工作环境,包
括搬运物品的重量、尺寸和形状,以及工作空间的限制。
2. 选择适当的PLC:根据系统需求选择合适的PLC,考虑其输入输
出点数、通信接口、处理能力和可靠性等因素。
3. 确定传感器和执行器:根据机械手的工作任务选择合适的传感器
和执行器,例如光电传感器、接近开关、压力传感器、伺服电机等。
4. 确定控制策略:根据机械手的工作任务确定控制策略,包括运动
控制、路径规划、物体识别等。
5. 编写PLC程序:根据控制策略编写PLC程序,使用相应的编程语
言(如 ladder diagram、structured text 等),实现机械手的自
动化控制。
6. 连接传感器和执行器:根据PLC的输入输出点数,将传感器和执
行器与PLC连接起来,确保数据的准确传输和控制信号的可靠输出。
7. 调试和测试:完成PLC程序编写后,进行调试和测试,验证系统
的功能和性能是否满足需求,对程序进行优化和修正。
8. 系统集成和实施:将PLC控制系统与机械手进行集成,确保系统
的稳定运行和安全性。
9. 运维和维护:定期对PLC控制系统进行维护和保养,包括检查传
感器和执行器的工作状态,更新PLC程序,修复故障等。
需要注意的是,小型搬运机械手的PLC控制系统设计需要根据具体
的应用场景和要求进行定制,以上仅为一般性的设计步骤和考虑因素,具体设计还需根据实际情况进行调整和优化。
基于PLC的搬运机械手控制系统设计

基于PLC的搬运机械手控制系统设计搬运机械手是工业生产中常用的一种机器人,目的是为了将物品从一个地方搬到另一个地方,以实现生产线的自动化生产。
为了方便操作和控制机械手的运动,我们常使用PLC进行控制。
本文将详细介绍基于PLC的搬运机械手控制系统设计并分为以下几个部分:系统设计、硬件设计、软件设计和测试与优化。
系统设计在设计搬运机械手的控制系统前,需要明确其基本能力以及操作条件。
本文需要实现的是一个能够在工业生产上自动完成货物的移动,如从一个点到达另一个点,或从一个点将货物取下并放入另一个点的机械手控制系统。
硬件设计在硬件方面,机械手的结构以及体积会影响到设计的复杂度和控制的难度。
机械手的操作部分包括控制电路、执行器驱动电路、电源等。
现在,我们来介绍每个部分的主要内容。
控制电路部分包括PLC、IO模块等。
PLC是机械手控制的核心,负责读取传感器信号并控制执行器的动作。
IO模块则负责将信号转换为PLC能接受的信号进行处理。
执行器驱动电路部分主要负责控制电机动作。
电机的选择与应用需要根据机械手的具体要求而定,需要注意的是,电机的转矩和功率需要协调匹配,还需要注意电机的供电和控制电路之间的配合问题。
电源系统是机械手控制系统的基础之一,电源的大小和控制器的匹配与应用直接关系到系统的正常运行。
需要根据需要提供相应的电压以及功率供给系统。
软件设计在软件设计方面,我们借助PLC程序进行控制,根据机械手的执行需要编写相应的程序,实现机械手的移动、旋转、夹取或放置操作。
具体流程如下:1. 初始化- 设定初始位置和状态等参数;2. 等待操作信号- 根据设定的信号进行等待;3. 传感器检测- 检测对象的位置和状态;4. 判断操作- 根据传感器检测结果进行相应操作;5. 输出控制信号- 控制执行器动作,改变机械手所处的位置和状态。
测试与优化测试与优化是机械手控制系统设计的重要一步,目的是检查系统的稳定性和准确性。
在测试过程中,需要测试机械手的各种运动状态,比如加速度、负载、速度等参数,以确定机械手的质量和性能优化方向。
基于PLC的小型搬运机械手控制系统设计说明书

基于PLC的小型搬运机械手控制系统设计目录 (1)文摘 (3)Abstract (3)第一章绪论 (4)1.1机械手概述 (4)1.2机械手的组成和分类 (4)1.2.1机械手的组成 (5)1.2.2机械手的分类 (6)1.3国内外发展状况.. (7)1.4课题的提出及主要任务 (8)1.4.1课题的提出 (8)1.4.2课题的主要任务 (9)第二章机械手的设计方案 (9)2.1机械手的座标型式与自由度 (10)2.2机械手的手部结构方案设计 (11)2.3机械手的手腕结构方案设计 (13)2.4机械手的手臂结构方案设计 (14)2.5机械手的驱动方案设计 (15)2.6机械手的控制方案设计 (17)2.7机械手的主要参数 (18)2.8机械手的技术参数列表 (19)第三章手部结构设计 (20)3.1夹持式手部结构 (21)3.1.1手指的形状和分类 (22)3.1.2设计时考虑的几个问题 (23)3.1.3手部夹紧气缸的设计 (24)第四章手腕结构设计 (26)4.1手腕的自由度 (28)4.2手腕的驱动力矩的计算 (29)4.2.1手腕转动时所需的驱动力矩 (29)4.2.2回转气缸的驱动力矩计算 (30)4.2.3回转气缸的驱动力矩计算校核 (33)第五章手臂伸缩,升降,回转气缸的设计与校核 (33)5.1手臂伸缩部分尺寸设计与校核 (34)5.1.1尺寸设计 (35)5.1.2尺寸校核 (35)5 .1 .3导向装置 (36)5 .1 .4平衡装置 (37)5.2手臂升降部分尺寸设计与校核 (37)5.2.1尺寸设计 (37)5.2.2尺寸校核 (37)5.3手臂回转部分尺寸设计与校核 (38)5.3.1尺寸设计 (39)5.3.2尺寸校核 (40)第六章气动系统设计 (41)6.1气压传动系统工作原理图 (42)6.2气压传动系统工作原理图的参数化绘制 (43)第七章机械手的PLC控制设计 (44)7.1可编程序控制器的选择及工作过程 (45)7.1.1可编程序控制器的选择 (46)7.1.2可编程序控制器的工作过程 (47)7.2可编程序控制器的使用步骤 (48)7.3机械手可编程序控制器控制方案 (49)结论 (50)致谢 (51)参考文献 (52)中文摘要本文简要介绍了小型搬运机械手的概念,机械手的组成和分类,机械手的自由度和坐标形式,气动技术的特点,PLC控制的特点及国内外的发展状况。
基于PLC机械手控制系统设计

2024-04-29
• 项目背景与意义 • 整体方案设计 • 硬件选型 • 程序设计 • PLC仿真 • 项目总结与展望
目录
Part
01
项目背景与意义
机械手控制系统优势
效率高、准确高
高生产自动化程度,有利于 提高材料的传送、工件的装 卸、刀具的更换以及机器的 装配等的自动化程度,提高 生产效率,降低生产成本
改善劳动条件
避免人身事故,代替人安全 地在高温、高压、低温、低 压、有灰尘、噪声、臭味、 有放射性或有其它毒性污染 以及工作空间狭窄等场合中 完成工作。
自动化程度高,成本低
采用PLC控制系统,实现远 程监控和自动调节,提高运 维效率,降低了人工成本。
Part
02
整体方案设计
系统硬件设计
plc选型 机械手的位置反馈是开关量控制,所需的I/0点数量并不多,所以使用一般 的小型plc的选择就可以了。由于所需要的 I/0 点数分别为 20 点和12 点, 因此本设计选用西门子S7-226来实现控制
2)通过下面一排拉杆模拟PLC输入信号,通过观察Q点输出亮灯情况检查程序。
组态制作
新建一个工程,触摸屏的类型选择TPC7062TD
2)制作主页面。
组态制作
在设备窗口中添加-通用串口父设备和西门子_S7200PPI
2)双击西门子_S7200PPI,增加设备通道,并且连接对应的数据库,是PLC与触摸屏互相通信。
Part
03
硬件选型
plc硬件接线图简图
选型与配置方案
PLC控制器
使用一般的小型plc的选择就可以 了。由于所需要的 I/0 点数分别 为 20 点和12 点,因此本设计选 用西门子S7-226来实现控制。
基于PLC的物料搬运机器人控制系统设计

基于PLC的物料搬运机器人控制系统设计本文档介绍了基于可编程逻辑控制器(PLC)的物料搬运机器人控制系统的设计。
该系统用于自动化物料搬运过程,提高生产效率和降低人力成本。
1. 系统概述物料搬运机器人控制系统由以下几个主要组件组成:- PLC控制器:作为系统的控制核心,负责接收和处理传感器信号,并根据预设的逻辑进行控制。
- 传感器:用于检测物料位置、距离和重量等信息,并将其传输给PLC控制器。
- 执行器:包括电机、气动装置等,用于实现机器人的移动和物料的搬运。
- 人机界面(HMI):用于监控和操作整个系统,提供用户友好的界面和交互功能。
2. 硬件设计物料搬运机器人控制系统的硬件设计主要包括PLC控制器的选择、传感器和执行器的选型,以及HMI的设计。
- PLC控制器:根据实际需求选择功能强大、稳定可靠的PLC 控制器,具备足够的输入输出接口以及通信功能。
- 传感器:根据具体的搬运需求选择适合的传感器,如接近传感器、压力传感器和重量传感器等。
- 执行器:根据物料的大小和重量选择适合的执行器,如电机驱动的轮子和夹爪等。
- HMI设计:设计直观的界面,显示机器人状态、物料位置以及操作按钮等。
3. 软件设计物料搬运机器人控制系统的软件设计主要包括PLC程序和HMI界面的编程。
- PLC程序:使用合适的编程语言(如Ladder Diagram)编写逻辑控制程序,实现自动化的搬运过程,包括物料检测、移动和放置等功能。
- HMI界面:根据用户需求设计HMI界面,用于显示系统状态、操作按钮和参数设置等。
4. 应用场景基于PLC的物料搬运机器人控制系统广泛应用于各个行业的物料搬运过程,如制造业、物流和仓储行业等。
- 制造业:机器人可在生产线上自动搬运物料,提高生产效率。
- 物流和仓储:机器人可在仓库中自动搬运货物,减少人力成本和物料损失。
5. 总结基于PLC的物料搬运机器人控制系统是一种高效、自动化的物料搬运解决方案。
基于PLC的搬运机械手控制系统的设计

基于PLC的搬运机械手控制系统的设计本文是基于PLC的搬运机械手控制系统的设计。
根据搬运机械手控制系统给出了控制流程图、阐述了用FX2N-1PG作上位机控制步进电机按一定角度旋转原理、用PLC作上位机控制伺服电机动作原理。
详细描述了基于PLC的搬运机械手控制系统的设计的硬件接线图和设计程序。
并进行了试验验证。
该设计合理规范并能实现搬运机械手控制系统的控制要求。
标签:S7-300PLC 步进电机伺服电机FX2N-1PG模块细分定位脉冲搬运机械手控制系统主要由日本三菱公司的FX2N系列PLC的特殊功能模块FX2N-1PG、步进驱动器、步进电动机和气动控制系统实现运行控制,具有抓取、放松、上升、下降和180°回旋功能,并能沿丝杆导轨做左右水平移动,同时配合伺服驱动器、、伺服电机将成品物料送到指定仓库各站点。
控制系统示意图:一、用PLC控制搬运系统的设计原理搬运机械手系统运用日本三菱公司的FX2N系列PLC对机械手进行一系列的控制,最终目的是把物料准确的送入指定仓库。
要实现准确定位主要涉及到FX2N-1PG模块的定位功能,步进驱动、步进电机和伺服驱动、伺服电机的动作原理。
1.定位脉冲输出模块FX2N-1PGFX2N-1PG定位脉冲输出模块,可输出一相脉冲数、频率可变的定位脉冲(最大100KHz,脉冲量32位),通过连接伺服电机或步进电机驱动器能实现独立1轴的简单定位控制。
首先了解PLC与1PG的体系结构关系。
FX2N-1PG是独立于PLC主机外的扩充模块,以数据总线连接。
模块依据安装位置先后自动设为K0~K7编号地址,所以必须有特殊的PLC数据写入指令,再配合时序及逻辑控制写入FX2N-1PG 寄存器内。
2.用PLC作上位机控制步进电机动作设计原理搬运机械手的定位控制可由PLC、步进驱动和步进电动机实现运行控制。
机械手运行过程为:回原点——定位运行——返回停止。
在机械手运行进程中,若碰到相应方向的极限开关时,机械手立即停止。
《2024年基于PLC的工业机械手运动控制系统设计》范文

《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,PLC(可编程逻辑控制器)已成为工业控制领域中最重要的技术之一。
工业机械手作为自动化生产线上重要的执行机构,其运动控制系统的设计直接关系到生产效率和产品质量。
本文将详细介绍基于PLC的工业机械手运动控制系统设计,包括系统架构、硬件配置、软件设计以及实际应用等方面。
二、系统架构设计基于PLC的工业机械手运动控制系统采用分层式结构设计,主要包括上位机监控系统、PLC控制器和机械手执行机构三个部分。
其中,上位机监控系统负责人机交互、数据监控和系统管理等功能;PLC控制器负责接收上位机指令,控制机械手的运动;机械手执行机构包括电机、传感器、气动元件等,负责完成具体的动作。
三、硬件配置1. PLC控制器:选用高性能、高可靠性的PLC控制器,具备强大的运算能力和丰富的I/O接口,以满足机械手运动控制的需求。
2. 电机:根据机械手的具体需求,选用合适的电机类型和规格,如伺服电机、步进电机等。
3. 传感器:包括位置传感器、速度传感器、力传感器等,用于检测机械手的运动状态和外部环境信息。
4. 气动元件:包括气缸、电磁阀等,用于实现机械手的抓取和释放等功能。
四、软件设计1. 编程语言:采用PLC的编程语言,如梯形图、指令表等,进行程序编写和调试。
2. 控制算法:根据机械手的运动需求,设计合适的控制算法,如PID控制、轨迹规划等,以实现精确的运动控制。
3. 上位机监控系统:开发上位机监控软件,实现人机交互、数据监控和系统管理等功能。
监控软件应具备友好的界面、实时的数据显示和报警功能。
4. 通信协议:建立PLC控制器与上位机监控系统之间的通信协议,实现数据的实时传输和交互。
五、实际应用基于PLC的工业机械手运动控制系统在实际应用中表现出良好的性能和稳定性。
通过上位机监控系统,操作人员可以方便地监控机械手的运动状态和生产数据。
PLC控制器根据上位机的指令,精确地控制机械手的运动,实现高精度的抓取、搬运、装配等任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于PLC的小型搬运机械手控制系统设计目录 (1)文摘 (3)Abstract (3)第一章绪论 (4)1.1机械手概述 (4)1.2机械手的组成和分类 (4)1.2.1机械手的组成 (5)1.2.2机械手的分类 (6)1.3国内外发展状况.. (7)1.4课题的提出及主要任务 (8)1.4.1课题的提出 (8)1.4.2课题的主要任务 (9)第二章机械手的设计方案 (9)2.1机械手的座标型式与自由度 (10)2.2机械手的手部结构方案设计 (11)2.3机械手的手腕结构方案设计 (13)2.4机械手的手臂结构方案设计 (14)2.5机械手的驱动方案设计 (15)2.6机械手的控制方案设计 (17)2.7机械手的主要参数 (18)2.8机械手的技术参数列表 (19)第三章手部结构设计 (20)3.1夹持式手部结构 (21)3.1.1手指的形状和分类 (22)3.1.2设计时考虑的几个问题 (23)3.1.3手部夹紧气缸的设计 (24)第四章手腕结构设计 (26)4.1手腕的自由度 (28)4.2手腕的驱动力矩的计算 (29)4.2.1手腕转动时所需的驱动力矩 (29)4.2.2回转气缸的驱动力矩计算 (30)4.2.3回转气缸的驱动力矩计算校核 (33)第五章手臂伸缩,升降,回转气缸的设计与校核 (33)5.1手臂伸缩部分尺寸设计与校核 (34)5.1.1尺寸设计 (35)5.1.2尺寸校核 (35)5 .1 .3导向装置 (36)5 .1 .4平衡装置 (37)5.2手臂升降部分尺寸设计与校核 (37)5.2.1尺寸设计 (37)5.2.2尺寸校核 (37)5.3手臂回转部分尺寸设计与校核 (38)5.3.1尺寸设计 (39)5.3.2尺寸校核 (40)第六章气动系统设计 (41)6.1气压传动系统工作原理图 (42)6.2气压传动系统工作原理图的参数化绘制 (43)第七章机械手的PLC控制设计 (44)7.1可编程序控制器的选择及工作过程 (45)7.1.1可编程序控制器的选择 (46)7.1.2可编程序控制器的工作过程 (47)7.2可编程序控制器的使用步骤 (48)7.3机械手可编程序控制器控制方案 (49)结论 (50)致谢 (51)参考文献 (52)中文摘要本文简要介绍了小型搬运机械手的概念,机械手的组成和分类,机械手的自由度和坐标形式,气动技术的特点,PLC控制的特点及国内外的发展状况。
本文对机械手进行总体方案设计,确定了机械手的坐标形式和自由度,确定了机械手的技术参数。
同时,设计了机械手的夹持式手部结构,设计了机械手的手腕结构,计算出了手腕转动时所需的驱动力矩和回转气缸的驱动力矩。
设计了机械手的手臂结构。
设计出了机械手的气动系统,绘制了机械手气压系统工作原理图,对气压系统工作原理图的参数化绘制进行了研究,大大提高了绘图效率和图纸质量。
利用可编程序控制器对机械手进行控制,选取了合适的PLC型号,根据机械手的工作流程制定了可编程序控制器的控制方案,画出了机械手的工作时序图,并绘制了可编程序控制器的控制程序。
关键词小型搬运机械手,机械手,气动,可编程序控制器(PLC)ABSTRACTAt first, the paper introduces the conception of the industrial robot and the eler. dary information of the development briefly . What’s more, the paper accounts for the background and the primary mission of the topic.The paper introduces the function, composing and classification of the manipulator , tells out the free-degree and the form of coordinate . At the same time, the paper gives out the primary specification parameter of this manipulator,The paper designs the structure of the hand and the equipment of the drive of the manipulator , This paper designs the structure of the wrist , computes the needed moment of the drive when the wrist wheels and the moment of the drive of the pump.The paper designs the structure of the arm.The paper designs the system of air pressure drive and draws the work principle chart , the manipulator uses PLC to control . The paper institutes two control schemes of PLC according to the work flow of the manipulator . The paper draws out the work time sequence chart and the trapezia chart . What’s more , the paper workout the control program of the PLC ,KEY WORDS : industrial robot, manipulator , pump , air pressure drive , PLC第一章绪论1.1工业机械手概述小型搬运机械手由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。
特别适合于多品种、变批量的柔性生产。
它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。
机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。
机器人应用情况,是一个国家工业自动化水平的重要标志。
机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设各,也是先进制造技术领域不可缺少的自动化设备.机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。
在工业生产中应用的机械手被称为“工业机械手”。
生产中应用机械手可以提高生产的自动化水平和劳动生产率:可以减轻劳动强度、保证产品质量、实现安全生产;尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,它代替人进行正常的工作,意义更为重大。
因此,在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的引用.机械手的结构形式开始比较简单,专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。
随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。
由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。
1.2 机械手的组成和分类1.2.1机械手的组成机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。
各系统相互之间的关系如方框图2-1所示。
机械手组成方框图:Pane chart of composition of manipulator(一)执行机构包括手部、手腕、手臂和立柱等部件,有的还增设行走机构。
1、手部即与物件接触的部件。
由于与物件接触的形式不同,可分为夹持式和吸附式手在本课题中我们采用夹持式手部结构。
夹持式手部由手指(或手爪)和传力机构所构成。
手指是与物件直接接触的构件,常用的手指运动形式有回转型和平移型。
回转型手指结构简单,制造容易,故应用较广泛。
平移型应用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。
手指结构取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的重量及尺寸。
常用的指形有平面的、V形面的和曲面的:手指有外夹式和内撑式;指数有双指式、多指式和双手双指式等。
而传力机构则通过手指产生夹紧力来完成夹放物件的任务。
传力机构型式较多时常用的有:滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式和重力式等。
2、手腕是连接手部和手臂的部件,并可用来调整被抓取物件的方位(即姿势)3、手臂手臂是支承被抓物件、手部、手腕的重要部件。
手臂的作用是带动手指去抓取物件,并按预定要求将其搬运到指定的位置.工业机械手的手臂通常由驱动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动。
4、立柱立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动和升降(或俯仰)运动均与立柱有密切的联系。
机械手的立I因工作需要,有时也可作横向移动,即称为可移式立柱。
5、行走机构当工业机械手需要完成较远距离的操作,或扩大使用范围时,可在机座上安滚轮式行走机构可分装滚轮、轨道等行走机构,以实现工业机械手的整机运动。
滚轮式布为有轨的和无轨的两种。
驱动滚轮运动则应另外增设机械传动装置。
6、机座机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机座上,故起支撑和连接的作用。
(二)驱动系统驱动系统是驱动工业机械手执行机构运动的动力装置调节装置和辅助装置组成。
常用的驱动系统有液压传动、气压传动、机械传动。
控制系统是支配着工业机械手按规定的要求运动的系统。
目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。
控制系统有电气控制和射流控制两种,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。